常微分方程答案一二章

合集下载

王高雄《常微分方程》(第版)【章节题库】第1章~第4章【圣才出品】

王高雄《常微分方程》(第版)【章节题库】第1章~第4章【圣才出品】
所满足的微分方程组. 解:对曲线族中两个方程关于 x 求导得
由上式与曲线族可消去 a、b 得
9.求与方程为
曲线族满足的微分方程为
解之得
所以与曲线族
正交的
这就是所求曲线族方程.
10.求二次曲线族
(c 是参数)的微分方程,并以微分方程本身证明这
曲线族是自正交曲线族,即这曲线族中的任何两条曲线如果相交,则必正交.
图 1-1 (2)所求方向场及经过(0,0),(0,1)的积分曲线如图 1-4 所示
图 1-2 (3)所求方向场,及过点(1,0)的积分曲线如图 1-3 所示
3 / 130
圣才电子书 十万种考研考证电子书、题库视频学习平台

(4)所求的方向场及过点
图 1-3 的积分曲线如图 1-4 所示
解:对曲线
,两端关于 t 求导得
7 / 130
圣才电子书 十万种考研考证电子书、题库视频学习平台

消去 c 得
这就是所要求的方程. 若这曲线族中任何两条曲线相交于(t,x)处,由方程本身知道:该方程是关于 的
二次方程,且关于 的二根积等于-1,这说明了在(t,x)处,两切线斜率乘积等于-1, 因而这两曲线正交.
2.求下列两个微分方程的公共解:
解:两方程的公共解满足条件 即
所以

代入检验可知
不符合.所以两方程的公共解为
2 / 130
圣才电子书 十万种考研考证电子书、题库视频学习平台

3.利用等倾线作下列方程的方向场,并且描出经过指定点的积分曲线 (1) (2) (3) (4) (5) (6) 解:(1)所求方向场和经过(1,1)的积分曲线如图 1-1 所示
应满足什么条件?
的等倾线

常微分方程标准答案-一二章

常微分方程标准答案-一二章

习题1.24. 给定一阶微分方程2dyx dx=, (1). 求出它的通解; (2). 求通过点()1,4的特解; (3). 求出与直线23y x =+相切的解; (4). 求出满足条件102ydx =⎰的解;(5). 绘出(2),(3),(4)中的解得图形。

解:(1). 通解显然为2,y x c c =+∈;(2). 把1,4x y ==代入2y x c =+得3c =,故通过点()1,4的特解为23y x =+;(3). 因为所求直线与直线23y x =+相切,所以223y x cy x ⎧=+⎨=+⎩只有唯一解,即223x c x +=+只有唯一实根,从而4c =,故与直线23y x =+相切的解是24y x =+;(4). 把2y x c =+代入12ydx =⎰即得5c =,故满足条件12ydx =⎰的解是253y x =+;(5). 图形如下:-1.5-1-0.500.51 1.512345675. 求下列两个微分方程的公共解:242422,2y y x x y x x x y y ''=+-=++--解:由2424222y x x x x x y y +-=++--可得()()222210y x xy -++=所以2y x =或212y x =--,2y x =代入原微分方程满足,而212y x =--代入原微分方程不满足,故所求公共解是代入原微分方程不满足。

6. 求微分方程20y xy y ''+-=的直线积分曲线。

解:设所求直线积分曲线是y kx b =+,则将其代入原微分方程可得2200010k b k xk kx b k b k b k k -=⎧+--=⇒⇒====⎨-=⎩或所以所求直线积分曲线是0y =或1y x =+。

8. 试建立分别具有下列性质的曲线所满足的微分方程:(2). 曲线上任一点的切线介于两坐标轴之间的部分等于定长l ; (5). 曲线上任一点的切线的纵截距等于切点横坐标的平方。

常微分第一二章

常微分第一二章

u2070C
例2.解析几何模型
求一曲 线线 上, 任 (x设 y,)一 处 在 点 的 曲 切线斜
该点横2倍 坐, 标并 的且该 (1曲 .,2)线经过点
解 (1)依据: 曲y线 y(x)导数的几 — — 何 d是 y意曲 义线
dx 在 (x,y)处的切线斜率
(2)数学模型
dy dx
2x .
4. 40学时的初步分配:
第一、二章:用6次课;(穿插课堂习题)
第 三 章:用4次课;
第 四 章:用6次课;
第 五 章:用4次课.
第二章 一阶微分方程的初等解法
一阶微分方程
六种解法(工具箱)
显式
dy f (x, y), d(x导数已解出
)
(M对( x称, y形)d式x) N ( x, y)dy 0
3. 重视应用,重视计算,重视解题格式; 4. 适度减弱教材中某些理论证明,补充工程中常用 的,工程师喜用的解题方法.
学习要求
1. 准确、熟练地掌握基本概念、基本解法,了解 相关的基本理论. 2. 初步学会由实际问题建立数学模型、求解、再 回到(解释、解决)实际问题的方法.
3. 认真听好课,及时预习和复习;上好习题课,按 质、按量及时完成作业.
y | x 1 2
(3)求解
通解: yx2 c
曲线族
特解: yx2 1 过(1,2)满足题意的一条曲线
例3.单摆运动数学模型
一根长为l 的细杆,一端联结一个质量为m 的球M, 另
一端悬挂在O点,若不计细杆的质量,在重力的作用下细
杆在某一铅直平面上摆动,求摆球的运动规律.
解 (1)物理依据:牛顿第二定律——Fma
画出方程 dy x2 y2 的线素场,并近似地描出积分曲

