常微分方程的求解与定性分析实验报告
常微分方程数值解实验报告

常微分方程数值解实验报告学院:数学与信息科学专业:信息与计算科学姓名:郑思义学号:201216524课程:常微分方程数值解实验一:常微分方程的数值解法1、分别用Euler 法、改进的Euler 法(预报校正格式)和S —K 法求解初值问题。
(h=0.1)并与真解作比较。
⎩⎨⎧=++-=10(1y')y x y 1.1实验代码:%欧拉法function [x,y]=naeuler(dyfun,xspan,y0,h)%dyfun 是常微分方程,xspan 是x 的取值范围,y0是初值,h 是步长 x=xspan(1):h:xspan(2); y(1)=y0;for n=1:length(x)-1y(n+1)=y(n)+h*feval(dyfun,x(n),y(n)); end%改进的欧拉法function [x,m,y]=naeuler2(dyfun,xspan,y0,h)%dyfun 是常微分方程,xspan 是x 的取值范围,y0是初值,h 是步长。
%返回值x 为x 取值,m 为预报解,y 为校正解 x=xspan(1):h:xspan(2); y(1)=y0;m=zeros(length(x)-1,1); for n=1:length(x)-1 k1=feval(dyfun,x(n),y(n)); y(n+1)=y(n)+h*k1; m(n)=y(n+1);k2=feval(dyfun,x(n+1),y(n+1)); y(n+1)=y(n)+h*(k1+k2)/2; end%四阶S —K 法function [x,y]=rk(dyfun,xspan,y0,h)%dyfun 是常微分方程,xspan 是x 的取值范围,y0是初值,h 是步长。
x=xspan(1):h:xspan(2); y(1)=y0;for n=1:length(x)-1 k1=feval(dyfun,x(n),y(n));k2=feval(dyfun,x(n)+h/2,y(n)+(h*k1)/2); k3=feval(dyfun,x(n)+h/2,y(n)+(h*k2)/2); k4=feval(dyfun,x(n)+h,y(n)+h*k3);y(n+1)=y(n)+(h/6)*(k1+2*k2+2*k3+k4);end%主程序x=[0:0.1:1];y=exp(-x)+x;dyfun=inline('-y+x+1');[x1,y1]=naeuler(dyfun,[0,1],1,0.1);[x2,m,y2]=naeuler2(dyfun,[0,1],1,0.1);[x3,y3]=rk(dyfun,[0,1],1,0.1);plot(x,y,'r',x1,y1,'+',x2,y2,'*',x3,y3,'o');xlabel('x');ylabel('y');legend('y为真解','y1为欧拉解','y2为改进欧拉解','y3为S—K解','Location','NorthWest');1.2实验结果:x 真解y 欧拉解y1 预报值m 校正值y2 S—K解y30.0 1.0000 1.0000 1.0000 1.00000.1 1.0048 1.0000 1.0000 1.0050 1.00480.2 1.0187 1.0100 1.0145 1.0190 1.01870.3 1.0408 1.0290 1.0371 1.0412 1.04080.4 1.0703 1.0561 1.0671 1.0708 1.07030.5 1.1065 1.0905 1.1037 1.1071 1.10650.6 1.1488 1.1314 1.1464 1.1494 1.14880.7 1.1966 1.1783 1.1945 1.1972 1.19660.8 1.2493 1.2305 1.2475 1.2500 1.24930.9 1.3066 1.2874 1.3050 1.3072 1.30661.0 1.3679 1.3487 1.3665 1.3685 1.36792、选取一种理论上收敛但是不稳定的算法对问题1进行计算,并与真解作比较。
常微分方程的数值解法实验报告

常微分方程的数值解法专业班级:信息软件 姓名:吴中原 学号:120108010002 一、实验目的1、熟悉各种初值问题的算法,编出算法程序;2、明确各种算法的精度与所选步长有密切关系;通过计算更加了解各种 算法的优越性。
二、实验题目1、根据初值问题数值算法,分别选择二个初值问题编程计算;2、试分别取不同步长,考察某节点j x处数值解的误差变化情况; 3、试用不同算法求解某初值问题,结果有何异常; 4、分析各个算法的优缺点。
三、实验原理与理论基础(一) 欧拉法算法设计对常微分方程初始问题(6-1)(6-2)用数值方法求解时,我们总是认为(6-1)、(6-2)的解存在且唯一。
