叶县二中2018-2019学年高二上学期第二次月考试卷数学

合集下载

叶县第二高级中学2018-2019学年高二上学期第二次月考试卷数学

叶县第二高级中学2018-2019学年高二上学期第二次月考试卷数学

叶县第二高级中学2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1.一个圆的圆心为椭圆的右焦点,且该圆过椭圆的中心交椭圆于P,直线PF1(F1为椭圆的左焦点)是该圆的切线,则椭圆的离心率为()A.B.C.D.2.已知函数f(x)=ax3﹣3x2+1,若f(x)存在唯一的零点x0,且x0>0,则实数a的取值范围是()A.(1,+∞)B.(2,+∞)C.(﹣∞,﹣1)D.(﹣∞,﹣2)3.已知圆C:x2+y2﹣2x=1,直线l:y=k(x﹣1)+1,则l与C的位置关系是()A.一定相离 B.一定相切C.相交且一定不过圆心D.相交且可能过圆心4.已知函数f(x)=e x+x,g(x)=lnx+x,h(x)=x﹣的零点依次为a,b,c,则()A.c<b<a B.a<b<c C.c<a<b D.b<a<c5.下列结论正确的是()A.若直线l∥平面α,直线l∥平面β,则α∥β.B.若直线l⊥平面α,直线l⊥平面β,则α∥β.C.若直线l1,l2与平面α所成的角相等,则l1∥l2D.若直线l上两个不同的点A,B到平面α的距离相等,则l∥α6.双曲线上一点P到左焦点的距离为5,则点P到右焦点的距离为()A.13 B.15 C.12 D.117.已知P(x,y)为区域内的任意一点,当该区域的面积为4时,z=2x﹣y的最大值是()A.6 B.0 C.2 D.28.已知a=,b=20.5,c=0.50.2,则a,b,c三者的大小关系是()A.b>c>a B.b>a>c C.a>b>c D.c>b>a9.已知全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},则(∁U A)∩(∁U B)=()A.{5,8} B.{7,9} C.{0,1,3} D.{2,4,6}10.设曲线y=ax2在点(1,a)处的切线与直线2x﹣y﹣6=0平行,则a=()A.1 B.C.D.﹣111.已知α,[,]βππ∈-,则“||||βα>”是“βαβαcos cos ||||->-”的( ) A. 充分必要条件 B. 充分不必要条件 C. 必要不充分条件 D. 既不充分也不必要条件【命题意图】本题考查三角函数的性质与充分必要条件等基础知识,意在考查构造函数的思想与运算求解能力. 12.已知M N 、为抛物线24y x =上两个不同的点,F 为抛物线的焦点.若线段MN 的中点的纵坐标为2,||||10MF NF +=,则直线MN 的方程为( )A .240x y +-=B .240x y --=C .20x y +-=D .20x y --=二、填空题13.设变量y x ,满足约束条件22022010x y x y x y --≤⎧⎪-+≥⎨⎪+-≥⎩,则22(1)3(1)z a x a y =+-+的最小值是20-,则实数a =______.【命题意图】本题考查线性规划问题,意在考查作图与识图能力、逻辑思维能力、运算求解能力. 14.经过A (﹣3,1),且平行于y 轴的直线方程为 .15.在4次独立重复试验中,随机事件A 恰好发生1次的概率不大于其恰好发生两次的概率,则事件A 在一次试验中发生的概率P 的取值范围是 .16.下图是某算法的程序框图,则程序运行后输出的结果是____. 17.阅读右侧程序框图,输出的结果i 的值为 .18.已知直线5x+12y+m=0与圆x 2﹣2x+y 2=0相切,则m= .三、解答题19.已知椭圆:的长轴长为,为坐标原点.(Ⅰ)求椭圆C 的方程和离心率; (Ⅱ) 设动直线与y 轴相交于点,点关于直线的对称点在椭圆上,求的最小值.20.已知cos (+θ)=﹣,<θ<,求的值.21.(本题满分12分)已知数列}{n a 的前n 项和为n S ,且332-=n n a S ,(+∈N n ). (1)求数列}{n a 的通项公式; (2)记nn a n b 14+=,n T 是数列}{n b 的前n 项和,求n T . 【命题意图】本题考查利用递推关系求通项公式、用错位相减法求数列的前n 项和.重点突出对运算及化归能力的考查,属于中档难度.22.已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,c=asinC ﹣ccosA .(1)求A ;(2)若a=2,△ABC 的面积为,求b ,c .23.(1)化简:(2)已知tanα=3,计算的值.24.已知函数f(x)=ax2+lnx(a∈R).(1)当a=时,求f(x)在区间[1,e]上的最大值和最小值;(2)如果函数g(x),f1(x),f2(x),在公共定义域D上,满足f1(x)<g(x)<f2(x),那么就称g (x)为f1(x),f2(x)的“活动函数”.已知函数+2ax.若在区间(1,+∞)上,函数f(x)是f1(x),f2(x)的“活动函数”,求a的取值范围.叶县第二高级中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】D【解析】解:设F2为椭圆的右焦点由题意可得:圆与椭圆交于P,并且直线PF1(F1为椭圆的左焦点)是该圆的切线,所以点P是切点,所以PF2=c并且PF1⊥PF2.又因为F1F2=2c,所以∠PF1F2=30°,所以.根据椭圆的定义可得|PF1|+|PF2|=2a,所以|PF2|=2a﹣c.所以2a﹣c=,所以e=.故选D.【点评】解决此类问题的关键是熟练掌握直线与圆的相切问题,以即椭圆的定义.2.【答案】D【解析】解:∵f(x)=ax3﹣3x2+1,∴f′(x)=3ax2﹣6x=3x(ax﹣2),f(0)=1;①当a=0时,f(x)=﹣3x2+1有两个零点,不成立;②当a>0时,f(x)=ax3﹣3x2+1在(﹣∞,0)上有零点,故不成立;③当a<0时,f(x)=ax3﹣3x2+1在(0,+∞)上有且只有一个零点;故f(x)=ax3﹣3x2+1在(﹣∞,0)上没有零点;而当x=时,f(x)=ax3﹣3x2+1在(﹣∞,0)上取得最小值;故f()=﹣3•+1>0;故a<﹣2;综上所述,实数a的取值范围是(﹣∞,﹣2);故选:D.3.【答案】C【解析】【分析】将圆C方程化为标准方程,找出圆心C坐标与半径r,利用点到直线的距离公式表示出圆心到直线的距离d,与r比较大小即可得到结果.【解答】解:圆C方程化为标准方程得:(x﹣1)2+y2=2,∴圆心C(1,0),半径r=,∵≥>1,∴圆心到直线l的距离d=<=r,且圆心(1,0)不在直线l上,∴直线l与圆相交且一定不过圆心.故选C4.【答案】B【解析】解:由f(x)=0得e x=﹣x,由g(x)=0得lnx=﹣x.由h(x)=0得x=1,即c=1.在坐标系中,分别作出函数y=e x ,y=﹣x,y=lnx的图象,由图象可知a<0,0<b<1,所以a<b<c.故选:B.【点评】本题主要考查函数零点的应用,利用数形结合是解决本题的关键.5.【答案】B【解析】解:A选项中,两个平面可以相交,l与交线平行即可,故不正确;B选项中,垂直于同一平面的两个平面平行,正确;C选项中,直线与直线相交、平行、异面都有可能,故不正确;D中选项也可能相交.故选:B.【点评】本题考查平面与平面,直线与直线,直线与平面的位置关系,考查学生分析解决问题的能力,比较基础.6.【答案】A【解析】解:设点P到双曲线的右焦点的距离是x,∵双曲线上一点P到左焦点的距离为5,∴|x﹣5|=2×4∵x>0,∴x=13故选A.7.【答案】A解析:解:由作出可行域如图,由图可得A(a,﹣a),B(a,a),由,得a=2.∴A(2,﹣2),化目标函数z=2x﹣y为y=2x﹣z,∴当y=2x﹣z过A点时,z最大,等于2×2﹣(﹣2)=6.故选:A.8.【答案】A【解析】解:∵a=0.50.5,c=0.50.2,∴0<a<c<1,b=20.5>1,∴b>c>a,故选:A.9.【答案】B【解析】解:由题义知,全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},所以C U A={2,4,6,7,9},C U B={0,1,3,7,9},所以(C U A)∩(C U B)={7,9}故选B10.【答案】A【解析】解:y'=2ax , 于是切线的斜率k=y'|x=1=2a ,∵切线与直线2x ﹣y ﹣6=0平行∴有2a=2 ∴a=1 故选:A【点评】本题考查导数的几何意义:曲线在切点处的导数值是切线的斜率.11.【答案】A.【解析】||||cos cos ||cos ||cos αβαβααββ->-⇔->-,设()||cos f x x x =-,[,]x ππ∈-, 显然()f x 是偶函数,且在[0,]π上单调递增,故()f x 在[,0]π-上单调递减,∴()()||||f f αβαβ>⇔>,故是充分必要条件,故选A. 12.【答案】D【解析】解析:本题考查抛物线的焦半径公式的应用与“中点弦”问题的解法.设1122(,)(,)M x y N x y 、,那么12||||210MF NF x x +=++=,128x x +=,∴线段MN 的中点坐标为(4,2).由2114y x =,2224y x =两式相减得121212()()4()y y y y x x +-=-,而1222y y +=,∴12121y y x x -=-,∴直线MN 的方程为24y x -=-,即20x y --=,选D .二、填空题13.【答案】2± 【解析】14.【答案】x=﹣3.【解析】解:经过A(﹣3,1),且平行于y轴的直线方程为:x=﹣3.故答案为:x=﹣3.15.【答案】[].【解析】解:由题设知C41p(1﹣p)3≤C42p2(1﹣p)2,解得p,∵0≤p≤1,∴,故答案为:[].16.【答案】27【解析】由程序框图可知:43符合,跳出循环.17.【答案】7.【解析】解:模拟执行程序框图,可得S=1,i=3不满足条件S≥100,S=8,i=5不满足条件S≥100,S=256,i=7满足条件S≥100,退出循环,输出i的值为7.故答案为:7.【点评】本题主要考查了程序框图和算法,正确得到每次循环S,i的值是解题的关键,属于基础题.18.【答案】8或﹣18【解析】【分析】根据直线与圆相切的性质可知圆心直线的距离为半径,先把圆的方程整理的标准方程求得圆心和半径,在利用点到直线的距离求得圆心到直线的距离为半径,求得答案.【解答】解:整理圆的方程为(x﹣1)2++y2=1故圆的圆心为(1,0),半径为1直线与圆相切∴圆心到直线的距离为半径即=1,求得m=8或﹣18故答案为:8或﹣18三、解答题19.【答案】【解析】【知识点】圆锥曲线综合椭圆【试题解析】(Ⅰ)因为椭圆C:,所以,,故,解得,所以椭圆的方程为.因为,所以离心率.(Ⅱ)由题意,直线的斜率存在,设点,则线段的中点的坐标为,且直线的斜率,由点关于直线的对称点为,得直线,故直线的斜率为,且过点,所以直线的方程为:,令,得,则,由,得,化简,得.所以. 当且仅当,即时等号成立.所以的最小值为. 20.【答案】【解析】解:∵<θ<,∴+θ∈(,),∵cos (+θ)=﹣,∴sin (+θ)=﹣=﹣,∴sin (+θ)=sin θcos+cos θsin=(cos θ+sin θ)=﹣,∴sin θ+cos θ=﹣,①cos (+θ)=coscos θ﹣sin sin θ=(cos θ﹣cos β)=﹣,∴cos θ﹣sin θ=﹣,②联立①②,得cos θ=﹣,sin θ=﹣,∴====.【点评】本题考查函数值的求法,是中档题,解题时要认真审题,注意三角函数诱导公式、加法定理和同角三角函数关系式的合理运用.21.【答案】【解析】(1)当1=n 时,323321111=⇒=-=a a a S ;………………1分当2≥n 时,332,33211-=-=--n n n n a S a S ,∴当2≥n 时,n n n n n a a a S S 2)(32211=-=---,整理得13-=n n a a .………………3分 ∴数列}{n a 是以3为首项,公比为3的等比数列.∴数列}{n a 的通项公式为nn a 3=.………………5分22.【答案】【解析】解:(1)c=asinC ﹣ccosA ,由正弦定理有:sinAsinC ﹣sinCcosA ﹣sinC=0,即sinC •(sinA ﹣cosA ﹣1)=0,又,sinC ≠0,所以sinA ﹣cosA ﹣1=0,即2sin (A ﹣)=1,所以A=;(2)S△ABC =bcsinA=,所以bc=4,a=2,由余弦定理得:a2=b2+c2﹣2bccosA,即4=b2+c2﹣bc,即有,解得b=c=2.23.【答案】【解析】解:(1)==cosαtanα=sinα.(2)已知tanα=3,∴===.【点评】本题主要考查诱导公式、同角三角函数的基本关系,属于基础题.24.【答案】【解析】解:(1)当时,,;对于x∈[1,e],有f'(x)>0,∴f(x)在区间[1,e]上为增函数,∴,.(2)在区间(1,+∞)上,函数f(x)是f1(x),f2(x)的“活动函数”,则f1(x)<f(x)<f2(x)令<0,对x∈(1,+∞)恒成立,且h(x)=f1(x)﹣f(x)=<0对x∈(1,+∞)恒成立,∵1)若,令p′(x)=0,得极值点x1=1,,当x2>x1=1,即时,在(x2,+∞)上有p′(x)>0,此时p(x)在区间(x2,+∞)上是增函数,并且在该区间上有p(x)∈(p(x2),+∞),不合题意;当x2<x1=1,即a≥1时,同理可知,p(x)在区间(1,+∞)上,有p(x)∈(p(1),+∞),也不合题意;2)若,则有2a﹣1≤0,此时在区间(1,+∞)上恒有p′(x)<0,从而p(x)在区间(1,+∞)上是减函数;要使p(x)<0在此区间上恒成立,只须满足,所以≤a≤.又因为h′(x)=﹣x+2a﹣=<0,h(x)在(1,+∞)上为减函数,h(x)<h(1)=+2a≤0,所以a≤综合可知a的范围是[,].【点评】本题考查的知识点是利用导数求函数的最值,利用最值解决恒成立问题,二对于新定义题型关键是弄清新概念与旧知识点之间的联系即可,结合着我们已学的知识解决问题,这是高考考查的热点之一.。