常微分方程第一、二章考试卷4

常微分方程第一、二章考试卷4

常微分方程第一二章考测验试卷(4)班级 姓名 学号 得分一.填空题(10 分)1. 称为一阶线性方程,它有积分因子 ,其通解为 。

2.当 时,方程M(x,y)dx+N(x,y)dy=0称为恰当方程。

3.方程M(x,y)dx+N(x,y)dy=0有只含x 的积分因子的充要条件是 ,有只含y 的积分因子的充要条件是 。

4. 称为伯努利方程,它有积分因子 。

5. 称为黎卡提方程,若它有一个特解 ,则经换 ,可化为伯努利方程。

二.求一曲线,是起切线在纵轴之截距等于切点的横坐标。

(10 分)三.出伯努利方程的积分因子。

(15 分)四.求下列方程的通解。

(45 分)1.y 3'-x 3 (1-y ')=0 2. dx dy =312+++-y x y x 3. x(4ydx+2xdy)+y 3(3ydx+5xdy)=04.(y-1-xy )dx+xdy=05.dxdy =y+sinx 6.(x 2y 3+xy)y '=17.(x 2-1)y '+y 2-2xy+1=0 8.32y x dx+4223yx y -dy=0 五.证明题。

(20 分)1. 一阶非齐线性方程的任两解之差必为相应的齐线性方程的解2. 齐线性方程的任一解的常数倍或任两解之和仍为其解。

参考答案一. 填空题。

1.dx dy =P (x )y+Q(x) e dx x P )( e ⎰dx x P )((⎰+⎰-c dx e x Q dx x P )()() 2.xy x N y y x M ∂∂=∂∂),(),( 3.N X N y M x ∂∂-∂∂=)(ϕ MX N y M y -∂∂-∂∂=)(ϕ 4.n y x Q y x P dxdy )()(+= e ⎰-dx x P n )()1( 5.)()()(2x R y x Q y x P dx dy ++= y(x)=)(x y +z 二.解:设曲线的切点为(x,y ),设切线的方程为Y-y=y '(X-x),与坐标轴的交点为(0,y-xy '),(x-'y y ) 由题意得:y-xy '=x, 即 dx dy =xy -1 令 x y =u 得y=ux 则dx du =u-1 u=-ln x +c 即x y =-ln x +c 方程的通解为y=cx--xln x 三.解:伯努利方程为:dxdy =P (x)y+Q(x)y n 两边同乘以y n -得:y n -dxdy = p(x)y 1+-n +Q(x) 则 [p(x)y 1+-n +Q(x)]dx- y n -dy=0N x N y M ∂∂-∂∂=nny y n x P ----)1)((=(n-1)P(x) 则积分因子为)(x μ=e ⎰-)()1(x P n 则)(x μy n -dy= )(x μ[p(x)y 1+-n +Q(x)]dx令'μ(x) =y n -)(x μ= y n - e ⎰-)()1(x P n则'μ(x)即为伯努利方程的积分因子。

常微分方程知到章节答案智慧树2023年齐鲁师范学院

常微分方程知到章节答案智慧树2023年齐鲁师范学院

常微分方程知到章节测试答案智慧树2023年最新齐鲁师范学院第一章测试1.二阶微分方程的含有两个任意常数的解一定是通解。

()参考答案:错2.满足初值条件的解称为是微分方程的特解。

()参考答案:对3.一阶微分方程的通解表示平面上的一条曲线。

( )参考答案:错4.不是线性微分方程的方程一定是非线性微分方程。

( )参考答案:对5.函数为任意常数是方程的通解。

( )参考答案:对第二章测试1.一阶非齐次线性微分方程的任意两个解之差必为相应的齐次线性微分方程的解。

()参考答案:对2.微分方程()参考答案:二阶线性微分方程3.微分方程的满足的特解为()参考答案:4.微分方程的通解为()参考答案:5.若一阶微分方程有积分因子,则积分因子一定是唯一的。

()参考答案:错第三章测试1.所有的微分方程都可以通过初等积分法求得其通解。

()参考答案:错2.要求得一阶微分方程的特解,应该给定一个初值条件。

()参考答案:对3.李普希兹条件是一阶微分方程初值问题解存在唯一的充要条件。

()参考答案:错4.存在唯一性定理中解的存在区间是唯一的。

()参考答案:错5.微分方程初值问题的解只要存在就一定唯一。

()参考答案:错第四章测试1.若函数在区间上线性相关,则在上它们的伏朗斯基行列式。

()参考答案:错2.如果方程的解在区间上线性无关,则在这个区间的任何点上都不等于零,即()参考答案:对3.由n阶齐线性方程的n个解构成的伏朗斯基行列式或者恒等于零。

( )参考答案:对4.n阶齐线性方程可以有n+1个线性无关的解。

()参考答案:错5.是方程的通解。

()参考答案:对第五章测试1.如果矩阵,维列向量是可微的,则()参考答案:对2.向量是初值问题在区间上的解。

()参考答案:对3.设是矩阵,则。

()参考答案:对4.如果向量函数在区间线性相关,则它们的伏朗斯基行列式,。

( )参考答案:对5.如果,在区间上是的两个基解矩阵,那么,存在一个非奇异常数矩阵,使得在区间上。

常微分方程复习(一)