欧拉法是解初值问题的最简单的数值方法。
从(6-2)式由于y (x 0) = y 0已给定,因而可以算出),()('000y x f x y =。
设x 1 = h 充分小,则近似地有:),()(')()(00001y x f x y hx y x y =≈-(6-3)记 ,n ,,i x y y i i 10 )(== 从而我们可以取),(0001y x hf y y ==作为)(1x y 的近似值。
利用1y 及f (x 1, y 1)又可以算出)(2x y 的近似值:),(1112y x hf y y +=一般地,在任意点()h n x n 11+=+处)(x y 的近似值由下式给出),(1n n n n y x hf y y +=+(6-4)这就是欧拉法的计算公式,h 称为步长。
⎪⎩⎪⎨⎧==)( ),(d d 00y x y y x f x y(二)四阶龙格-库塔法算法设计:欧拉公式可以改写为:()111,i i i i y y k k hf x y +=+⎧⎪⎨=⎪⎩,它每一步计算(),f x y 的值一次,截断误差为()2o h 。
改进的欧拉公式可以改写为:()()()11212112,,i i i i i i y y k k k hf x y k hf x h y k +⎧=++⎪⎪=⎨⎪=++⎪⎩,它每一步要计算(),f x y 的值两次,截断误差为()3o h 。
实验报告——常微分方程的数值解法

实验报告实验项目名称常微分方程的数值解法实验室数学实验室所属课程名称微分方程数值解实验类型上机实验实验日期2013年3月11日班级10信息与计算科学学号2010119421姓名叶达伟成绩实验概述:【实验目的及要求】运用不同的数值解法来求解具体问题,并通过具体实例来分析比较各种常微分方程的数值解法的精度,为以后求解一般的常微分方程起到借鉴意义。
【实验原理】各种常微分方程的数值解法的原理,包括Euler法,改进Euler法,梯形法,Runge-Kutta方法,线性多步方法等。
【实验环境】(使用的软硬件)Matlab软件实验内容:【实验方案设计】我们分别运用Euler法,改进Euler法,RK方法和Adams隐式方法对同一问题进行求解,将数值解和解析解画在同一图像中,比较数值解的精度大小,得出结论。
【实验过程】(实验步骤、记录、数据、分析)我们首先来回顾一下原题:对于给定初值问题:1. 求出其解析解并用Matlab画出其图形;2. 采用Euler法取步长为0.5和0.25数值求解(2.16),并将结果画在同一幅图中,比较两者精度;3. 采用改进Euler法求解(2.16),步长取为0.5;4. 采用四级Runge-Kutta法求解(2.16),步长取为0.5;5. 采用Adams四阶隐格式计算(2.16),初值可由四级Runge-Kutta格式确定。
下面,我们分五个步骤来完成这个问题:步骤一,求出(2.16)式的解析解并用Matlab 画出其图形; ,用Matlab 做出函数在上的图像,见下图:00.51 1.52 2.53 3.54 4.550.511.522.533.5x 1015y=exp(1/3 t 3-1.2t)exact solution图一 初值问题的解析解的图像步骤二,采用Euler 法取步长为0.5和0.25数值求解(2.16),并将结果画在同一幅图中,比较两者精度;我们采用Euler 法取步长为0.5和0.25数值求解,并且将数值解与解析解在一个图中呈现,见下图:00.51 1.52 2.53 3.54 4.550.511.522.533.5x 1015Numerical solution of Euler and exact solutionexact solution h=0.5h=0.25图二 Euler 方法的计算结果与解析解的比较从图像中不难看出,采用Euler 法取步长为0.5和0.25数值求解的误差不尽相同,也就是两种方法的计算精度不同,不妨将两者的绝对误差作图,可以使两种方法的精度更加直观化,见下图:00.51 1.52 2.53 3.54 4.550.511.522.533.5x 1015Absolute error of numerical solution and exact solutionh=0.5h=0.25图三 不同步长的Euler 法的计算结果与解析解的绝对误差的比较 从图像中我们不难看出,步长为0.25的Euler 法比步长为0.5的Euler 法的精度更高。
常微分方程实验报告

常微分方程实验报告一、实验目的常微分方程是数学分析和实际应用中非常重要的一部分,本次实验的主要目的是通过实际操作和计算,深入理解常微分方程的概念、性质和求解方法,并能够将其应用到实际问题中,提高我们解决数学问题和实际应用问题的能力。