叶县高中2018-2019学年上学期高二数学12月月考试题含解析

叶县高中2018-2019学年上学期高二数学12月月考试题含解析

叶县高中2018-2019学年上学期高二数学12月月考试题含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 已知函数f (x )=log 2(x 2+1)的值域为{0,1,2},则满足这样条件的函数的个数为( ) A .8 B .5C .9D .272. 若a=ln2,b=5,c=xdx ,则a ,b ,c 的大小关系( )A .a <b <cB B .b <a <cC C .b <c <aD .c <b <a3. 5名运动员争夺3项比赛冠军(每项比赛无并列冠军),获得冠军的可能种数为( )A .35B .C .D .534. 数列{a n }是等差数列,若a 1+1,a 3+2,a 5+3构成公比为q 的等比数列,则q=( ) A .1 B .2 C .3 D .45. 执行如图所示的程序框图,若输入的分别为0,1,则输出的( )A .4B .16C .27D .366. 设函数()''y f x =是()'y f x =的导数.某同学经过探究发现,任意一个三次函数()()320f x ax bx cx d a =+++≠都有对称中心()()00,x f x ,其中0x 满足()0''0f x =.已知函数()3211533212f x x x x =-+-,则1232016...2017201720172017f f f f ⎛⎫⎛⎫⎛⎫⎛⎫++++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭( )A .2013B .2014 C .2015 D .20161111]7. 已知角α的终边上有一点P (1,3),则的值为( )A .﹣B .﹣C .﹣D .﹣48. 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若(acosB+bcosA )=2csinC ,a+b=8,且△ABC 的面积的最大值为4,则此时△ABC 的形状为( )A .等腰三角形B .正三角形C .直角三角形D .钝角三角形9. 下列命题正确的是( )A .很小的实数可以构成集合.B .集合{}2|1y y x =-与集合(){}2,|1x y y x =-是同一个集合.C .自然数集 N 中最小的数是.D .空集是任何集合的子集.10.“方程+=1表示椭圆”是“﹣3<m <5”的( )条件.A .必要不充分B .充要C .充分不必要D .不充分不必要11.函数y=(x 2﹣5x+6)的单调减区间为( )A .(,+∞)B .(3,+∞)C .(﹣∞,)D .(﹣∞,2)12.函数f (x )=ax 2+2(a ﹣1)x+2在区间(﹣∞,4]上为减函数,则a 的取值范围为( ) A .0<a ≤ B .0≤a ≤ C .0<a < D .a >二、填空题13.定义在R 上的函数)(x f 满足:1)(')(>+x f x f ,4)0(=f ,则不等式3)(+>x x e x f e (其 中为自然对数的底数)的解集为 .14.函数()y f x =的定义域是[]0,2,则函数()1y f x =+的定义域是__________.111]15.已知圆O :x 2+y 2=1和双曲线C :﹣=1(a >0,b >0).若对双曲线C 上任意一点A (点A 在圆O外),均存在与圆O 外切且顶点都在双曲线C 上的菱形ABCD ,则﹣= .16.已知f (x ),g (x )都是定义在R 上的函数,且满足以下条件:①f (x )=a x g (x )(a >0,a ≠1); ②g (x )≠0;③f (x )g'(x )>f'(x )g (x );若,则a= .17.【泰州中学2018届高三10月月考】设函数()()21xf x e x ax a =--+,其中1a <,若存在唯一的整数0x ,使得()00f x <,则a 的取值范围是18.若正方形P 1P 2P 3P 4的边长为1,集合M={x|x=且i ,j ∈{1,2,3,4}},则对于下列命题:①当i=1,j=3时,x=2; ②当i=3,j=1时,x=0;③当x=1时,(i ,j )有4种不同取值; ④当x=﹣1时,(i ,j )有2种不同取值; ⑤M 中的元素之和为0.其中正确的结论序号为 .(填上所有正确结论的序号)三、解答题19.已知集合A={x|x <﹣1,或x >2},B={x|2p ﹣1≤x ≤p+3}.(1)若p=,求A ∩B ;(2)若A ∩B=B ,求实数p 的取值范围.20.(本小题满分12分)一直线被两直线12:460,:3560l x y l x y ++=--=截得线段的中点是P 点, 当P 点为()0,0时, 求此直线方程.21.设p :实数x 满足x 2﹣4ax+3a 2<0,q :实数x 满足|x ﹣3|<1. (1)若a=1,且p ∧q 为真,求实数x 的取值范围;(2)若其中a >0且¬p 是¬q 的充分不必要条件,求实数a 的取值范围.22.已知S n 为数列{a n }的前n 项和,且满足S n =2a n ﹣n 2+3n+2(n ∈N *) (Ⅰ)求证:数列{a n +2n}是等比数列;(Ⅱ)设b n =a n sin π,求数列{b n }的前n 项和;(Ⅲ)设C n =﹣,数列{C n }的前n 项和为P n ,求证:P n <.23.已知函数f (x )=x ﹣alnx (a ∈R )(1)当a=2时,求曲线y=f (x )在点A (1,f (1))处的切线方程; (2)求函数f (x )的极值.24.(本小题满分12分)已知在ABC ∆中,角C B A ,,所对的边分别为,,,c b a 且 )3(s i n ))(sin (sin c b C a b B A -=-+. (Ⅰ)求角A 的大小;(Ⅱ) 若2a =,ABC ∆c b ,.叶县高中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】C【解析】解:令log2(x2+1)=0,得x=0,令log2(x2+1)=1,得x2+1=2,x=±1,令log(x2+1)=2,得x2+1=4,x=.2则满足值域为{0,1,2}的定义域有:{0,﹣1,﹣},{0,﹣1,},{0,1,﹣},{0,1,},{0,﹣1,1,﹣},{0,﹣1,1,},{0,﹣1,﹣,},{0,1,﹣,},{0,﹣1,1,﹣,}.则满足这样条件的函数的个数为9.故选:C.【点评】本题考查了对数的运算性质,考查了学生对函数概念的理解,是中档题.2.【答案】C【解析】解:∵a=ln2<lne即,b=5=,c=xdx=,∴a,b,c的大小关系为:b<c<a.故选:C.【点评】本题考查了不等式大小的比较,关键是求出它们的取值范围,是基础题.3.【答案】D【解析】解:每一项冠军的情况都有5种,故5名学生争夺三项冠军,获得冠军的可能的种数是53,故选:D.【点评】本题主要考查分步计数原理的应用,属于基础题.4.【答案】A【解析】解:设等差数列{a n}的公差为d,由a1+1,a3+2,a5+3构成等比数列,得:(a3+2)2=(a1+1)(a5+3),整理得:a32+4a3+4=a1a5+3a1+a5+3即(a 1+2d )2+4(a 1+2d )+4=a 1(a 1+4d )+4a 1+4d+3.化简得:(2d+1)2=0,即d=﹣.∴q===1.故选:A .【点评】本题考查了等差数列的通项公式,考查了等比数列的性质,是基础的计算题.5. 【答案】D【解析】【知识点】算法和程序框图【试题解析】A=0,S=1,k=1,A=1,S=1,否;k=3,A=4,S=4,否;k=5,A=9,S=36,是, 则输出的36。