常微分方程复习(一)
M N y x 1 N x
因为
故存在仅与x有关的积分因子
( x) e

1 dx x
x
以 x乘方程两边得 :
( x2 2 xy)dx x2dy 0
( x2 2 xy)dx x2dy 0
这是恰当方程,对方程重新分项组合得
x dx (2xydx x dy) 0 1 3 d x ( ydx 2 x 2 dy ) 0 即 3 1 3 d ( x x2 y) 0 3 1 3 故方程的通解为: x x2 y c 3
dy f ( x, y ) 设 dx 解为y ( x, x0 , y0 ) y ( x0 ) y0
x f ( x, ) f ( x0 , y0 ) exp( dx) x0 x0 y x f ( x, ) exp( dx) x0 y0 y
exp(
1
1 dx) x x
题型:
一、填空(20分) 二、求解微分方程(组)(60分) 三、证明题(20分)
第一章 (2---4分) 1.微分方程、线性微分方程概念 2.微分方程的解、通解 3.初值问题的解、定解条件
dy f ( x, y ) 一阶微分方程 dx 的解y ( x)所表示xy平面上的一条曲线,
称为微分方程的积分曲线.
x f ( x, ) ( x, x0 , y0 ) x0 1 [ f ( x0 , y0 ) exp( dx)]x 1 [ ] y0 0 y 0 x y x0 x1 ( x, 0, 0)
0 0 0
f (1, 0) exp(
0
x
cos(
x
) dx)
0

常微分方程与动力系统第二章课后题参考答案

常微分方程与动力系统第二章习题参考答案 1.证明:因为()t Φ是线性齐次系统(LH )的一个基本解矩阵,由定理2.5知()t Φ在区间J 上满足矩阵微分系统()M LH ,即.()()()t A t t Φ=Φ,.1()()()A t t t -=ΦΦ所以由()A t 确定的线性齐次系统(LH )必唯一。

2.证明:因为()t ϕ,()t ψ分别是.()x A t x=和.()T x A t x =-的解,所以111()()()nk k k nnk k k a d t A t t dt a ϕϕϕϕ==⎛⎫ ⎪ ⎪== ⎪ ⎪⎪ ⎪⎝⎭∑∑ ,11211111122222*121()()()nn k k k n n kn kn n n nnk a a a a a a a d t A t t dta a a a ψψψψψψ==⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪ ⎪⎪ ⎪=-ψ=-=- ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪⎝⎭∑∑ 因而1111112211(,)(,)(,),,nnk k k k k k nnkn k k nk k n n k a a d d d dt dt dt a a ψϕϕψψϕϕψϕψψϕψϕψϕ====⎡⎤⎛⎫⎡⎤⎛⎫⎛⎫⎛⎫⎢⎥ ⎪-⎢⎥ ⎪⎪ ⎪⎢⎥ ⎪⎢⎥ ⎪ ⎪ ⎪⎢⎥=+= ⎪+⎢⎥ ⎪ ⎪ ⎪⎢⎥ ⎪-⎢⎥ ⎪⎪ ⎪⎢⎥⎪⎝⎭⎢⎥⎝⎭⎝⎭ ⎪⎣⎦⎢⎥⎝⎭⎣⎦∑∑∑∑ 11111111()0nnn n nnnnn n nnm m m m i ij j i ij j i mk k km k mk k km m m m m i j i j k k k k a a a a a a ϕψψϕϕψϕψϕψϕψ============-=+=-=-=∑∑∑∑∑∑∑∑∑∑∑∑所以(),()()()1nt t t t k kk ϕψϕψ≡≡∑=常数。

3.证明:设)t Φ(为系统.()x A t x=的一个基本解矩阵,则由定理2.11知[]1()Tt -Φ是系统.()Tx At x =-的基本解矩阵,由定理2.4知系统.()x A t x=满足初始条件00()x t x =的特解为100()))t t t x ϕ-=Φ(Φ(,[)0,0,t t ∈+∞由题可知)t Φ(与[]1()Tt -Φ在[)0,+∞上有界,从而由定理2.24知110()0k k t ∃=>和220()0k k t =>使得10120(),(),T t k t t t k t t -⎧Φ≤≤<+∞⎪⎨Φ≤≤<+∞⎪⎩,利用常数变易法公式(2.32),可知式.()()y A t y B t y=+的初始条件为00()y t y =的解满足1()()()()()()tt y t t t s B s y s ds ϕ-=+ΦΦ⎰因为1111()()(Ttttt---ΦΦ≤Φ所以12120()()(),tt y t k kx k k B s y s≤+≥⎰,利用格朗瓦尔不等式有12()120().tt k k B s dsy t k k x e⎰≤记12()12tt k k B s dsC k k e ⎰=设0()B t dt M +∞=<+∞⎰则()()tt B s ds B t dt M+∞≤=⎰⎰有1212k k MCk k e≤从而00(),y t C x t t ≤≥所以系统.()()y A t y B t y =+的一切解都在[)0,+∞上有界。