二、实验原理常微分方程是指含有一个自变量和一个未知函数及其导数的等式。
求解常微分方程的方法有很多,常见的有变量分离法、一阶线性方程的求解方法(如常数变易法)、恰当方程的求解方法(通过积分因子)等。
对于一阶常微分方程,形如\(y' + p(x)y = q(x)\)的方程,可以使用积分因子\(e^{\int p(x)dx}\)来求解。
对于可分离变量的方程,形如\(g(y)dy = f(x)dx\),可以通过分别积分求解。
三、实验内容(一)一阶常微分方程的求解1、求解方程\(y' + 2xy = 2x\)首先,计算积分因子\(e^{\int 2xdx} = e^{x^2}\),然后将方程两边乘以积分因子得到:\((ye^{x^2})'= 2xe^{x^2}\)两边积分可得\(ye^{x^2} = e^{x^2} + C\),解得\(y =1 + Ce^{x^2}\)2、求解方程\(xy' y = x^2\)将方程化为\(y' \frac{y}{x} = x\),这里\(p(x) =\frac{1}{x}\),积分因子为\(e^{\int \frac{1}{x}dx} =\frac{1}{x}\)。
方程两边乘以积分因子得到\((\frac{y}{x})'= 1\),积分可得\(\frac{y}{x} = x + C\),即\(y = x^2 + Cx\)(二)二阶常微分方程的求解1、求解方程\(y'' 2y' + y = 0\)特征方程为\(r^2 2r + 1 = 0\),解得\(r = 1\)(二重根),所以通解为\(y =(C_1 + C_2x)e^x\)2、求解方程\(y''+ 4y = 0\)特征方程为\(r^2 + 4 = 0\),解得\(r =\pm 2i\),所以通解为\(y = C_1\cos(2x) + C_2\sin(2x)\)(三)应用常微分方程解决实际问题1、考虑一个物体在受到与速度成正比的阻力作用下的运动,其运动方程为\(m\frac{dv}{dt} = kv\)(其中\(m\)为物体质量,\(k\)为阻力系数),求解速度\(v\)随时间\(t\)的变化。
常微分方程数值解实验报告

常微分方程数值解实验报告实验报告:常微分方程数值解1.引言常微分方程(Ordinary Differential Equations, ODEs)是数学领域中一个重要的研究对象,涉及到许多自然科学和工程技术领域的问题。
解常微分方程的数值方法是一种求解差分方程的方法,通过计算机找到方程的近似解,对于模拟和预测连续过程非常有用。
本实验旨在通过数值解法,验证和应用常微分方程的解,并比较不同数值方法的精度和效率。
2.实验目的2.1理解常微分方程的基本概念和数值解法;2.2掌握将常微分方程转化为数值求解问题的基本方法;2.3运用数值解法求解常微分方程;2.4比较不同数值解法的精度和效率。
3.实验内容3.1 欧拉方法(Euler Method)给定一个一阶常微分方程dy/dx=f(x,y),通过将其离散为差分形式,欧拉方法可以通过以下递推公式来求解:y_{n+1}=y_n+h*f(x_n,y_n)其中,h为步长,x_n和y_n为当前的x和y值。
3.2 改进的欧拉方法(Improved Euler Method)改进的欧拉方法使用欧拉方法的斜率的平均值来估计每一步中的斜率。
具体公式如下:k1=f(x_n,y_n)k2=f(x_n+h,y_n+h*k1)y_{n+1}=y_n+h*((k1+k2)/2)3.3 二阶龙格-库塔法(Second-order Runge-Kutta Method)二阶龙格-库塔法通过计算每个步骤中的两个斜率来估计每个步长中的斜率。
具体公式如下:k1=f(x_n,y_n)k2=f(x_n+h/2,y_n+(h/2)*k1)y_{n+1}=y_n+h*k24.实验步骤4.1选取常微分方程,并将其转化为数值求解问题的形式;4.2根据给定的初始条件和步长,使用欧拉方法、改进的欧拉方法和二阶龙格-库塔法求解该方程;4.3比较三种方法的数值解与理论解的差异,并分析其精度和效率;4.4尝试不同的步长,观察相应的数值解的变化。
常微分方程实验报告

常微分方程实验报告《常微分方程》综合性实验实验报告实验班级05应数(3)学生姓名江晓荣学生学号200530770314指导老师方平华南农业大学理学院应用数学系实验微分方程在数学建模中的应用及数值解的求法一、实验目的1.了解常微分方程的基本概念。
2.常微分方程的解了解析解和数值解。
3.学习、掌握MA TLAB 软件有关求解常微分方程的解析解和数值解的有关命令。
4. 掌握微分方程在数学建模中的应用。
二、实验内容1.用MA TLAB 函数dsolve 符号求解常微分方程的通解和特解。
2.用MA TLAB 软件数值求解常微分方程。