叶县实验中学2018-2019学年上学期高二数学12月月考试题含解析

叶县实验中学2018-2019学年上学期高二数学12月月考试题含解析

叶县实验中学2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 某三棱锥的三视图如图所示,该三棱锥的表面积是A 、28+B 、30+C 、56+D 、 60+2. 已知平面向量=(1,2),=(﹣2,m ),且∥,则=( )A .(﹣5,﹣10)B .(﹣4,﹣8)C .(﹣3,﹣6)D .(﹣2,﹣4)3. 记集合{}22(,)1A x y x y =+?和集合{}(,)1,0,0B x y x y x y =+3?表示的平面区域分别为Ω1,Ω2,若在区域Ω1内任取一点M (x ,y ),则点M 落在区域Ω2内的概率为( ) A .12p B .1p C .2pD .13p【命题意图】本题考查线性规划、古典概型等基础知识,意在考查数形结合思想和基本运算能力. 4. 若f (x )=x 2﹣2x ﹣4lnx ,则f ′(x )>0的解集为( ) A .(0,+∞) B .(﹣1,0)∪(2,+∞)C .(2,+∞)D .(﹣1,0)5. 已知f (x )=2sin (ωx+φ)的部分图象如图所示,则f (x )的表达式为( )A .B .C .D .6. 已知函数f (x )=a x ﹣1+log a x 在区间[1,2]上的最大值和最小值之和为a ,则实数a 为( )A .B .C .2D .47. 函数y=f (x )在[1,3]上单调递减,且函数f (x+3)是偶函数,则下列结论成立的是( ) A .f (2)<f (π)<f (5) B .f (π)<f (2)<f (5)C .f (2)<f (5)<f (π)D .f (5)<f (π)<f (2)8. 在复平面上,复数z=a+bi (a ,b ∈R )与复数i (i ﹣2)关于实轴对称,则a+b 的值为( ) A .1B .﹣3C .3D .29. 执行如图所示的程序框图,如果输入的t =10,则输出的i =( )A .4B .5C .6D .710.将函数x x f ωsin )(=(其中0>ω)的图象向右平移4π个单位长度,所得的图象经过点 )0,43(π,则ω的最小值是( ) A .31 B . C .35D .11.已知m ,n 为不同的直线,α,β为不同的平面,则下列说法正确的是( ) A .m ⊂α,n ∥m ⇒n ∥αB .m ⊂α,n ⊥m ⇒n ⊥αC .m ⊂α,n ⊂β,m ∥n ⇒α∥βD .n ⊂β,n ⊥α⇒α⊥β12.如图,正六边形ABCDEF 中,AB=2,则(﹣)•(+)=( )A .﹣6B .﹣2C .2D .6二、填空题13.已知线性回归方程=9,则b= .14.已知圆C 的方程为22230x y y +--=,过点()1,2P -的直线与圆C 交于,A B 两点,若使AB 最小则直线的方程是 .15.把函数y=sin2x 的图象向左平移个单位长度,再把所得图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得函数图象的解析式为 .16.平面向量,满足|2﹣|=1,|﹣2|=1,则的取值范围 .17.利用计算机产生1到6之间取整数值的随机数a 和b ,在a+b 为偶数的条件下,|a ﹣b|>2发生的概率是 . 18.已知f (x ),g (x )都是定义在R 上的函数,且满足以下条件:①f (x )=a x g (x )(a >0,a ≠1);②g (x )≠0;③f (x )g'(x )>f'(x )g (x );若,则a= .三、解答题19.如图,矩形ABCD 和梯形BEFC 所在平面互相垂直,BE ∥CF ,BC ⊥CF ,,EF=2,BE=3,CF=4.(Ⅰ)求证:EF ⊥平面DCE ;(Ⅱ)当AB 的长为何值时,二面角A ﹣EF ﹣C 的大小为60°.20.(本题12分)如图,D 是Rt BAC ∆斜边BC 上一点,AC . (1)若22BD DC ==,求AD ;(2)若AB AD =,求角B.21.(本小题满分13分)设1()1f x x=+,数列{}n a 满足:112a =,1(),n n a f a n N *+=∈.(Ⅰ)若12,λλ为方程()f x x =的两个不相等的实根,证明:数列12n n a a λλ⎧⎫-⎨⎬-⎩⎭为等比数列;(Ⅱ)证明:存在实数m ,使得对n N *∀∈,2121222n n n n a a m a a -++<<<<.)22.已知顶点在坐标原点,焦点在x 轴上的抛物线被直线y=2x+1截得的弦长为,求此抛物线方程.23.中国高铁的某个通讯器材中配置有9个相同的元件,各自独立工作,每个元件正常工作的概率为p(0<p <1),若通讯器械中有超过一半的元件正常工作,则通讯器械正常工作,通讯器械正常工作的概率为通讯器械的有效率(Ⅰ)设通讯器械上正常工作的元件个数为X,求X的数学期望,并求该通讯器械正常工作的概率P′(列代数式表示)(Ⅱ)现为改善通讯器械的性能,拟增加2个元件,试分析这样操作能否提高通讯器械的有效率.24.一个几何体的三视图如图所示,已知正(主)视图是底边长为1的平行四边形,侧(左)视图1的矩形,俯视图为两个边长为1的正方形拼成的矩形.(1)求该几何体的体积V;111](2)求该几何体的表面积S.叶县实验中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】B【解析】从所给的三视图可以得到该几何体为三棱锥,所求表面积为三棱锥四个面的面积之和。