常微分方程第二版答案第一章

常微分方程第二版答案第一章【篇一:常微分方程第一章】程1.1学习目标:1. 理解微分方程有关的基本概念, 如微分方程、方程阶数、解、通解、初始条件、初值问题等的定义和提法. 掌握处理微分方程的三种主要方法: 解析方法, 定性方法和数值方法.2. 掌握变量分离法,用变量替换将某些方程转化为变量分离方程, 掌握一阶线性方程的猜测检验法, 常数变易法和积分因子法, 灵活运用这些方法求解相应方程, 理解和掌握一阶线性方程的通解结构和性质.3. 能够大致描述给定一阶微分方程的斜率场, 通过给定的斜率场描述方程解的定性性质; 理解和掌握欧拉方法, 能够利用欧拉方法做简单的近似计算.4. 理解和掌握一阶微分方程初值问题解的存在唯一性定理, 能够利用存在唯一性定理判别方程解的存在性与唯一性并解决与之相关的问题, 了解解对初值的连续相依性和解对初值的连续性定理, 理解适定性的概念.5. 理解自治方程平衡点, 平衡解, 相线的概念, 能够画出给定自治方程的相线, 判断平衡点类型进而定性分析满足不同初始条件解的渐近行为.6. 理解和掌握一阶单参数微分方程族的分歧概念, 掌握发生分歧的条件, 理解和掌握各种分歧类型和相应的分歧图解, 能够画出给定单参数微分方程族的分歧图解, 利用分歧图解分析解的渐近行为随参数变化的状况.7. 掌握在给定的假设条件下, 建立与实际问题相应的常微分方程模型, 并能够灵活运用本章知识进行模型的各种分析.1.2基本知识: (一) 基本概念1. 什么是微分方程:联系着自变量、未知函数及它们的导数(或微分)间的关系式(一般是指等式),称之为微分方程. 2. 常微分方程和偏微分方程:(1) 如果在微分方程中,自变量的个数只有一个,则称这种微分方程为常微分方程,dy2dyd2ydy()?t?y?0. ?b?cy?f(t)例如 , dtdtdtdt2(2) 如果在微分方程中,自变量的个数为两个或两个以上,则称这种微分方程为偏?2t?t?2t?2t?2t?4微分方程. 例如 , . ???02222?t?x?x?y?z本书在不特别指明的情况下, 所说的方程或微分方程均指常微分方程.3. 微分方程的阶数: 微分方程中出现的未知函数最高阶导数的阶数.例如,d2ydy?b?cy?f(t) 是二阶常微分方程; 2dtdt?2t?t?2t?2t?2t?4与是二阶偏微分方程. ???02222?t?x?x?y?z4. n阶常微分方程的一般形式:dydnyf(t,y,,...,n)?0,dtdtdydnydydnydnyn)是t,y,,...,n的已知函数,而且一定含有n的这里f(t,y,dtdtdtdtdt 项;y是未知函数,t是自变量. 5. 线性与非线性:dydnydydny,...,n)?0的左端是y及,...,n的一次有理式,(1)如果方程f(t,y,dtdtdtdtdydny,...,n)?0为n阶线性微分方程. 则称f(t,y,dtdt(2)一般n阶线性微分方程具有形式:dnydn?1ydy?a(t)?...?a(t)?an(t)y?f(t)1n?1nn?1dtdtdt这里a1(t),…, an(t),f(t)是t的已知函数.(3)不是线性方程的方程称为非线性方程. (4)举例:d2ydy?cy?f(t)是二阶线性微分方程;方程2?bdtdtd2?g方程2?sin??0是二阶非线性微分方程;ldt方程(dy2dy)?t?y?0是一阶非线性微分方程. dtdt6. 解和隐式解:dydny,...,n)?0后,能使它变为恒等式,则如果将函数y??(t)代入方程f(t,y,dtdt)?0决定的隐函数y??(t)是称函数y??(t)为方程的解. 如果关系式?(t,y方程的解,则称?(t,y)?0为方程的隐式解. 7. 通解与特解:把含有n个独立的任意常数c1,c2,...,cn的解 y??(t,c1,c2,...,cn)称为n阶方程dydnyf(t,y,,...,n)?0的通解. 其中解对常数的独立性是指,对?及其 n?1阶导数dtdtd?dn?1?,...,n?1关于n个常数 c1,c2,...,cn的雅可比行列式不为0, 即 dtdt ???c1????c1???(n?1)?c1???c2????c2???(n?1)?c2??????cn????cn??0.??