三、实验准备1.用MA TLAB 求常微分方程的解析解的命令用MA TLAB 函数dsolve 求常微分方程()(,,,,,,)0n F x y y y y y ''''''= (7.1)的通解的主要调用格式如下:S=dsolve('eqn', 'var')其中输入的量eqn 是改用符号方程表示的常微分方程(,,,2,)0F x y Dy D y Dny = ,导数用D 表示,2阶导数用D2表示,以此类推。
var 表示自变量,默认的自变量为t 。
输出量S 是常微分方程的解析通解。
如果给定常微分方程(7.1)的初始条件()00010(),(),,()n n y x a y x a y x a '=== ,则求方程(7.1)的特解的主要调用格式如下:S=dsolve('eqn', 'condition1 ',…'conditonn ','var')其中输入量eqn ,var 的含义如上,condition1,…conditonn 是初始条件。
输出量S 是常微分方程的特解。
2.常微分方程的数值解法除常系数线性微分方程可用特征根法求解、少数特殊方程可用初等积分法求解外,大部分微分方程无解析解,应用中主要依靠数值解法。
常微分方程的求解与定性分析实验报告

常微分方程的求解与定性分析实验报告Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998常微分方程的求解与定性分析实验报告一、实验综述1、实验目的及要求●归纳和学习求解常微分方程(组)的基本原理和方法;●掌握解析、数值解法,并学会用图形观察解的形态和进行解的定性分析;●熟悉MATLAB软件关于微分方程求解的各种命令;●通过范例学习建立微分方程方面的数学模型以及求解全过程;●通过该实验的学习,使学生掌握微分方程(组)求解方法(解析法、欧拉法、梯度法、改进欧拉法等),对常微分方程的数值解法有一个初步了解,同时学会使用MATLAB软件求解微分方程的基本命令,学会建立微分方程方面的数学模型。
这对于学生深入理解微分、积分的数学概念,掌握数学的分析思维方法,熟悉处理大量的工程计算问题的方法是十分必要的。
2、实验仪器、设备或软件电脑、二、实验过程(实验步骤、记录、数据、分析)实验内容:根据实验内容和步骤,完成以下实验,要求写出实验报告(实验目的→问题→数学模型→算法与编程→计算结果→分析、检验和结论)1.求微分方程的解析解,并画出它们的图形。
y '= y + 2 x, y (0) = 1, 0< x <1;m=dsolve('Dy=y+2*x','y(0)=1','x')ezplot(m,[0 1])m =3*exp(x) - 2*x – 21.求微分方程⎪⎩⎪⎨⎧====-+]100[0)0(;0)0(01.03t uu u u u 的数值解,要求编写求解程序。
function dy=vdp1000(t,y)dy=zeros(2,1);dy(1)=y(2);dy(2)=-y(1)+*y(1)^3;[T,Y]=ode15s('vdp1000',[0 10],[0 0]);plot(T,Y(:,1),'-')3.Rossler 微分方程组:当固定参数b =2,c =4时,试讨论随参数a 由小到大变化(如 a ∈(0,)而方程解的变化情况,并且画出空间曲线图形,观察空间曲线是否形成混沌状function r=rossler(t,x)global a;global b;global c;r=[-x(2)-x(3);x(1)+a*x(2);b+x(3)*(x(1)-c)];global a;global b;global c;b=2;c=4;t0=[0,200];for a=0::[t,x]=ode45('rossler',t0,[0,0,0]);subplot(1,2,1);plot(t,x(:,1),'r',t,x(:,2),'g',t,x(:,3),'b');title('x(红色),y(绿色),z(蓝色)随t 的变化情况');xlabel('t');subplot(1,2,2);plot3(x(:,1),x(:,2),x(:,3))title('相图');xlabel('x');ylabel('y');zlabel('z');pauseend结果显示:a=0:a=:a=:a=:a=:a=:结果分析:从图像可以看出,当a=0时,微分方程的解(x,y,z)收敛与(0,,);当a=时,(x,y,z)仍收敛与(0,,),只是收敛速度减慢;当a=时,(x,y,z)已发散,周期性变化;随着a的增大,(x,y,z)接近其极限环的速度加快,空间曲线成混沌状。
数学实验基础实验报告常微分方程