叶城县高中2018-2019学年高二上学期第二次月考试卷数学

叶城县高中2018-2019学年高二上学期第二次月考试卷数学

叶城县高中2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1.已知函数y=f(x)对任意实数x都有f(1+x)=f(1﹣x),且函数f(x)在[1,+∞)上为单调函数.若数列{a n}是公差不为0的等差数列,且f(a6)=f(a23),则{a n}的前28项之和S28=()A.7 B.14 C.28 D.562.已知F1,F2是椭圆和双曲线的公共焦点,M是它们的一个公共点,且∠F1MF2=,则椭圆和双曲线的离心率的倒数之和的最大值为()A.2 B. C. D.43.已知,其中i为虚数单位,则a+b=()A.﹣1 B.1 C.2 D.34.天气预报说,在今后的三天中,每一天下雨的概率均为40%.现采用随机模拟试验的方法估计这三天中恰有两天下雨的概率:先利用计算器产生0到9之间取整数值的随机数,用1,2,3,4表示下雨,用5,6,7,8,9,0表示不下雨;再以每三个随机数作为一组,代表这三天的下雨情况.经随机模拟试验产生了如下20组随机数:907 966 191 925 271 932 812 458 569 683431 257 393 027 556 488 730 113 537 989据此估计,这三天中恰有两天下雨的概率近似为()A.0.35 B.0.25 C.0.20 D.0.155.=()A.﹣i B.i C.1+i D.1﹣i6.如图,某几何体的正视图(主视图),侧视图(左视图)和俯视图分别是等边三角形,等腰三角形和菱形,则该几何体体积为()A. B.4 C. D.27. 若,则下列不等式一定成立的是( ) A .B .C .D .8. 幂函数y=f (x )的图象经过点(﹣2,﹣),则满足f (x )=27的x 的值是( )A .B .﹣C .3D .﹣39. 若圆柱、圆锥的底面直径和高都等于球的直径,则圆柱、圆锥、球的体积的比为( )A .1:2:3B .2:3:4C .3:2:4D .3:1:210.已知集合P={x|﹣1<x <b ,b ∈N},Q={x|x 2﹣3x <0,x ∈Z},若P ∩Q ≠∅,则b 的最小值等于( ) A .0B .1C .2D .311.集合A={1,2,3},集合B={﹣1,1,3},集合S=A ∩B ,则集合S 的子集有( ) A .2个 B .3 个 C .4 个 D .8个12.在等差数列{a n }中,3(a 3+a 5)+2(a 7+a 10+a 13)=24,则此数列前13项的和是( )A .13B .26C .52D .56二、填空题13.已知函数f (x )是定义在R 上的单调函数,且满足对任意的实数x 都有f[f (x )﹣2x ]=6,则f (x )+f (﹣x )的最小值等于 .14.若实数,,,a b c d 满足24ln 220b a a c d +-+-+=,则()()22a cb d -+-的最小值为 ▲ . 15.运行如图所示的程序框图后,输出的结果是16.为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y (毫克)与时间t (小时)成正比;药物释放完毕后,y 与t 的函数关系式为y=()t ﹣a (a 为常数),如图所示,据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那从药物释放开始,至少需要经过 小时后,学生才能回到教室.17.以抛物线y 2=20x 的焦点为圆心,且与双曲线:的两条渐近线都相切的圆的方程为 .18.函数y=a x+1(a >0且a ≠1)的图象必经过点 (填点的坐标)三、解答题19.(本小题满分12分)已知点()()(),0,0,4,4A a B b a b >>,直线AB 与圆22:4430M x y x y +--+=相交于,C D 两点, 且2CD =,求.(1)()()44a b --的值; (2)线段AB 中点P 的轨迹方程; (3)ADP ∆的面积的最小值.20.已知函数f (x )=ax 2+2x ﹣lnx (a ∈R ). (Ⅰ)若a=4,求函数f (x )的极值;(Ⅱ)若f ′(x )在(0,1)有唯一的零点x 0,求a 的取值范围;(Ⅲ)若a ∈(﹣,0),设g (x )=a (1﹣x )2﹣2x ﹣1﹣ln (1﹣x ),求证:g (x )在(0,1)内有唯一的零点x 1,且对(Ⅱ)中的x 0,满足x 0+x 1>1.21.某商场销售某种品牌的空调器,每周周初购进一定数量的空调器,商场每销售一台空调器可获利500元,若供大于求,则每台多余的空调器需交保管费100元;若供不应求,则可从其他商店调剂供应,此时每台空调器仅获利润200元.(Ⅰ)若该商场周初购进20台空调器,求当周的利润(单位:元)关于当周需求量n(单位:台,n∈N)的函数解析式f(n);10n(单位:元),求X的分布列及数学期望.22.已知函数y=f(x)的图象与g(x)=log a x(a>0,且a≠1)的图象关于x轴对称,且g(x)的图象过(4,2)点.(Ⅰ)求函数f(x)的解析式;(Ⅱ)若f(x﹣1)>f(5﹣x),求x的取值范围.23.某校为选拔参加“央视猜灯谜大赛”的队员,在校内组织猜灯谜竞赛.规定:第一阶段知识测试成绩不小于160分的学生进入第二阶段比赛.现有200名学生参加知识测试,并将所有测试成绩绘制成如下所示的频率分布直方图.(Ⅰ)估算这200名学生测试成绩的中位数,并求进入第二阶段比赛的学生人数;(Ⅱ)将进入第二阶段的学生分成若干队进行比赛.现甲、乙两队在比赛中均已获得120分,进入最后抢答阶段.抢答规则:抢到的队每次需猜3条谜语,猜对1条得20分,猜错1条扣20分.根据经验,甲队猜对每条谜语的概率均为,乙队猜对前两条的概率均为,猜对第3条的概率为.若这两队抢到答题的机会均等,您做为场外观众想支持这两队中的优胜队,会把支持票投给哪队?24.如图在长方形ABCD中,是CD的中点,M是线段AB上的点,.(1)若M是AB的中点,求证:与共线;(2)在线段AB上是否存在点M,使得与垂直?若不存在请说明理由,若存在请求出M点的位置;(3)若动点P在长方形ABCD上运动,试求的最大值及取得最大值时P点的位置.叶城县高中2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】C【解析】解:∵函数y=f(x)对任意实数x都有f(1+x)=f(1﹣x),且函数f(x)在[1,+∞)上为单调函数.∴函数f(x)关于直线x=1对称,∵数列{a n}是公差不为0的等差数列,且f(a6)=f(a23),∴a6+a23=2.则{a n}的前28项之和S28==14(a6+a23)=28.故选:C.【点评】本题考查了等差数列的通项公式性质及其前n项和公式、函数的对称性,考查了推理能力与计算能力,属于中档题.2.【答案】C【解析】解:设椭圆的长半轴为a,双曲线的实半轴为a1,(a>a1),半焦距为c,由椭圆和双曲线的定义可知,设|MF1|=r1,|MF2|=r2,|F1F2|=2c,椭圆和双曲线的离心率分别为e1,e2∵∠F1MF2=,∴由余弦定理可得4c2=(r1)2+(r2)2﹣2r1r2cos,①在椭圆中,①化简为即4c2=4a2﹣3r1r2,即=﹣1,②在双曲线中,①化简为即4c2=4a12+r1r2,即=1﹣,③联立②③得,+=4,由柯西不等式得(1+)(+)≥(1×+×)2,即(+)2≤×4=,即+≤,当且仅当e1=,e2=时取等号.即取得最大值且为.故选C.【点评】本题主要考查椭圆和双曲线的定义和性质,利用余弦定理和柯西不等式是解决本题的关键.难度较大.3.【答案】B【解析】解:由得a+2i=bi﹣1,所以由复数相等的意义知a=﹣1,b=2,所以a+b=1另解:由得﹣ai+2=b+i(a,b∈R),则﹣a=1,b=2,a+b=1.故选B.【点评】本题考查复数相等的意义、复数的基本运算,是基础题.4.【答案】B【解析】解:由题意知模拟三天中恰有两天下雨的结果,经随机模拟产生了如下20组随机数,在20组随机数中表示三天中恰有两天下雨的有:191、271、932、812、393,共5组随机数,∴所求概率为.故选B.5.【答案】B【解析】解:===i.故选:B.【点评】本题考查复数的代数形式混合运算,复数的除法的运算法则的应用,考查计算能力.6.【答案】C【解析】解:由已知中该几何中的三视图中有两个三角形一个菱形可得这个几何体是一个四棱锥由图可知,底面两条对角线的长分别为2,2,底面边长为2故底面棱形的面积为=2侧棱为2,则棱锥的高h==3故V==2故选C7.【答案】D【解析】因为,有可能为负值,所以排除A,C,因为函数为减函数且,所以,排除B,故选D答案:D8.【答案】A【解析】解:设幂函数为y=xα,因为图象过点(﹣2,﹣),所以有=(﹣2)α,解得:α=﹣3所以幂函数解析式为y=x﹣3,由f(x)=27,得:x﹣3=27,所以x=.故选A.9.【答案】D【解析】解:设球的半径为R,则圆柱、圆锥的底面半径也为R,高为2R,则球的体积V球=圆柱的体积V圆柱=2πR3圆锥的体积V圆锥=故圆柱、圆锥、球的体积的比为2πR3::=3:1:2故选D【点评】本题考查的知识点是旋转体,球的体积,圆柱的体积和圆锥的体积,其中设出球的半径,并根据圆柱、圆锥的底面直径和高都等于球的直径,依次求出圆柱、圆锥和球的体积是解答本题的关键.10.【答案】C【解析】解:集合P={x|﹣1<x<b,b∈N},Q={x|x2﹣3x<0,x∈Z}={1,2},P∩Q≠∅,可得b的最小值为:2.故选:C.【点评】本题考查集合的基本运算,交集的意义,是基础题.11.【答案】C【解析】解:∵集合A={1,2,3},集合B={﹣1,1,3},∴集合S=A∩B={1,3},则集合S的子集有22=4个,故选:C.【点评】本题主要考查集合的基本运算和集合子集个数的求解,要求熟练掌握集合的交并补运算,比较基础.12.【答案】B【解析】解:由等差数列的性质可得:a3+a5=2a4,a7+a13=2a10,代入已知可得3×2a4+2×3a10=24,即a4+a10=4,故数列的前13项之和S13====26故选B【点评】本题考查等差数列的性质和求和公式,涉及整体代入的思想,属中档题.二、填空题13.【答案】6.【解析】解:根据题意可知:f(x)﹣2x是一个固定的数,记为a,则f(a)=6,∴f(x)﹣2x=a,即f(x)=a+2x,∴当x=a时,又∵a+2a=6,∴a=2,∴f(x)=2+2x,∴f(x)+f(﹣x)=2+2x+2+2﹣x=2x+2﹣x+4≥2+4=6,当且仅当x=0时成立,∴f(x)+f(﹣x)的最小值等于6,故答案为:6.【点评】本题考查函数的最值,考查运算求解能力,注意解题方法的积累,属于中档题.14.【答案】5【解析】考点:利用导数求最值【方法点睛】利用导数解答函数最值的一般步骤:第一步:利用f′(x)>0或f′(x)<0求单调区间;第二步:解f′(x)=0得两个根x1、x2;第三步:比较两根同区间端点的大小;第四步:求极值;第五步:比较极值同端点值的大小.15.【答案】0【解析】解:模拟执行程序框图,可得程序框图的功能是计算并输出S=sin+sin+…+sin的值,由于sin周期为8,所以S=sin+sin+…+sin=0.故答案为:0.【点评】本题主要考查了程序框图和算法,考查了正弦函数的周期性和特殊角的三角函数值的应用,属于基本知识的考查.16.【答案】0.6【解析】解:当t>0.1时,可得1=()0.1﹣a∴0.1﹣a=0a=0.1由题意可得y≤0.25=,即()t﹣0.1≤,即t﹣0.1≥解得t≥0.6,由题意至少需要经过0.6小时后,学生才能回到教室.故答案为:0.6【点评】本题考查函数、不等式的实际应用,以及识图和理解能力.易错点:只单纯解不等式,而忽略题意,得到其他错误答案.17.【答案】 (x ﹣5)2+y 2=9 .【解析】解:抛物线y 2=20x 的焦点坐标为(5,0),双曲线:的两条渐近线方程为3x ±4y=0由题意,r=3,则所求方程为(x ﹣5)2+y 2=9故答案为:(x ﹣5)2+y 2=9.【点评】本题考查圆的方程,考查直线与圆的位置关系,考查学生的计算能力,属于基础题.18.【答案】 (0,2)【解析】解:令x=0,得y=a 0+1=2∴函数y=a x+1(a >0且a ≠1)的图象必经过点 (0,2)故答案为:(0,2). 【点评】本题考查指数函数的单调性与特殊点,解题的关键是熟练掌握指数函数的性质,确定指数为0时,求函数的图象必过的定点三、解答题19.【答案】(1)()()448a b --=;(2)()()()2222,2x y x y --=>>;(3)6. 【解析】试题分析:(1)利用2CD =,得圆心到直线的距离2d =2=,再进行化简,即可求解()()44a b --的值;(2)设点P 的坐标为(),x y ,则22a xb y ⎧=⎪⎪⎨⎪=⎪⎩代入①,化简即可求得线段AB 中点P 的轨迹方程;(3)将面积表示为()()()114482446224ADP b S a a b a b a b ∆==+-=+-=-+-+,再利用基本不等式,即可求得ADP ∆的面积的最小值.(3)()()()()()1144824462446426224ADP b S a a b a b a b a b ∆==+-=+-=-+-+≥--+=+,∴当422a b ==+时, 面积最小, 最小值为426+.考点:直线与圆的综合问题.【方法点晴】本题主要考查了直线与圆的综合问题,其中解答中涉及到点到直线的距离公式、轨迹方程的求解,以及基本不等式的应用求最值等知识点的综合考查,着重考查了转化与化归思想和学生分析问题和解答问题的能力,本题的解答中将面积表示为()()446ADP S a b ∆=-+-+,再利用基本不等式是解答的一个难点,属于中档试题. 20.【答案】【解析】满分(14分).解法一:(Ⅰ)当a=4时,f (x )=4x 2+2x ﹣lnx ,x ∈(0,+∞),.…(1分)由x ∈(0,+∞),令f ′(x )=0,得.xf ′(x ) ﹣+f (x ) ↘ 极小值 ↗ 故函数f (x )在单调递减,在单调递增,…(3分)f (x )有极小值,无极大值.…(4分)(Ⅱ),令f′(x)=0,得2ax2+2x﹣1=0,设h(x)=2ax2+2x﹣1.则f′(x)在(0,1)有唯一的零点x0等价于h(x)在(0,1)有唯一的零点x0当a=0时,方程的解为,满足题意;…(5分)当a>0时,由函数h(x)图象的对称轴,函数h(x)在(0,1)上单调递增,且h(0)=﹣1,h(1)=2a+1>0,所以满足题意;…(6分)当a<0,△=0时,,此时方程的解为x=1,不符合题意;当a<0,△≠0时,由h(0)=﹣1,只需h(1)=2a+1>0,得.…(7分)综上,.…(8分)(说明:△=0未讨论扣1分)(Ⅲ)设t=1﹣x,则t∈(0,1),p(t)=g(1﹣t)=at2+2t﹣3﹣lnt,…(9分),由,故由(Ⅱ)可知,方程2at2+2t﹣1=0在(0,1)内有唯一的解x0,且当t∈(0,x0)时,p′(t)<0,p(t)单调递减;t∈(x0,1)时,p′(t)>0,p(t)单调递增.…(11分)又p(1)=a﹣1<0,所以p(x0)<0.…(12分)取t=e﹣3+2a∈(0,1),则p(e﹣3+2a)=ae﹣6+4a+2e﹣3+2a﹣3﹣lne﹣3+2a=ae﹣6+4a+2e﹣3+2a﹣3+3﹣2a=a(e﹣6+4a﹣2)+2e﹣3+2a>0,从而当t∈(0,x0)时,p(t)必存在唯一的零点t1,且0<t1<x0,即0<1﹣x1<x0,得x1∈(0,1),且x0+x1>1,从而函数g(x)在(0,1)内有唯一的零点x1,满足x0+x1>1.…(14分)解法二:(Ⅰ)同解法一;…(4分)(Ⅱ),令f′(x)=0,由2ax2+2x﹣1=0,得.…(5分)设,则m∈(1,+∞),,…(6分)问题转化为直线y=a与函数的图象在(1,+∞)恰有一个交点问题.又当m∈(1,+∞)时,h(m)单调递增,…(7分)故直线y=a与函数h(m)的图象恰有一个交点,当且仅当.…(8分)(Ⅲ)同解法一.(说明:第(Ⅲ)问判断零点存在时,利用t→0时,p(t)→+∞进行证明,扣1分)【点评】本题考查函数与导数等基本知识,考查推理论证能力和运算求解能力,考查函数与方程的思想、化归与转化的思想、数形结合的思想,考查运用数学知识分析和解决问题的能力.21.【答案】【解析】解:(I)当n≥20时,f(n)=500×20+200×(n﹣20)=200n+6000,当n≤19时,f(n)=500×n﹣100×(20﹣n)=600n﹣2000,∴.(II)由(1)得f(18)=8800,f(19)=9400,f(20)=10000,f(21)=10200,f(22)=10400,∴P(X=8800)=0.1,P(X=9400)=0.2,P(X=10000)=0.3,P(X=10200)=0.3,P(X=10400)=0.1,X22.【答案】【解析】解:(Ⅰ)∵g(x)=log a x(a>0,且a≠1)的图象过点(4,2),∴log a4=2,a=2,则g(x)=log2x.…∵函数y=f(x)的图象与g(X)的图象关于x轴对称,∴.…(Ⅱ)∵f(x﹣1)>f(5﹣x),∴,即,解得1<x<3,所以x的取值范围为(1,3)…【点评】本题考查对数函数的性质的应用,注意真数大于零,属于基础题.23.【答案】【解析】解:(Ⅰ)设测试成绩的中位数为x,由频率分布直方图得,(0.0015+0.019)×20+(x﹣140)×0.025=0.5,解得:x=143.6.∴测试成绩中位数为143.6.进入第二阶段的学生人数为200×(0.003+0.0015)×20=18人.(Ⅱ)设最后抢答阶段甲、乙两队猜对灯谜的条数分别为ξ、η,则ξ~B(3,),∴E(ξ)=.∴最后抢答阶段甲队得分的期望为[]×20=30,∵P(η=0)=,P(η=1)=,P(η=2)=,P(η=3)=,∴Eη=.∴最后抢答阶段乙队得分的期望为[]×20=24.∴120+30>120+24,∴支持票投给甲队.【点评】本小题主要考查概率、概率与统计等基础知识,考查推理论证能力、数据处理能力、运算求解能力及应用意识,考查或然与必然的思想,属中档题.24.【答案】【解析】(1)证明:如图,以AB所在直线为x轴,AD所在直线为y轴建立平面直角坐标系,当M是AB的中点时,A(0,0),N(1,1),C(2,1),M(1,0),,由,可得与共线;(2)解:假设线段AB上是否存在点M,使得与垂直,设M(t,0)(0≤t≤2),则B(2,0),D(0,1),M(t,0),,由=﹣2(t﹣2)﹣1=0,解得t=,∴线段AB上存在点,使得与垂直;(3)解:由图看出,当P在线段BC上时,在上的投影最大,则有最大值为4.【点评】本题考查平面向量的数量积运算,考查了向量在向量方向上的投影,体现了数形结合的解题思想方法,是中档题.。