(n?1)??cn为了确定微分方程一个特定的解,通常给出这个解所必须满足的条件,称为定解条件.dydny,...,n)?0的初始条件是常见的定解条件是初始条件, n阶微分方程f(t,y,dtdtdydn?1y(1)(n?1)?y0,...,n?1?y0指如下的n个条件:t?t0,y?y0,,这里dtdt(1)(n?1)是给定的n+1个常数. 求微分方程满足定解条件的解,就是所谓t0,y0,y0,...,y0定解问题. 当定解条件为初始条件时,相应的定解问题称为初值问题. 把满足初始条件的解称为微分方程的特解. 初始条件不同,对应的特解也不同.(二) 解析方法1.变量分离方程形如dy?f(t)?(y)的方程为变量分离方程,其中f(t),?(y)分别为t,y的连续函数.dt方程解法如下:若?(y)?0,则dy?f(t)dt?(y)dy??(y)??f(t)dt?c上式确定方程的隐式通解. 如果存在y0,使得??y0??0,则y?y0也是方程的解. 2. 可化为变量分离方程的方程(1) 齐次方程dyy?g()的方程为齐次方程,g?u?为u的连续函数. dttydydu?t?u,从而原方程变为解法如下:做变量替换u?,即y?ut,有tdtdtdudug(u)?ut?u?g(u),整理有?,此为变量分离方程,可求解. dtdtt形如 (2) 形如dya1t?b1y?c1的方程, 其中a1??a2,?b1,?b2,?c1,?c2为常数. ?dta2t?b2y?c2?a1b1c1???k的情形. a2b2c2此时方程化为dy?k,可解得y?kt?c. dt?a1a2b1b2?0,即a1b1??k的情形: a2b2ku?c1dudy?a2?b2?a2?b2dtdtu?c2令 u?a2t?b2y, 则有此为变量分离方程. ?a1b1a2b2?0的情形y. t对c1?c2?0的情况, 直接做变量替换u?当c1,c2不全为零, 求 ? ?a1t?b1y?c1?0的解为?a2t?b2y?c2?0?t??. ??y???t?t??令 ? , 则方程组化为y?y???原方程化为3.一阶线性微分方程?a1t?by1?0. ?at?by?0?22dya1t?byy??g()的齐次方程可求解. dta2t?byt(1) 一般形式:a(t)dy?b(t)y?c(t)?0,若a(t)?0,则可写成 dtdy?p(t)y?qt(的形式). dtp(t)dtdy,?c为任意常数. ?p(t)y,通解为ce?(2) 一阶齐次线性微分方程:dtdy?p(t)y?q(t),q(t)?0. (3) 一阶非齐次线性微分方程:dt性质1 必有零解 y?0;性质2 通解等于任意常数c与一个特解的乘积; 性质3 任意两个解的线性组合也是该微分方程的解. (5) 非齐次线性微分方程的性质性质1 没有零解;性质2 非齐次方程的解加上对应齐次方程的解仍为非齐次方程的解; 性质3 任意两个非齐次方程的解的差是相应齐次方程的解. (6) 一阶非齐次线性微分方程的解法:(i) 猜测-检验法对于常系数的情形,即 p(t) 为常数, 此时方程为(4) 齐次线性微分方程的性质dy?ay?q(t), a为常数. dt对应齐次方程的通解为ce, 只需再求一个特解, 这时根据q(t)为特定的函数,bt可猜测不同的形式特解. 事实上, 当q(t)?ae, a,b为给定常数, 且b?a 时at可设待定特解为ce, 而当b?a时, 可设特解形式为cte, 后代入方程可确定待定常数c. 当q(t)为cosat,??sinat或它们的线性组合时, 其中a为给定常数. 这时可设待定特解为bcosat?csinat代入方程后确定b,?c的值. 当btbtq(t)具有多项式形式a0tn?a1tn?1???an?1t?an, 其中a0,?a1,??an 为给定常数且a0?0, 这时可设待定特解为b0t?bt1nn?1???bn?1t?bn代入方程可求得bi,?i?0,1?,??,n的值. 对于q(t)有上述几种线性组合的形式, 则可设待定特解是上述形式特解的线性组合. (ii) 常数变易法: 令y?c(t)e?p(t)dt,代入方程,求出c(t)后可求得通解为【篇二:常微分课后答案2.1】>1.dy?2xy,并求满足初始条件:x=0,y=1的特解. dx解:对原式进行变量分离得1dy?2xdx,两边同时积分得:lny?yc?1,故它的特解为y?ex。