1. 分别用Euler 法和ode45解下列常微分方程并与解析解比较: (1) ,(0)1,13y x y y x '=+=<<Euler 法:function [t,y]=euler(Fun,tspan,y0,h) t=tspan(1):h:tspan(2); y(1)=y0;for i=1:length(t)-1y(i+1)=y(i)+h.*feval(Fun,t(i),y(i)); end t=t'; y=y';function f=Fun(x,y) % 常微分方程的右端函数 f=x+y;>> [x,y]=euler('Fun',[0,3],1,0.1)>> [x,y] ans =0 1.0000 0.1000 1.1000 0.2000 1.2200 0.3000 1.3620 0.4000 1.5282 0.5000 1.7210 0.6000 1.9431 0.7000 2.1974 0.8000 2.4872 0.9000 2.8159 1.0000 3.1875 1.1000 3.6062 1.2000 4.0769 1.3000 4.6045 1.4000 5.1950 1.5000 5.8545 1.6000 6.5899 1.7000 7.4089 1.8000 8.3198 1.9000 9.3318 2.0000 10.4550 2.1000 11.7005 2.2000 13.0805 2.3000 14.6086 2.4000 16.2995 2.5000 18.1694 2.6000 20.2364 2.7000 22.5200 2.8000 25.0420 2.9000 27.8262 3.0000 30.8988ode45:>> [x,y]=ode45('Fun',[0,3],1) ans =0 1.0000 0.0502 1.0528 0.1005 1.1109 0.1507 1.17460.2010 1.2442 0.2760 1.3596 0.3510 1.4899 0.4260 1.63610.5010 1.7996 0.5760 1.9817 0.6510 2.1838 0.7260 2.40740.8010 2.6544 0.8760 2.9264 0.9510 3.2254 1.0260 3.55351.1010 3.9131 1.1760 4.3065 1.2510 4.7364 1.3260 5.20561.4010 5.7172 1.4760 6.2744 1.5510 6.8810 1.6260 7.54061.7010 8.2574 1.7760 9.0359 1.8510 9.8808 1.9260 10.79742.0010 11.7912 2.0760 12.8683 2.1510 14.0351 2.2260 15.29862.3010 16.6664 2.3760 18.1466 2.4510 19.7478 2.5260 21.47962.6010 23.3522 2.6760 25.3764 2.7510 27.5641 2.8260 29.92812.9010 32.4820 2.9257 33.3694 2.9505 34.2796 2.9752 35.21343.0000 36.1711解析解:>> y=dsolve('Dy=x+y','y(0)=1','x') y =2*exp(x) - x - 1(2) 20.01()2sin(),(0)0,(0)1,05y y y t y y t ''''-+===<< Euler 法:function f=Fun(t,y)% 常微分方程的右端函数f=[y(2);0.01*y(2)^2-2*y(1)+sin(t)];>> [t,y]=euler('Fun',[0,5],[0,1],0.2) ode45:>> [t,y]=ode45('Fun',[0,5],[0,1])t =0 0.0001 0.0001 0.0002 0.0002 0.0005 0.0007 0.0010 0.0012 0.00250.0037 0.0050 0.0062 0.0125 0.0188 0.0251 0.0313 0.0627 0.0941 0.12550.1569 0.2819 0.4069 0.5319 0.6569 0.7819 0.9069 1.0319 1.1569 1.28191.4069 1.5319 1.6569 1.7819 1.90692.0319 2.1569 2.2819 2.4069 2.53192.6569 2.7819 2.90693.0319 3.1569 3.2819 3.4069 3.5319 3.6569 3.78193.90694.0319 4.1569 4.2819 4.4069 4.5319 4.6569 4.7427 4.8285 4.91425.0000y =0 1.0000 