叶县高中2018-2019学年高二上学期第二次月考试卷数学测试卷

叶县高中2018-2019学年高二上学期第二次月考试卷数学测试卷

叶县高中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 已知正项数列{a n }的前n 项和为S n ,且2S n =a n +,则S 2015的值是( )A .B .C .2015D .2. 函数2(44)x y a a a =-+是指数函数,则的值是( ) A .4 B .1或3 C .3 D .13. 在正方体ABCD ﹣A ′B ′C ′D ′中,点P 在线段AD ′上运动,则异面直线CP 与BA ′所成的角θ的取值范围是( )A .0<B .0C .0D .04. 如图所示,程序执行后的输出结果为( )A .﹣1B .0C .1D .25.设函数f(x)的定义域为A,若存在非零实数l使得对于任意x∈I(I⊆A),有x+l∈A,且f(x+l)≥f(x),则称f(x)为I上的l高调函数,如果定义域为R的函数f(x)是奇函数,当x≥0时,f(x)=|x﹣a2|﹣a2,且函数f(x)为R上的1高调函数,那么实数a的取值范围为()A.0<a<1 B.﹣≤a≤C.﹣1≤a≤1 D.﹣2≤a≤26.已知函数y=x3+ax2+(a+6)x﹣1有极大值和极小值,则a的取值范围是()A.﹣1<a<2 B.﹣3<a<6 C.a<﹣3或a>6 D.a<﹣1或a>27.如图是一个多面体的三视图,则其全面积为()A.B.C.D.8.如右图,在长方体中,=11,=7,=12,一质点从顶点A射向点,遇长方体的面反射(反射服从光的反射原理),将次到第次反射点之间的线段记为,,将线段竖直放置在同一水平线上,则大致的图形是()ABCD9.是首项,公差的等差数列,如果,则序号等于()A.667B.668C.669D.67010.如图,长方形ABCD中,AB=2,BC=1,半圆的直径为AB.在长方形ABCD内随机取一点,则该点取自阴影部分的概率是()A.B.1﹣C.D.1﹣11.向高为H的水瓶中注水,注满为止.如果注水量V与水深h的函数关系式如图所示,那么水瓶的形状是()A.B.C.D.12.如图,正方体ABCD﹣A1B1C1D1中,点E,F分别是AA1,AD的中点,则CD1与EF所成角为()A .0°B .45°C .60°D .90°二、填空题13.已知,x y 满足41y xx y x ≥⎧⎪+≤⎨⎪≥⎩,则22223y xy x x -+的取值范围为____________. 14.(若集合A ⊊{2,3,7},且A 中至多有1个奇数,则这样的集合共有 个.15.下列命题: ①终边在y 轴上的角的集合是{a|a=,k ∈Z};②在同一坐标系中,函数y=sinx 的图象和函数y=x 的图象有三个公共点;③把函数y=3sin (2x+)的图象向右平移个单位长度得到y=3sin2x 的图象;④函数y=sin (x﹣)在[0,π]上是减函数其中真命题的序号是 .16.函数f (x )=x 2e x 在区间(a ,a+1)上存在极值点,则实数a 的取值范围为 .17.球O 的球面上有四点S ,A ,B ,C ,其中O ,A ,B ,C 四点共面,△ABC 是边长为2的正三角形,平面SAB ⊥平面ABC ,则棱锥S ﹣ABC 的体积的最大值为 . 18.若圆与双曲线C :的渐近线相切,则_____;双曲线C 的渐近线方程是____.三、解答题19.(1)求与椭圆有相同的焦点,且经过点(4,3)的椭圆的标准方程. (2)求与双曲线有相同的渐近线,且焦距为的双曲线的标准方程.20.设等差数列{a n }的公差为d ,前n 项和为S n ,等比数列{b n }的公比为q ,已知b 1=a 1,b 2=2,q=d ,S 10=100. (1)求数列{a n },{b n }的通项公式(2)当d >1时,记c n =,求数列{c n }的前n 项和T n .21.(本小题满分10分)选修4-5:不等式选讲 已知函数()|21|f x x =-.(1)若不等式1()21(0)2f x m m +≤+>的解集为(][),22,-∞-+∞,求实数m 的值;(2)若不等式()2|23|2yyaf x x ≤+++,对任意的实数,x y R ∈恒成立,求实数a 的最小值. 【命题意图】本题主要考查绝对值不等式的解法、三角不等式、基本不等式等基础知识,以及考查等价转化的能力、逻辑思维能力、运算能力.22.如图,已知AB 是圆O 的直径,C 、D 是圆O 上的两个点,CE ⊥AB 于E ,BD 交AC 于G ,交CE 于F ,CF=FG .(Ⅰ)求证:C 是劣弧的中点;(Ⅱ)求证:BF=FG .23.(本题12分)已知数列{}n x 的首项13x =,通项2n n x p nq =+(*n N ∈,p ,为常数),且145x x x ,,成等差数列,求:(1)p q ,的值;(2)数列{}n x 前项和n S 的公式.24.(理)设函数f (x )=(x+1)ln (x+1). (1)求f (x )的单调区间;(2)若对所有的x ≥0,均有f (x )≥ax 成立,求实数a 的取值范围.叶县高中2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】D【解析】解:∵2S n=a n+,∴,解得a1=1.当n=2时,2(1+a2)=,化为=0,又a2>0,解得,同理可得.猜想.验证:2S=…+=,n==,因此满足2S n=a n+,∴.∴S n=.∴S2015=.故选:D.【点评】本题考查了猜想分析归纳得出数列的通项公式的方法、递推式的应用,考查了由特殊到一般的思想方法,考查了推理能力与计算能力,属于难题.2.【答案】C【解析】考点:指数函数的概念.3.【答案】D【解析】解:∵A1B∥D1C,∴CP与A1B成角可化为CP与D1C成角.∵△AD1C是正三角形可知当P与A重合时成角为,∵P不能与D1重合因为此时D1C与A1B平行而不是异面直线,∴0<θ≤.故选:D.4.【答案】B【解析】解:执行程序框图,可得n=5,s=0满足条件s<15,s=5,n=4满足条件s<15,s=9,n=3满足条件s<15,s=12,n=2满足条件s<15,s=14,n=1满足条件s<15,s=15,n=0不满足条件s<15,退出循环,输出n的值为0.故选:B.【点评】本题主要考查了程序框图和算法,正确判断退出循环时n的值是解题的关键,属于基础题.5.【答案】B【解析】解:定义域为R的函数f(x)是奇函数,当x≥0时,f(x)=|x﹣a2|﹣a2=图象如图,∵f(x)为R上的1高调函数,当x<0时,函数的最大值为a2,要满足f(x+l)≥f(x),1大于等于区间长度3a2﹣(﹣a2),∴1≥3a2﹣(﹣a2),∴﹣≤a≤故选B【点评】考查学生的阅读能力,应用知识分析解决问题的能力,考查数形结合的能力,用图解决问题的能力,属中档题.6.【答案】C【解析】解:由于f(x)=x3+ax2+(a+6)x﹣1,有f′(x)=3x2+2ax+(a+6).若f(x)有极大值和极小值,则△=4a2﹣12(a+6)>0,从而有a>6或a<﹣3,故选:C.【点评】本题主要考查函数在某点取得极值的条件.属基础题.7.【答案】C【解析】解:由三视图可知几何体是一个正三棱柱,底面是一个边长是的等边三角形,侧棱长是,∴三棱柱的面积是3××2=6+,故选C.【点评】本题考查根据三视图求几何体的表面积,考查由三视图确定几何图形,考查三角形面积的求法,本题是一个基础题,运算量比较小.8.【答案】C【解析】根据题意有:A的坐标为:(0,0,0),B的坐标为(11,0,0),C的坐标为(11,7,0),D的坐标为(0,7,0);A1的坐标为:(0,0,12),B1的坐标为(11,0,12),C1的坐标为(11,7,12),D1的坐标为(0,7,12);E的坐标为(4,3,12)(1)l1长度计算所以:l1=|AE|==13。