常微分方程第2章习题答案

习题2-41.求解下列微分方程:(1)yx xy y --='22;解:令ux y =,则原方程化为uu u dx du x --=+212,即x dxdu u u =--122,积分得:c x u u u +=--+-ln 1ln 2111ln2 还原变量并化简得:3)()(y x c x y +=-(2)4252--+-='y x x y y ;解:由⎩⎨⎧=--=+-042052y x x y 得 ⎩⎨⎧-==21y x令2,1+=-=y v x u , 则有vu u v du dv --=22,由第一题的结果知此方程解为3)()(v u c u v +=-, 还原变量并化简得:.)1(33++=+-y x c x y(3)14212-+++='y x y x y ;解:令y x v 2+=, 则1212121-++=+=v v dx dy dx dv , 即1214-+=v v dx dv ,此方程为变量分离方程, 分离变量并积分得:c x v v +=+-14ln 8321,还原变量并化简得:c y x x y =++--184ln 348. (4)xy y x y -='33.解:①当0≠y 时,方程两边同时乘以32--y ,则233222--+-='-xy x y y , 令2-=y z , 则322x xz dxdz-=, 此方程为一阶线性方程,由公式得:122++=x ce z x还原变量得:122)1(2-++=x ce y x . ②0=y 也是方程的解.2. 利用适当的变换,求解下列方程: (1))cos(y x y -=';解:令y x u -=,则u dx dy dx du cos 11-=-=, ①当1cos ≠u 时,有dx udu =-cos 1, 即 dx u du=2sin 22,两边积分得:c x uctg +=221还原变量化简得:2sin 2sin 22cos yx c y x x y x -+-=-. ②当1cos =u 时,即πk x y 2+=)(Z k ∈也是方程的解. (2)0)()3(22=+++dv uv u du v uv ; 解:方程两边同时乘以u 则原方程化为:0)()3(2322=+++dv v u u du uv v u ,即 0)()3(2232=+++vdv u du uv dv u vdu u 此方程为全微分方程,则原方程的解为:c v u v u =+22321. (3))2(2)3(222yx y x dx dy y x -=++;解:原方程即为324222222++-=y x x y xdx ydy ,令u y v x ==22,,则324++-=v u vu dv du ,由⎩⎨⎧=++=-03024v u v u 得⎩⎨⎧-=-=21v u , 令⎩⎨⎧+=+=21v n u m ,则有n m n m dn dm +-=24令z n m=,则zn m =, 124+-=+=z z z n dn dz dn dm , 则有1)2)(1(+--=z z z n dn dz ,此方程为变量分离方程, 分离变量并积分得:n c zz ln 2)1(ln32+=--,还原变量并化简得:322222)32()1(-+-=+-y x c y x .(4)yy y x xxy x dx dy 8237323223-+-+=. 解:原方程即为823732222222-+-+=y x y x xdx ydy ,令22,x v y u ==,则823732-+-+=u v u v dv du ,由⎩⎨⎧=++=-+08230732u v u v ⎩⎨⎧==⇒21v u , 令⎩⎨⎧-=-=21v n u m , 则m n m n dn dm 2332++=,令z n m=,可将方程化为变量分离形方程, n dn dz zz =-+)2223(2,两边积分得:c n z z z +=---+ln 1ln 2111ln 432, 还原变量并化简得:)3()1(22522-+=--y x c y x .3. 求解下列微分方程: (1).2241xy y --='; 解:令xy z =, 则原方程可化为:)41(12-+-=z z x dx dz , ①当21≠z 时,即21≠xy 时方程为x dxdz z =--2)21(1 ,此方程为变量分离方程, 两边积分得:c x z +=-ln 211还原变量并化简得:cxx x x y ++=ln 121; ②当21=z 时,xy 21=是方程的特解. (2).1222++='xy y x y x ; 解:原方程即为:221x x y y y ++=', 令xy z =,则2)1(1+=z xdx dz ,此方程为变量分离方程, 分离变量积分得:c x z +=+-ln 11, 还原变量并化简得:cxx x x y +--=ln 11. 4. 试把二阶微分方程0)()(=+'+''y x q y x p y 化为一个黎卡提方程. 解:令⎰=udxe y , 则⎰='udxue y ,+⎰=''udxe u y 2⎰'udxe u ,代入原方程可得:=+'+''y x q y x p y )()(+⎰udxe u 2⎰'udxe u +)()(x q ue x p udx+⎰⎰udxe =0,即有:0)()(2=++'+x q u x p u u ,此方程为一个黎卡提方程.5. 求一曲线,使得过这一曲线上任一点的切线与该点向径的夹角等于45.解:设此曲线为)(x y y =,由题意得:1451==+-tg xy dx dy x y dx dy ,化简得:y x y x dx dy -+=, 此方程为齐次方程,解之得:c y x x y arctg =+-)ln(2122.6. 探照灯的反光镜(旋转面)应具有何种形状,才能使点光源发射的光束反射成平行线束?解:取点光源所在处为坐标原点,而x 轴平行于光的反射方向,建立三维坐标系.设所求曲面由曲线⎩⎨⎧==0)(z x f y 绕x 轴旋转而成,则求反射镜面问题归结为求 xy 平面上的曲线y=f(x)的问题.由题意及光的反射定律,可得到函数)(x f y =所应满足的微分方程式:22yx x ydx dy ++=,此方程为齐次方程, 解之得:)2(2x c c y +=,(其中c 为任意正常数).)2(2x c c y +=就是所求的平面曲线,它是抛物线,因此反射镜面的形状为旋转抛物面)2(22x c c z y +=+.习题2-51.求解下列微分方程:(1).0)()23(2232=++++dy y x dx y xy y x ;解:方程两边同乘xe33, 则)33()369(233323323=++++dy y e dx y e dy x e xydx e ydx x e x x x x x ,此方程为全微分方程,即 c y e y x e x x =+33233. (2).0)2(2=-+-dy e xy ydx y ;解:方程两边同乘y e y 21, 则 0)12(22=-+dy yxe dx e y y即01)2(22=-+dy ydy xe dx e yy 此方程为全微分方程,即有 c y xe y =-ln 2 .(3).0)3()63(2=+++dy xyy x dx y x ;解:方程两边同乘 xy , 则0)3()63(232=+++dy y x dx x y x即 0)36()3(232=+++dy y xdx dy x ydx x 此方程为全微分方程,即有c x y y x =++2333 .(4).22()0ydx x y x dy -++=; 解:方程两边同乘221y x +, 则 022=-+-dy yx xdyydx , 此方程为全微分方程,即 c y yxarctg=- (5).0)1(2223=-+dy y x dx xy ;解:方程两边同乘21y , 则0)1(222=-+dy y x xydx , 此方程为全微分方程,即c y x y=+21. (6).0)1(=-+xd y dx xy y ;解:方程两边同乘21y , 则0)1(2=-+dy y xdx y xdx , 此方程为全微分方程,即c x y x =+221. (7)0)(2223=-+dy xy x dx y ;解:方程两边同乘y x 21, 则 02)2(22=+-dy y dy x y dx x y , 此方程为全微分方程,即 c y xy =+-ln 22(8).0)c o s2(=++dy y y ctgy e dx e xx解:方程两边同乘y sin , 则02sin )cos sin (=++ydy yc ydy e ydx e x x ,此方程为全微分方程,即 11cos cos 2sin 224xe y y y y c -+=. 2. 证明方程(5.1)有形如)),((y x φμμ=的积分因子的充要条件是)),((y x f yP P x Q Q xQy P φ=∂∂-∂∂∂∂-∂∂,并写出这个积分因子。