0.0001 1.0000 0.0001 1.0000 0.0002 1.0000 0.0002 1.00000.0005 1.0000 0.0007 1.0000 0.0010 1.0000 0.0012 1.0000 0.0025 1.00000.0037 1.0000 0.0050 1.0000 0.0062 1.0000 0.0125 1.0000 0.0188 1.00000.0251 0.9999 0.0313 0.9998 0.0627 0.9987 0.0941 0.9965 0.1253 0.99340.1564 0.9893 0.2786 0.9632 0.3966 0.9220 0.5085 0.8662 0.6126 0.79670.7072 0.7146 0.7908 0.6210 0.8620 0.5176 0.9198 0.4058 0.9632 0.28760.9915 0.1647 1.0043 0.0392 1.0013 -0.0869 0.9826 -0.2117 0.9485 -0.33310.8996 -0.4490 0.8365 -0.5578 0.7605 -0.6577 0.6725 -0.7471 0.5742 -0.8246 0.4669 -0.8889 0.3525 -0.9393 0.2327 -0.9748 0.1095 -0.9950 -0.0154 -0.9996 -0.1398 -0.9887 -0.2619 -0.9624 -0.3798 -0.9212 -0.4916 -0.8657 -0.5957 -0.7970 -0.6904 -0.7161 -0.7742 -0.6242 -0.8460 -0.5228 -0.9046 -0.4134 -0.9491 -0.2978 -0.9789 -0.1777 -0.9934 -0.0549 -0.9945 0.0300 -0.9883 0.1146 -0.9748 0.1985 -0.9543 0.28092. 求一通过原点的曲线,它在(,)x y 处的切线斜率等于22,0 1.57.x y x +<<若x 上限增为1.58,1.60会发生什么?function f=Fun(x,y) % 常微分方程的右端函数 f=2*x+y.^2;>> [x,y]=ode45('Fun',[0,1.57],0) x =0 0.0393 0.0785 0.1178 0.1570 0.1963 0.2355 0.2748 0.3140 0.3533 0.3925 0.4318 0.4710 0.5103 0.5495 0.5888 0.6280 0.6673 0.7065 0.7458 0.7850 0.8243 0.8635 0.9028 0.9420 0.9813 1.0205 1.0598 1.0990 1.1383 1.1775 1.2168 1.2560 1.2953 1.3345 1.3738 1.4130 1.4248 1.4367 1.4485 1.4604 1.4722 1.4840 1.4959 1.5077 1.5140 1.5203 1.5265 1.5328 1.5376 1.5424 1.5472 1.5519 1.5543 1.5567 1.5591 1.5614 1.5631 1.5647 1.5664 1.5681 1.5685 1.5690 1.5695 1.5700 y =0 0.0015 0.0062 0.0139 0.0247 0.0386 0.0556 0.0758 0.09920.1259 0.1559 0.1895 0.2266 0.2675 0.3124 0.3615 0.4152 0.4738 0.5378 0.6076 0.6841 0.7679 0.8601 0.9620 1.0751 1.2014 1.3434 1.5045 1.6892 1.9037 2.1557 2.4577 2.8282 3.3003 3.9056 4.7317 5.9549 6.4431 7.0116 7.6832 8.4902 9.4821 10.7170 12.3090 14.4551 15.9220 17.7080 19.9390 22.8164 25.6450 29.2282 33.9673 40.5910 44.9434 50.3088 57.1229 66.1087 74.3108 84.7123 98.4901 117.7875 124.9206 132.9699 142.1268 152.6415若x 上限增为1.58,1.60,则超出运算的范围,发生溢出。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
常微分方程的求解与定性分析实验报告