叶城县二中2018-2019学年上学期高二数学12月月考试题含解析

叶城县二中2018-2019学年上学期高二数学12月月考试题含解析

叶城县二中2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 已知a >b >0,那么下列不等式成立的是( )A .﹣a >﹣bB .a+c <b+cC .(﹣a )2>(﹣b )2D.2.某个几何体的三视图如图所示,该几何体的表面积为92+14π,则该几何体的体积为( ) A .80+20π B .40+20π C .60+10π D .80+10π3. 已知集合},052|{2Z x x x x M ∈<+=,},0{a N =,若∅≠N M ,则=a ( ) A .1- B . C .1-或 D .1-或2- 4. 已知点P (1,﹣),则它的极坐标是( )A.B.C.D.5. 已知直线l :2y kx =+过椭圆)0(12222>>=+b a b y a x 的上顶点B 和左焦点F ,且被圆224x y +=截得的弦长为L,若L ≥e 的取值范围是( ) (A ) ⎥⎦⎤⎝⎛550, ( B )0⎛⎝⎦ (C ) ⎥⎦⎤⎝⎛5530, (D ) ⎥⎦⎤⎝⎛5540, 6. 点A是椭圆上一点,F 1、F 2分别是椭圆的左、右焦点,I 是△AF 1F 2的内心.若,则该椭圆的离心率为( )A. B. C. D.7. 函数f (x )=x 2﹣2ax ,x ∈[1,+∞)是增函数,则实数a 的取值范围是( ) A .RB .[1,+∞)C .(﹣∞,1]D .[2,+∞)8. 在数列{a n }中,a 1=3,a n+1a n +2=2a n+1+2a n (n ∈N +),则该数列的前2015项的和是( ) A .7049 B .7052 C .14098 D .141019. 下列函数中,为奇函数的是( )A .y=x+1B .y=x 2C .y=2xD .y=x|x|10.函数y=sin2x+cos2x 的图象,可由函数y=sin2x ﹣cos2x 的图象( ) A.向左平移个单位得到B.向右平移个单位得到 C.向左平移个单位得到 D.向左右平移个单位得到11.已知数列{}n a 为等差数列,n S 为前项和,公差为d ,若201717100201717S S -=,则d 的值为( ) A .120 B .110C .10D .20 12.已知实数y x ,满足不等式组⎪⎩⎪⎨⎧≤-≥+≤-5342y x y x x y ,若目标函数mx y z -=取得最大值时有唯一的最优解)3,1(,则实数m 的取值范围是( )A .1-<mB .10<<mC .1>mD .1≥m【命题意图】本题考查了线性规划知识,突出了对线性目标函数在给定可行域上最值的探讨,该题属于逆向问题,重点把握好作图的准确性及几何意义的转化,难度中等.二、填空题所示的框图,输入,则输出的数等于14.已知,a b 为常数,若()()224+3a 1024f x x x f x b x x =++=++,,则5a b -=_________.15.在(1+x )(x 2+)6的展开式中,x 3的系数是 .16.已知集合M={x||x|≤2,x ∈R},N={x ∈R|(x ﹣3)lnx 2=0},那么M ∩N= .17.函数f (x )=log(x 2﹣2x ﹣3)的单调递增区间为 .18.已知tan()3αβ+=,tan()24πα+=,那么tan β= .三、解答题19.已知函数上为增函数,且θ∈(0,π),,m ∈R .(1)求θ的值;(2)当m=0时,求函数f (x )的单调区间和极值;(3)若在上至少存在一个x 0,使得f (x 0)>g (x 0)成立,求m 的取值范围.20.已知复数z的共轭复数是,且复数z满足:|z﹣1|=1,z≠0,且z在复平面上对应的点在直线y=x上.求z及z的值.21.已知函数f(x)=cosx(sinx+cosx)﹣.(1)若0<α<,且sinα=,求f(α)的值;(2)求函数f(x)的最小正周期及单调递增区间.22.已知椭圆Γ:(a>b>0)过点A(0,2),离心率为,过点A的直线l与椭圆交于另一点M.(I)求椭圆Γ的方程;(II)是否存在直线l,使得以AM为直径的圆C,经过椭圆Γ的右焦点F且与直线x﹣2y﹣2=0相切?若存在,求出直线l的方程;若不存在,请说明理由.23.如图,四边形ABEF 是等腰梯形,,2,AB EF AF BE EF AB ====ABCD 是矩形,AD ⊥平面ABEF ,其中,Q M 分别是,AC EF 的中点,P 是BM 的中点.(1)求证:PQ 平面BCE ; (2)AM ⊥平面BCM .24.如图,三棱柱ABC ﹣A 1B 1C 1中,侧面AA 1C 1C ⊥底面ABC ,AA 1=A 1C=AC=2,AB=BC ,且AB ⊥BC ,O 为AC 中点.(Ⅰ)证明:A 1O ⊥平面ABC ;(Ⅱ)求直线A 1C 与平面A 1AB 所成角的正弦值;(Ⅲ)在BC 1上是否存在一点E ,使得OE ∥平面A 1AB ,若不存在,说明理由;若存在,确定点E 的位置.叶城县二中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1. 【答案】C 【解析】解:∵a >b >0,∴﹣a <﹣b <0,∴(﹣a )2>(﹣b )2,故选C .【点评】本题主要考查不等式的基本性质的应用,属于基础题.2. 【答案】【解析】解析:选D.该几何体是在一个长方体的上面放置了半个圆柱.依题意得(2r ×2r +12πr 2)×2+5×2r ×2+5×2r +πr ×5=92+14π,即(8+π)r 2+(30+5π)r -(92+14π)=0, 即(r -2)[(8+π)r +46+7π]=0, ∴r =2,∴该几何体的体积为(4×4+12π×22)×5=80+10π.3. 【答案】D 【解析】试题分析:由{}{}1,2,025,0522--=⎭⎬⎫⎩⎨⎧∈<<-=∈<+=Z x x x Z x x x x M ,集合{}a N ,0=, 又φ≠N M ,1-=∴a 或2-=a ,故选D . 考点:交集及其运算.4. 【答案】C【解析】解:∵点P 的直角坐标为,∴ρ==2.再由1=ρcos θ,﹣=ρsin θ,可得,结合所给的选项,可取θ=﹣,即点P 的极坐标为 (2,),故选 C .【点评】本题主要考查把点的直角坐标化为极坐标的方法,属于基础题.5. 【答案】 B【解析】依题意,2, 2.b kc ==设圆心到直线l 的距离为d ,则L =≥解得2165d ≤。