常微分方程第二章 一阶微分方程的初等解法


du dx 1u2 x
两边积分得: ln u 1 u2 ln x ln c
整理后得 u 1 u2 cx
变量还原得 y 1 ( y )2 cx
x
x
du dx 1u2 x
最后由初始条件 y(1) 0,可定出c 1.
故初值问题的解为 y 1 (x2 1) 2
可2、化d为y 变a量1x 分b1 y离 方c1 法
由对数的定义有
y e p( x)dxc1
y e p( x)dxc1

y ec1e p(x)dx ce p(x)dx.
此外y 0也是方程的解,若在上式中充许c 0, 即知y 0也包括在上式中,
故方程的通解为
y ce p(x)dx , c为任常数.
例4
求初值问题
dy dx
y2
c os x的特解.
例:
y y sin x 0
并求满足条件的 y( ) 2 特解。
2
线性微分方程
例:
1、cos x dy y sin x cos2 x dx
二 伯努利(Bernoulli )方程
形如 dy p(x) y Q(x) yn dx
的方程,称为伯努利方程. 这里P(x), Q(x)为x的连续函数 。
故对应齐次方程通解为 y c(x 1)n
y
ce p(x)dx
ce
n dx x 1
c(x
1)n
其次应用常数变易法求非齐线性方程的通解,
令y c(x)( x 1)n为原方程的通解 , 代入得
dc(x) (x 1)n nc(x)(x 1)n1 nc(x)(x 1)n1 ex (x 1)n dx
解的步骤:
10
解方程组aa21xx
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习题1.24. 给定一阶微分方程2dyx dx=, (1). 求出它的通解; (2). 求通过点()1,4的特解; (3). 求出与直线23y x =+相切的解; (4). 求出满足条件102ydx =⎰的解;(5). 绘出(2),(3),(4)中的解得图形。

解:(1). 通解显然为2,y x c c =+∈¡;(2). 把1,4x y ==代入2y x c =+得3c =,故通过点()1,4的特解为23y x =+;(3). 因为所求直线与直线23y x =+相切,所以223y x cy x ⎧=+⎨=+⎩只有唯一解,即223x c x +=+只有唯一实根,从而4c =,故与直线23y x =+相切的解是24y x =+;(4). 把2y x c =+代入12ydx =⎰即得5c =,故满足条件12ydx =⎰的解是253y x =+;(5). 图形如下:-1.5-1-0.500.51 1.512345675. 求下列两个微分方程的公共解:242422,2y y x x y x x x y y ''=+-=++--解:由2424222y x x x x x y y +-=++--可得()()222210y x xy -++=所以2y x =或212y x =--,2y x =代入原微分方程满足,而212y x =--代入原微分方程不满足,故所求公共解是代入原微分方程不满足。

6. 求微分方程20y xy y ''+-=的直线积分曲线。

解:设所求直线积分曲线是y kx b =+,则将其代入原微分方程可得2200010k b k xk kx b k b k b k k -=⎧+--=⇒⇒====⎨-=⎩或所以所求直线积分曲线是0y =或1y x =+。

8. 试建立分别具有下列性质的曲线所满足的微分方程:(2). 曲线上任一点的切线介于两坐标轴之间的部分等于定长l ; (5). 曲线上任一点的切线的纵截距等于切点横坐标的平方。

解:因为过点(),x y 的切线的横截距和纵截距分别为yx y -'和y xy '-,故 (2). ()222y x y xy l y ⎛⎫'-+-= ⎪'⎝⎭;(5). 2y xy x '-=。

习题2.11. 求下列方程的解:(2). ()210y dx x dy ++=,并求满足初值条件0,1x y ==的特解; 解:当0y ≠,分离变量,得2111dy dx y x =-+ 两边同时积分,得11ln 1ln 1x c y y x c=++⇒=++ 又0y =也是原方程的解,故()210y dx x dy ++=的通解是1,ln 10c x c y ⎧∈⎪++=⎨⎪⎩¡ 由初值条件0,1x y ==可得1c =,故所求特解是1ln 11y x =++。

(4). (1)(1)0x ydx y xdy ++-= 解:当0y ≠,分离变量,得11y xdy dx y x-+= 两边同时积分,得ln ln ln x x y y c xy x y c ++-=⇒+-=又0y =也是原方程的解,故所求通解是0y = 和 ln ,xy x y c c +-=∈¡(5). ()()0y x dy x y dx ++-= 解:原方程可化为11y dy y x xy dx y x x--==++ 令yu x=,则 211111du u u u xdu dx dx u u x-++=⇒-=++ 两边同时积分,得21arctan ln(1)ln 2u u x c ++=-+将yu x=代入,得所求通解是221arctanln(),2y x y c c x ++=∈¡(6). 0dyxy dx-+= 解:原方程可化为dy y dx x ==-令yu x=,则du du u x u dx dx +== (1)0≠,分离变量,得dxx=-两边同时积分,得arctan ln u x c =-+0=,即21u =也是(1)的解,故(1)的通解是21u =和arctan ln u x c =-+。