一、实验综述
1、实验目的及要求
●归纳和学习求解常微分方程(组)的基本原理和方法;
●掌握解析、数值解法,并学会用图形观察解的形态和进行解的定性分析;
●熟悉MATLAB软件关于微分方程求解的各种命令;
●通过范例学习建立微分方程方面的数学模型以及求解全过程;
●通过该实验的学习,使学生掌握微分方程(组)求解方法(解析法、欧拉法、
梯度法、改进欧拉法等),对常微分方程的数值解法有一个初步了解,同时学会使用MATLAB软件求解微分方程的基本命令,学会建立微分方程方面的数学模型。
这对于学生深入理解微分、积分的数学概念,掌握数学的分析思维方法,熟悉处理大量的工程计算问题的方法是十分必要的。
2、实验仪器、设备或软件
电脑、matlab7.0
二、实验过程(实验步骤、记录、数据、分析)
实验内容:
根据实验内容和步骤,完成以下实验,要求写出实验报告(实验目的→问题→数学模型→算法与编程→计算结果→分析、检验和结论)
1.求微分方程的解析解,并画出它们的图形。
y '= y + 2 x, y (0) = 1, 0< x <1;
m=dsolve('Dy=y+2*x','y(0)=1','x')
ezplot(m,[0 1])
m =
3*exp(x) - 2*x – 2
0.1
0.2
0.3
0.4
0.50.6
0.7
0.8
0.9
1
11.522.533.5
4x
3 exp(x) - 2 x - 2
1.求微分方程⎪⎩
⎪
⎨⎧====-+]100[0)0(;0)0(01.03t u
u u u u 的数值解,要求编写求解程序。
function dy=vdp1000(t,y) dy=zeros(2,1); dy(1)=y(2);
dy(2)=-y(1)+0.1*y(1)^3;
[T,Y]=ode15s('vdp1000',[0 10],[0 0]); plot(T,Y(:,1),'-')
-1-0.8-0.6-0.4-0.200.20.40.60.81
3.Rossler 微分方程组:
⎪⎩
⎪⎨⎧-+=+=--=)(''
'c x z b z ay
x y z y x 当固定参数b =2,c =4时,试讨论随参数a 由小到大变化(如 a ∈(0,0.65))而方程解的变化情况,并且画出空间曲线图形,观察空间曲线是否形成混沌状? function r=rossler(t,x) global a; global b; global c;
r=[-x(2)-x(3);x(1)+a*x(2);b+x(3)*(x(1)-c)];
global a; global b; global c; b=2; c=4;
t0=[0,200];
for a=0:0.1:0.6
[t,x]=ode45('rossler',t0,[0,0,0]); subplot(1,2,1);
plot(t,x(:,1),'r',t,x(:,2),'g',t,x(:,3),'b');
title('x(红色),y(绿色),z(蓝色)随t 的变化情况');xlabel('t');
subplot(1,2,2);
plot3(x(:,1),x(:,2),x(:,3))
title('相图');xlabel('x');ylabel('y');zlabel('z'); pause end 结果显示: a=0:
x(红色),y(绿色),z(篮色)随t 变化情况t
相图
z
a=0.1:
-1
-0.8-0.6-0.4-0.200.2
0.4
0.6x(红色),y(绿色),z(篮色)随t 变化情况t
相图
z
a=0.2:
50
100150
200
-4
-3-2-1012
3
4x(红色),y(绿色),z(篮色)随t 变化情况t
-5
2
相图
z
a=0.3:
50
100150
200
-5-4-3-2-1012345x(红色),y(绿色),z(篮色)随t 变化情况t
-5
相图
z
a=0.4:
050
100150200
-6
-4
-2
2
4
6
x(红色),y(绿色),z(篮色)随t 变化情况t
-5
相图
z
a=0.5:
50
100150
200
-8-6-4-2024681012x(红色),y(绿色),z(篮色)随t 变化情况t
-5
相图
z
结果分析:从图像可以看出,当a=0时,微分方程的解(x,y,z)收敛与(0,0.5,0.5);当a=0.1时,(x,y,z)仍收敛与(0,0.5,0.5),只是收敛速度减慢;当a=0.2时,(x,y,z)已发散,周期性变化;随着a的增大,(x,y,z)接近其极限环的速度加快,空间曲线成混沌状。
4.炮弹发射角的确定
炮弹发射视为斜抛运动,已知初始速度为200m/s,若要击中水平距离360m、在垂直距离160m的目标,当忽略空气阻力时,发射角应为多大?此时炮弹的运行轨迹如何?