叶县第二高级中学2018-2019学年高三上学期11月月考数学试卷含答案

叶县第二高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 设函数f ′(x )是奇函数f (x )(x ∈R )的导函数,f (﹣2)=0,当x >0时,xf ′(x )﹣f (x )<0,则使得f (x )>0成立的x 的取值范围是( )A .(﹣∞,﹣2)∪(0,2)B .(﹣∞,﹣2)∪(2,+∞)C .(﹣2,0)∪(2,+∞)D .(﹣2,0)∪(0,2)2. 已知两条直线ax+y ﹣2=0和3x+(a+2)y+1=0互相平行,则实数a 等于( )A .1或﹣3B .﹣1或3C .1或3D .﹣1或﹣33. 定义运算,例如.若已知,则=()A .B .C .D . 4. 已知直线mx ﹣y+1=0交抛物线y=x 2于A 、B 两点,则△AOB ( )A .为直角三角形B .为锐角三角形C .为钝角三角形D .前三种形状都有可能5. 已知A={﹣4,2a ﹣1,a 2},B={a ﹣5,1﹣a ,9},且A ∩B={9},则a 的值是( )A .a=3B .a=﹣3C .a=±3D .a=5或a=±36. 已知函数y=f (x )对任意实数x 都有f (1+x )=f (1﹣x ),且函数f (x )在[1,+∞)上为单调函数.若数列{a n }是公差不为0的等差数列,且f (a 6)=f (a 23),则{a n }的前28项之和S 28=( )A .7B .14C .28D .567. 若关于的不等式的解集为,则参数的取值范围为()x 07|2||1|>-+-++m x x R m A .B .C .D .),4(+∞),4[+∞)4,(-∞]4,(-∞【命题意图】本题考查含绝对值的不等式含参性问题,强化了函数思想、化归思想、数形结合思想在本题中的应用,属于中等难度.8. 函数存在与直线平行的切线,则实数的取值范围是( )21()ln 2f x x x ax =++03=-y x a A.B. C. D. ),0(+∞)2,(-∞),2(+∞]1,(-∞【命题意图】本题考查导数的几何意义、基本不等式等基础知识,意在考查转化与化归的思想和基本运算能力.9. 已知长方体ABCD ﹣A 1B 1C 1D 1中,AB=BC=1,AA 1=2,E 是侧棱BB 1的中点,则直线AE 与平面A 1ED 1所成角的大小为( )A .60°B .90°C .45°D .以上都不正确10.某校为了了解1500名学生对学校食堂的意见,从中抽取1个容量为50的样本,采用系统抽样法,则分段间隔为( )1111]A .B .C .D .10512030班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________11.设是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是( ){}n a A .1B .2C .4D .612.四棱锥的底面为正方形,底面,,若该四棱锥的所有顶点都在P ABCD -ABCD PA ⊥ABCD 2AB =体积为同一球面上,则( )24316πPA =A .3B .C .D .7292【命题意图】本题考查空间直线与平面间的垂直和平行关系、球的体积,意在考查空间想象能力、逻辑推理能力、方程思想、运算求解能力.二、填空题13.已知函数,且,则,的大小关系()f x 23(2)5x =-+12|2||2|x x ->-1()f x 2()f x 是.14.如图,为测量山高MN ,选择A 和另一座山的山顶C 为测量观测点.从A 点测得 M 点的仰角∠MAN=60°,C 点的仰角∠CAB=45°以及∠MAC=75°;从C 点测得∠MCA=60°.已知山高BC=100m ,则山高MN= m .15.函数()2log f x x =在点()1,2A 处切线的斜率为 ▲ .16.已知复数,则1+z 50+z 100= .17.在直三棱柱中,∠ACB=90°,AC=BC=1,侧棱AA 1=,M 为A 1B 1的中点,则AM 与平面AA 1C 1C 所成角的正切值为( )A .B .C .D .18.【盐城中学2018届高三上第一次阶段性考试】已知函数f (x )=lnx - (m ∈R )在区间[1,e]上取得mx最小值4,则m =________.三、解答题19.已知椭圆C 的中心在原点,焦点在x 轴上,左右焦点分别为F 1,F 2,且|F 1F 2|=2,点(1,)在椭圆C 上.(Ⅰ)求椭圆C 的方程;(Ⅱ)过F 1的直线l 与椭圆C 相交于A ,B 两点,且△AF 2B 的面积为,求以F 2为圆心且与直线l 相切的圆的方程.20.(本小题满分10分)选修4-1:几何证明选讲选修:几何证明选讲41-如图,为上的三个点,是的平分线,交,,A B C O e AD BAC ∠O e 于点,过作的切线交的延长线于点.D B O e AD E (Ⅰ)证明:平分;BD EBC ∠(Ⅱ)证明:.AE DC AB BE ⨯=⨯21.(本小题满分10分)已知曲线,直线(为参数).22:149x y C +=2,:22,x t l y t =+⎧⎨=-⎩(1)写出曲线的参数方程,直线的普通方程;C (2)过曲线上任意一点作与夹角为的直线,交于点,求的最大值与最小值.C P 30oA ||PA 22.长方体ABCD ﹣A 1B 1C 1D 1中,AB=2,AA 1=AD=4,点E 为AB 中点.(1)求证:BD 1∥平面A 1DE ;(2)求证:A 1D ⊥平面ABD 1.23.在四棱锥E﹣ABCD中,底面ABCD是边长为1的正方形,AC与BD交于点O,EC⊥底面ABCD,F 为BE的中点.(Ⅰ)求证:DE∥平面ACF;(Ⅱ)求证:BD⊥AE.24.某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B 产品的利润与投资的算术平方根成正比,其关系如图2(注:利润与投资单位是万元)(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润约为多少万元.(精确到1万元).叶县第二高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】A【解析】解:设g(x)=,则g(x)的导数为:g′(x)=,∵当x>0时总有xf′(x)﹣f(x)<0成立,即当x>0时,g′(x)<0,∴当x>0时,函数g(x)为减函数,又∵g(﹣x)====g(x),∴函数g(x)为定义域上的偶函数,∴x<0时,函数g(x)是增函数,又∵g(﹣2)==0=g(2),∴x>0时,由f(x)>0,得:g(x)<g(2),解得:0<x<2,x<0时,由f(x)>0,得:g(x)>g(﹣2),解得:x<﹣2,∴f(x)>0成立的x的取值范围是:(﹣∞,﹣2)∪(0,2).故选:A.2.【答案】A【解析】解:两条直线ax+y﹣2=0和3x+(a+2)y+1=0互相平行,所以=≠,解得a=﹣3,或a=1.故选:A.3.【答案】D【解析】解:由新定义可得,=== =.故选:D.【点评】本题考查三角函数的化简求值,考查了两角和与差的三角函数,是基础题.4.【答案】A【解析】解:设A(x1,x12),B(x2,x22),将直线与抛物线方程联立得,消去y得:x2﹣mx﹣1=0,根据韦达定理得:x1x2=﹣1,由=(x1,x12),=(x2,x22),得到=x1x2+(x1x2)2=﹣1+1=0,则⊥,∴△AOB为直角三角形.故选A【点评】此题考查了三角形形状的判断,涉及的知识有韦达定理,平面向量的数量积运算,以及两向量垂直时满足的条件,曲线与直线的交点问题,常常联立曲线与直线的方程,消去一个变量得到关于另外一个变量的一元二次方程,利用韦达定理来解决问题,本题证明垂直的方法为:根据平面向量的数量积为0,两向量互相垂直.5.【答案】B【解析】解:∵A={﹣4,2a﹣1,a2},B={a﹣5,1﹣a,9},且A∩B={9},∴2a﹣1=9或a2=9,当2a﹣1=9时,a=5,A∩B={4,9},不符合题意;当a2=9时,a=±3,若a=3,集合B违背互异性;∴a=﹣3.故选:B.【点评】本题考查了交集及其运算,考查了集合中元素的特性,是基础题.6.【答案】C【解析】解:∵函数y=f(x)对任意实数x都有f(1+x)=f(1﹣x),且函数f(x)在[1,+∞)上为单调函数.∴函数f(x)关于直线x=1对称,∵数列{a n}是公差不为0的等差数列,且f(a6)=f(a23),∴a6+a23=2.则{a n}的前28项之和S28==14(a6+a23)=28.故选:C.【点评】本题考查了等差数列的通项公式性质及其前n项和公式、函数的对称性,考查了推理能力与计算能力,属于中档题.7.【答案】A8.【答案】D【解析】因为,直线的的斜率为,由题意知方程()有解,1()f x x a x '=++03=-y x 313x a x++=0x >因为,所以,故选D .12x x+³1a £9. 【答案】B【解析】解:∵E 是BB 1的中点且AA 1=2,AB=BC=1,∴∠AEA 1=90°,又在长方体ABCD ﹣A 1B 1C 1D 1中,AD ⊥平面ABB 1A 1,∴A 1D 1⊥AE ,∴AE ⊥平面A 1ED 1,故选B【点评】本题考查线面角的求法,根据直线与平面所成角必须是该直线与其在这个平面内的射影所成的锐角,还有两个特殊角,而立体几何中求角的方法有两种,几何法和向量法,几何法的思路是:作、证、指、求,向量法则是建立适当的坐标系,选取合适的向量,求两个向量的夹角. 10.【答案】D 【解析】试题分析:分段间隔为,故选D.50301500=考点:系统抽样11.【答案】B 【解析】试题分析:设的前三项为,则由等差数列的性质,可得,所以,{}n a 123,,a a a 1322a a a +=12323a a a a ++=解得,由题意得,解得或,因为是递增的等差数列,所以24a =1313812a a a a +=⎧⎨=⎩1326a a =⎧⎨=⎩1362a a =⎧⎨=⎩{}n a ,故选B .132,6a a ==考点:等差数列的性质.12.【答案】B【解析】连结交于点,取的中点,连结,则,所以底面,则,AC BD E PC OOE OE PA P OE ⊥ABCD O到四棱锥的所有顶点的距离相等,即球心,均为,所以由球的体积O 12PC ==可得,解得,故选B .34243316ππ=72PA =二、填空题13.【答案】]12()()f x f x >【解析】考点:不等式,比较大小.【思路点晴】本题主要考查二次函数与一元二次方程及一元二次不等式三者的综合应用. 分析二次函数的图象,主要有两个要点:一个是看二次项系数的符号,它确定二次函数图象的开口方向;二是看对称轴和最值,它确定二次函数的具体位置.对于函数图象判断类似题要会根据图象上的一些特殊点进行判断,如函数图象与正半轴的交点,函数图象的最高点与最低点等.14.【答案】 150 【解析】解:在RT △ABC 中,∠CAB=45°,BC=100m ,所以AC=100m .在△AMC 中,∠MAC=75°,∠MCA=60°,从而∠AMC=45°,由正弦定理得,,因此AM=100m .在RT △MNA 中,AM=100m ,∠MAN=60°,由得MN=100×=150m .故答案为:150. 15.【答案】1ln 2【解析】试题分析:()()111ln 2ln 2f x k f x ''=∴==Q 考点:导数几何意义【思路点睛】(1)求曲线的切线要注意“过点P 的切线”与“在点P 处的切线”的差异,过点P 的切线中,点P 不一定是切点,点P 也不一定在已知曲线上,而在点P 处的切线,必以点P 为切点.(2)利用导数的几何意义解题,主要是利用导数、切点坐标、切线斜率之间的关系来进行转化.以平行、垂直直线斜率间的关系为载体求参数的值,则要求掌握平行、垂直与斜率之间的关系,进而和导数联系起来求解. 16.【答案】 i .【解析】解:复数,所以z2=i,又i2=﹣1,所以1+z50+z100=1+i25+i50=1+i﹣1=i;故答案为:i.【点评】本题考查了虚数单位i的性质运用;注意i2=﹣1.17.【答案】【解析】解:法1:取A1C1的中点D,连接DM,则DM∥C1B1,在在直三棱柱中,∠ACB=90°,∴DM⊥平面AA1C1C,则∠MAD是AM与平面AA1C1C所的成角,则DM=,AD===,则tan∠MAD=.法2:以C1点坐标原点,C1A1,C1B1,C1C分别为X,Y,Z轴正方向建立空间坐标系,则∵AC=BC=1,侧棱AA1=,M为A1B1的中点,∴=(﹣,,﹣),=(0,﹣1,0)为平面AA1C1C的一个法向量设AM与平面AA1C1C所成角为θ,则sinθ=||=则tanθ=故选:A【点评】本题考查的知识点是直线与平面所成的角,其中利用定义法以及建立坐标系,求出直线的方向向量和平面的法向量,将线面夹角问题转化为向量夹角问题是解答本题的关键.18.【答案】-3e【解析】f ′(x )=+=,令f ′(x )=0,则x =-m ,且当x<-m 时,f ′(x )<0,f (x )单调递1x 2m x 2x m x 减,当x>-m 时,f ′(x )>0,f (x )单调递增.若-m ≤1,即m ≥-1时,f (x )min =f (1)=-m ≤1,不可能等于4;若1<-m ≤e ,即-e ≤m<-1时,f (x )min =f (-m )=ln (-m )+1,令ln (-m )+1=4,得m =-e 3 (-e ,-1);若-m>e ,即m<-e 时,f (x )min =f (e )=1-,令1-=4,得m =-3e ,符合题意.综上所述,m e m e m=-3e.三、解答题19.【答案】【解析】解:(Ⅰ)设椭圆的方程为,由题意可得:椭圆C 两焦点坐标分别为F 1(﹣1,0),F 2(1,0).∴.∴a=2,又c=1,b 2=4﹣1=3,故椭圆的方程为.(Ⅱ)当直线l ⊥x 轴,计算得到:,,不符合题意.当直线l 与x 轴不垂直时,设直线l 的方程为:y=k (x+1),由,消去y 得(3+4k 2)x 2+8k 2x+4k 2﹣12=0显然△>0成立,设A (x 1,y 1),B (x 2,y 2),则,又即,又圆F 2的半径,所以,化简,得17k 4+k 2﹣18=0,即(k 2﹣1)(17k 2+18)=0,解得k=±1所以,,故圆F 2的方程为:(x ﹣1)2+y 2=2.【点评】本题主要考查了椭圆的标准方程和椭圆与直线,椭圆与圆的关系.考查了学生综合运用所学知识,创造性地解决问题的能力.20.【答案】【解析】【解析】(Ⅰ)因为是⊙的切线,所以…………2分BE O BAD EBD ∠=∠又因为………………4分CAD BAD CAD CBD ∠=∠∠=∠,所以,即平分.………………5分CBD EBD ∠=∠BD EBC ∠(Ⅱ)由⑴可知,且,BAD EBD ∠=∠BED BED ∠=∠∽,所以,……………………7分BDE ∆ABE ∆ABBD AE BE =又因为,DBC DBE BAE BCD ∠=∠=∠=∠所以,.……………………8分DBC BCD ∠=∠CD BD =所以,……………………9分ABCD AB BD AE BE ==所以.……………………10分BE AB DC AE ⋅=⋅21.【答案】(1),;(22cos 3sin x y θθ=⎧⎨=⎩26y x =-+【解析】试题分析:(1)由平方关系和曲线方程写出曲线的参数方程,消去参数作可得直线的普通方程;(2)C C 由曲线的参数方程设曲线上任意一点的坐标,利用点到直线的距离公式求出点直线的距离,利用正C C P P 弦函数求出,利用辅助角公式进行化简,再由正弦函数的性质求出的最大值与最小值.PA PA 试题解析:(1)曲线的参数方程为,(为参数),直线的普通方程为.C 2cos 3sin x y θθ=⎧⎨=⎩26y x =-+(2)曲线上任意一点到的距离为.C (2cos ,3sin )P θθ|4cos 3sin 6|d θθ=+-则,其中为锐角,且,当时,取||5sin()6|sin 30d PA θα==+-o α4tan 3α=sin()1θα+=-||PA当时,sin()1θα+=||PA 考点:1、三角函数的最值;2、椭圆的参数方程及直线的的参数方程.22.【答案】【解析】证明:(1)连结A 1D ,AD 1,A 1D ∩AD 1=O ,连结OE ,∵长方体ABCD ﹣A 1B 1C 1D 1中,ADD 1A 1是矩形,∴O 是AD 1的中点,∴OE ∥BD 1,∵OE ∥BD 1,OE ⊂平面ABD 1,BD 1⊄平面ABD 1,∴BD 1∥平面A 1DE .(2)∵长方体ABCD ﹣A 1B 1C 1D 1中,AB=2,AA 1=AD=4,点E 为AB 中点,∴ADD 1A 1是正方形,∴A 1D ⊥AD 1,∵长方体ABCD ﹣A 1B 1C 1D 1中,AB ⊥平面ADD 1A 1,∴A 1D ⊥AB ,又AB ∩AD 1=A ,∴A 1D ⊥平面ABD 1.23.【答案】【解析】【分析】(Ⅰ)连接FO ,则OF 为△BDE 的中位线,从而DE ∥OF ,由此能证明DE ∥平面ACF .(Ⅱ)推导出BD ⊥AC ,EC ⊥BD ,从而BD ⊥平面ACE ,由此能证明BD ⊥AE .【解答】证明:(Ⅰ)连接FO ,∵底面ABCD 是正方形,且O 为对角线AC 和BD 交点,∴O 为BD 的中点,又∵F 为BE 中点,∴OF 为△BDE 的中位线,即DE ∥OF ,又OF ⊂平面ACF ,DE ⊄平面ACF ,∴DE ∥平面ACF .(Ⅱ)∵底面ABCD 为正方形,∴BD ⊥AC ,∵EC ⊥平面ABCD ,∴EC ⊥BD ,∴BD ⊥平面ACE ,∴BD ⊥AE .24.【答案】【解析】解:(1)投资为x万元,A产品的利润为f(x)万元,B产品的利润为g(x)万元,由题设f(x)=k 1x,g(x)=k2,(k1,k2≠0;x≥0)由图知f(1)=,∴k1=又g(4)=,∴k2=从而f(x)=,g(x)=(x≥0)(2)设A产品投入x万元,则B产品投入10﹣x万元,设企业的利润为y万元y=f(x)+g(10﹣x)=,(0≤x≤10),令,∴(0≤t≤)当t=,y max≈4,此时x=3.75∴当A产品投入3.75万元,B产品投入6.25万元时,企业获得最大利润约为4万元.【点评】本题考查利用待定系数法求函数的解析式、考查将实际问题的最值问题转化为函数的最值问题.解题的关键是换元,利用二次函数的求最值的方法求解.。