将yu x=代入,得原方程的通解是 22y x = 和 arctanln ,yx c c x+=∈¡(7). tan cot 0ydx xdy -= 解:当tan 0y ≠,分离变量,得cot tan ydy xdx =两边同时积分,得11ln sin ln cos sin cos ,0c y x c y x c c e =-+⇒==±≠又tan 0y =,即sin 0y =也是原方程的解,而该解可在sin cos y x c =中令0c =得到,故所求通解是sin cos ,y x c c =∈¡(8). 230y xdy e dx y ++=解:分离变量,得23xy e yedy dx-=-两边同时积分,得所求通解是231123xy e e c --=-+ 即 23123,6x y e e c c c --==∈¡(9). (ln ln )0x x y dy ydx --= 解:原方程可化为1ln (ln ln )dy y y y dx x x y x x -⎛⎫==- ⎪-⎝⎭令yu x=,则 ()ln 1ln ln u u du u duu xdx u dx x u++=-⇒=- (2) 当()ln 10u u +≠,分离变量,得()()ln ln ln ln 1ln 1ud u udu dx dx u u x u x=-⇒=-++两边同时积分,得11lnln ln 1,0ln 1c ux c u cxu c e u -=-+⇒+==±≠+ (3)由原方程可得0y ≠,从而0u ≠。

又()ln 10u u +=,即ln 1u =-也是(2)的解,而该解可在(3)中令0c =得到,故(2)的通解是ln 1,u cxu c +=∈¡。

将yu x=代入,得原方程的通解是ln1,ycy c x+=∈¡(10).x y dye dx-= 解:分离变量,得 y x e dy e dx =两边同时积分,得所求通解是,y x e e c c =+∈¡2. 作适当的变量变换求解下列方程:(1). ()2dy x y dx =+解:令u x y =+,则原方程化为22111du dy du u dx dx dx u=+=+⇒=+ 两边同时积分,得arctan ,u x c c =+∈¡将u x y =+代入,得原方程的通解是()arctan ,x y x c c +=+∈¡ 即 ()tan ,y x c x c =+-∈¡(3).2121dy x y dx x y --=-+ 解:因为21011,21033x y x y x y --=⎧⇒=-=⎨-+=⎩ 令11,33X x Y y =+=-,则原方程化为22dY X YdX X Y-=- 再令Yu X=,得()()21221221u du du udX u XdX u Xu u --+=⇒=--+ 两边同时积分,得()()1222122ln 12ln 1,0c u u X c X u u c c e -+=-+⇒-+==>将11,,33Y u X x Y y X ==+=-代入,得原方程的通解是 222,113x y xy x y c c c +-+-==->-(7). y y y x x xy x dx dy -+++=3232332 解:原方程可化为22222231321dy x y dx x y ++=+- 令221,1X x Y y =-=+,则原方程化为2332dY X YdX X Y+=+ 再令Yu X=,得 ()()221233232u du u duu X dX u dX X u -++=⇒=++用分离变量法求解,得()()5411c u X u +=-将22,1,1Yu X x Y y X==-=+代入,得原方程的通解是 ()()522222,c x yxy c +=--∈¡习题2.21. 求下列方程的解:(5). 21210dy x y dx x-+-=;解:原方程可化为:2211dy x y dx x-=+ (4) 对应的齐次方程为212dy xy dx x-=-,用变量分离法求得其解为21x y cx e =。

令(4)的解为()21x y c x x e =,则将其代入(4)可得()()2111xx dc x x e c x e c dx-=⇒=+ 所以原方程的通解为()121221,x x x y e c x e x cx e c -=+=+∈¡(8).3dy y dx x y+=; 解:当0y ≠时,原方程可化为:32dx x y x y dy y y++== (5) 这是未知函数为x 的非齐次线性方程,对应的齐次方程为dx xdy y=,用变量分离法求得其解为x cy =。

令(5)的解为()x c y y =,则将其代入(5)可得()()2212dc y y y c y y c dy =⇒=+ 所以(5)的通解为21,2x y y c c ⎛⎫=+∈ ⎪⎝⎭¡又0y =也是原方程的解,故原方程的通解为0y = 和 21,2x y y c c ⎛⎫=+∈ ⎪⎝⎭¡(12). (ln 2)y x ydx xdy -=; 解:原方程可化为:2ln 2dy x y y dx x x-= (6) 这是2n =的Bernoulli 方程。

当0y ≠时,(6)两边同时除以2y ,得212ln dy xy y dx x x---+= 令1z y -=,则22ln dz dy x y z dx dx x x--=-= (7) 其对应的齐次方程2dz z dx x=的解为2z cx =,令(7)的解为()2z c x x =,则将其代入(7)可得()()()222ln 2ln 4dc x xx c x c x x x dx x--=-⇒=++所以(7)的通解为()22ln 14,z cx x c =++∈¡将1z y -=代入,得()22ln 14y cx x ++=。

又0y =也是原方程的解,故原方程的通解为0y = 和 ()22ln 14,y cx x c ++=∈¡(13). 22(2)xydy y x dx =-; 解:原方程可化为:22122dy y x y dx xy x y-==- (8) 这是1n =-的Bernoulli 方程,(8)两边同时乘以y ,得212dy y y dx x =- 令2z y =,则21dz dy zy dx dx x-=2= (9) 其对应的齐次方程2dz zdx x=的解为2z cx =,令(9)的解为()2z c x x =,则将其代入(9)可得()()211dc x x c x c dx x=-⇒=+ 所以(9)的通解为221,z c x cx x c x ⎛⎫=+=+∈ ⎪⎝⎭¡将2z y =代入,得原方程的通解为22,y cx x c =+∈¡(16). 0()xx y e y t dt =+⎰;解:原方程两边同时对x 求导可得 ()x dye y x dx=+在原方程中,当0x =时,1y =。

相关文档
最新文档