要求:
(1) 建立在忽略空气阻力情况下的描述炮弹发射轨迹的数学模型;
(2) 用Matlab 软件求解方程和微分方程;
(3) 结合实际对解的合理性进行分析。
进一步思考:
如果要考虑水平方向的阻力,且设阻力与(水平方向)速度成正比,系数为0.1(1/s ),结果又如何?此时炮弹的运行轨迹如何?
解:
(1)忽略空气阻力时,设发射角为a,炮弹的飞行时间为t
水平方向:Vx=V0*cos a=200*cos(a)
竖直方向:Vy=V0*sin a=200*sin(a)
得到:x=Vx*t=200*cos(a)*t=360
y=Vy*t-1/2*g*t^2=200*sin(a)*t-1/2*9.8*t^2=160
得到炮弹的路程为Y=360*tan(a)-4.9*(360/200/cos(a)).^2-160
编程为:
function Y=fun2(a)
Y=360*tan(a)-4.9*(360/200/cos(a)).^2-160;
function Y=fun3(a0,a1,n,tol)
a(1)=a0;
a(2)=a1;
b=1;
i=2;
while(abs(b)>eps*a(i))
a(i+1)=a(i)-fun2(a(i))*(a(i)-a(i-1))/(fun2(a(i))-fun2(a(i-1)));
b=a(i+1)-a(i);
i=i+1;
if(i>n) error('n is full');
end
end
disp(i-2);
Y=a(i);
fun3(0.5,1,100,1e-6)
结果为:
ans =
0.4633
(3)结果合理,符合实际
进一步思考:
建立模型如下:
错误!未找到引用源。
= -0.1dx/dt
代入初始条件可以得出x=-10*200cosθ*exp(-0.1t)+10*200cosθ
建立myfun6函数如下:
function Y=fun6(a)
Y=200*sin(a)*(-10*log(1-360/2000/cos(a)))-4.9*((-10*log(1-360/2000/co s(a))).^2)-160
建立fun7函数如下:
function Y=fun7(a0,a1,n,tol)
a(1)=a0;
a(2)=a1;
b=1;
i=2;
while(abs(b)>eps*a(i))
a(i+1)=a(i)-fun6(a(i))*(a(i)-a(i-1))/(fun6(a(i))-fun6(a(i-1)));
b=a(i+1)-a(i);
i=i+1;
if(i>n) error('n is full');
end
end
disp(i-2);
Y=a(i);
输入:>> fun7(0.5,1,100,1e-6)
结果:
ans =
0.4297
三、结论
1、实验结果
编程及实验结果分析如上
2、分析讨论
①通过此次实验,学习了微分方程求解的方法,并学会了建立微分方程的数学模型,使用求解微分方程的基本指令;
②实验题目中的第三四道题,综合性较强,需要考虑多方面的程序,感觉较难,通过查找相关例题以及和同学讨论得以解决;
③微分方程的求解问题较常见,因为许多的微分方程人为解起来较难,而使用matlab可以很轻松得解答。
因此掌握使用matlab求解微分方程很重要,在今后的学习中要多练习,熟练使用matlab软件。