河南省平顶山市叶县二中2017-2018学年高二上学期9月月考数学试卷 Word版含解析

2017-2018学年河南省平顶山市叶县二中高二(上)9月月考数学试卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选择中只有一项是符合题目要求的.1.在△ABC中,a=15,b=10,A=60°,则cosB=()A.﹣B.C.﹣D.2.数列{a n}的前n项和为S n,若a1=1,a n=3S n(n≥1),则a6=()+1A.3×44B.3×44+1 C.44D.44+13.如图,两座相距60m的建筑物AB,CD的高度分别为20m,50m,BD为水平面,则从建筑物AB的顶端A看建筑物CD的张角为()A.30°B.45°C.60°D.75°4.在数列{a n}中,a n=﹣2n2+29n+3,则此数列最大项的值是()A.102 B. C. D.1085.在△ABC中的内角A、B、C所对的边分别为a,b,c,若b=2ccosA,c=2bcosA则△ABC 的形状为()A.直角三角形B.锐角三角形C.等边三角形D.等腰直角三角形6.等差数列{a n}中,已知a5>0,a4+a7<0,则{a n}的前n项和S n的最大值为()A.S7B.S6C.S5D.S47.等差数列{a n}的公差为2,若a2,a4,a8成等比数列,则{a n}的前n项和S n=()A.n(n+1) B.n(n﹣1)C.D.8.在△ABC中,角A,B,C所对的边分别为a,b,c,S表示△ABC的面积,若acosB+bcosA=csinC,S=(b2+c2﹣a2),则∠B=()A.90°B.60°C.45°D.30°9.在等差数列{a n}中,a1>0,a10•a11<0,若此数列的前10项和S10=36,前18项和S18=12,则数列{|a n|}的前18项和T18的值是()A.24 B.48 C.60 D.8410.已知方程(x2﹣mx+2)(x2﹣nx+2)=0的四个根组成以为首项的等比数列,则等于()A.B.或C.D.以上都不对11.数列a n=,其前n项之和为,则在平面直角坐标系中,直线(n+1)x+y+n=0在y轴上的截距为()A.﹣10 B.﹣9 C.10 D.912.已知F(x)=f(x+)﹣1是R上的奇函数,a n=f(0)+f()+f()+…+f()+f(1)(n∈N*),则数列{a n}的通项公式为()A.a n=n﹣1 B.a n=n C.a n=n+1 D.a n=n2二、填空题.(每题5分,共20分.)13.在△ABC中,角A,B,C的对边分别为a,b,c.若(a2+c2﹣b2)tan B=ac,则角B的值为.14.已知数列{a n}中,a1=,a n+1=1﹣(n≥2),则a16=.15.设等差数列{a n},{b n}的前n项和分别为S n,T n若对任意自然数n都有=,则的值为.16.已知数列{a n}满足a1=1,a n=2(a n﹣1+a n﹣2+…+a2+a1)(n≥2,n∈N*)则数列{a n}的通项公式为.三、解决问题.(其中17题10分;18,19,20,21,22题12分,共70分.)17.在△ABC中,角A,B,C所对的边分别是a,b,c.己知(b﹣2a)cosC+ccosB=0.(1)求C;(2)若c=,b=3a,求△ABC的面积.18.已知数列{a n}满足前n项和S n=n2+1,数列{b n}满足b n=,且前n项和为T n,设c n=T2n+1﹣T n.(1)求数列{b n}的通项公式;(2)判断数列{c n}的增减性.19.等比数列{a n}中,已知a3=8,a6=64.(1)求数列{a n}的通项公式;(2)若a3,a5分别为等差数列{b n}的第3项和第5项,试求数列{b n}的通项公式及前n项和S n.20.已知等比数列{a n}和等差数列{b n}均是首项为2,各项为正数的数列,且b2=4a2,a2b3=6.(1)求数列{a n}、{b n}的通项公式;(2)求使a<0.001成立的正整数n的最小值.21.在△ABC中,角A、B、C所对的边分别为a、b、c,已知=,(Ⅰ)求A的大小;(Ⅱ)若a=6,求b+c的取值范围.22.已知数列{a n}的前n项和为S n,且满足S n=2a n﹣2.(1)求数列{a n}的通项公式;(2)设b n=log2a n,求数列{a n•b n}的前n项和T n.2016-2017学年河南省平顶山市叶县二中高二(上)9月月考数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选择中只有一项是符合题目要求的.1.在△ABC 中,a=15,b=10,A=60°,则cosB=( )A .﹣B .C .﹣D .【考点】正弦定理.【分析】根据正弦定理先求出sinB 的值,再由三角形的边角关系确定∠B 的范围,进而利用sin 2B +cos 2B=1求解.【解答】解:根据正弦定理可得,,解得,又∵b <a ,∴B <A ,故B 为锐角,∴,故选D .2.数列{a n }的前n 项和为S n ,若a 1=1,a n +1=3S n (n ≥1),则a 6=( ) A .3×44 B .3×44+1 C .44 D .44+1【考点】等比数列的通项公式;等比数列的前n 项和.【分析】根据已知的a n +1=3S n ,当n 大于等于2时得到a n =3S n ﹣1,两者相减,根据S n ﹣S n ﹣1=a n ,得到数列的第n +1项等于第n 项的4倍(n 大于等于2),所以得到此数列除去第1项,从第2项开始,为首项是第2项,公比为4的等比数列,由a 1=1,a n +1=3S n ,令n=1,即可求出第2项的值,写出2项以后各项的通项公式,把n=6代入通项公式即可求出第6项的值.【解答】解:由a n +1=3S n ,得到a n =3S n ﹣1(n ≥2), 两式相减得:a n +1﹣a n =3(S n ﹣S n ﹣1)=3a n , 则a n +1=4a n (n ≥2),又a 1=1,a 2=3S 1=3a 1=3,得到此数列除去第一项后,为首项是3,公比为4的等比数列, 所以a n =a 2q n ﹣2=3×4n ﹣2(n ≥2) 则a 6=3×44. 故选A3.如图,两座相距60m的建筑物AB,CD的高度分别为20m,50m,BD为水平面,则从建筑物AB的顶端A看建筑物CD的张角为()A.30°B.45°C.60°D.75°【考点】解三角形.【分析】过A作AE⊥CD,垂足为E,在Rt△ABD和Rt△ACE中使用勾股定理求出AD,AC的长,再在△ACD中使用余弦定理求出∠CAD.【解答】解:过A作AE⊥CD,垂足为E,则CE=50﹣20=30,AE=60,∴AD==20,AC==30,在△ACD中,由余弦定理得cos∠CAD==,∴∠CAD=45°.故选:B.4.在数列{a n}中,a n=﹣2n2+29n+3,则此数列最大项的值是()A.102 B. C. D.108【考点】数列的函数特性.【分析】结合抛物线的性质判断函数的对称轴,结合抛物线的性质进行求解即可.【解答】解:a n=﹣2n2+29n+3对应的抛物线开口向下,对称轴为n=﹣==7,∵n是整数,∴当n=7时,数列取得最大值,此时最大项的值为a7=﹣2×72+29×7+3=108,故选:D5.在△ABC中的内角A、B、C所对的边分别为a,b,c,若b=2ccosA,c=2bcosA则△ABC 的形状为()A.直角三角形B.锐角三角形C.等边三角形D.等腰直角三角形【考点】三角形的形状判断.【分析】通过两个等式推出b=c,然后求出A的大小,即可判断三角形的形状.【解答】解:因为在△ABC中的内角A、B、C所对的边分别为a,b,c,若b=2ccosA,c=2bcosA所以,所以b=c,2bcosA=c,所以cosA=,A=60°,所以三角形是正三角形.故选C.6.等差数列{a n}中,已知a5>0,a4+a7<0,则{a n}的前n项和S n的最大值为()A.S7B.S6C.S5D.S4【考点】等差数列的前n项和;数列的函数特性.【分析】由等差数列的性质,结合a5>0,a4+a7<0,得到a6<0,则可断定数列是递减数列,由a5>0,可知数列的首项大于0,由此可判断数列的前5项和最大.【解答】解:在等差数列{a n}中,由a5+a6=a4+a7<0,而a5>0,得a6<0.则等差数列的公差d=a6﹣a5<0,所以数列{a n}是递减数列,则a1>0.所以{a n}的前n 项和S n的最大值为S5.故选C.7.等差数列{a n}的公差为2,若a2,a4,a8成等比数列,则{a n}的前n项和S n=()A.n(n+1) B.n(n﹣1)C.D.【考点】等差数列的性质.【分析】由题意可得a42=(a4﹣4)(a4+8),解得a4可得a1,代入求和公式可得.【解答】解:由题意可得a42=a2•a8,即a42=(a4﹣4)(a4+8),解得a4=8,∴a1=a4﹣3×2=2,∴S n=na1+d,=2n+×2=n(n+1),故选:A.8.在△ABC中,角A,B,C所对的边分别为a,b,c,S表示△ABC的面积,若acosB+bcosA=csinC,S=(b2+c2﹣a2),则∠B=()A.90°B.60°C.45°D.30°【考点】余弦定理的应用.【分析】先利用正弦定理把题设等式中的边转化成角的正弦,化简整理求得sinC的值,进而求得C,然后利用三角形面积公式求得S的表达式,进而求得a=b,推断出三角形为等腰直角三角形,进而求得∠B.【解答】解:由正弦定理可知acosB+bcosA=2RsinAcosB+2RsinBcosA=2Rsin(A+B)=2RsinC=2RsinC•sinC∴sinC=1,C=.∴S=ab=(b2+c2﹣a2),解得a=b,因此∠B=45°.故选C9.在等差数列{a n}中,a1>0,a10•a11<0,若此数列的前10项和S10=36,前18项和S18=12,则数列{|a n|}的前18项和T18的值是()A.24 B.48 C.60 D.84【考点】等差数列的性质.【分析】根据已知条件,求出其正负转折项,然后再求数列{|a n|}的前18项和.【解答】解:∵a1>0,a10•a11<0,∴d<0,a10>0,a11<0,∴T18=a1+…+a10﹣a11﹣…﹣a18=S10﹣(S18﹣S10)=60.故选C.10.已知方程(x2﹣mx+2)(x2﹣nx+2)=0的四个根组成以为首项的等比数列,则等于()A.B.或C.D.以上都不对【考点】等比数列的通项公式.【分析】设方程x2﹣mx+2=0两根分别为x1,x4,x2﹣nx+2=0两根分别为x2,x3,由韦达定理得:x1x4=2,x2x3=2,x1+x4=m,x2+x3=n,由此能求出结果.【解答】解:设方程x2﹣mx+2=0两根分别为x1,x4,x2﹣nx+2=0两根分别为x2,x3,由韦达定理得:x1x4=2,x2x3=2,x1+x4=m,x2+x3=n,若x=是方程x2﹣mx+2=0的根,则x4===4,设公比为q,=q3==8,解得q=2,∴=====.同理,若x=是方程x2﹣nx+2=0的根,解得=.故选:B.11.数列a n=,其前n项之和为,则在平面直角坐标系中,直线(n+1)x+y+n=0在y轴上的截距为()A.﹣10 B.﹣9 C.10 D.9【考点】数列与解析几何的综合.【分析】由题意因为数列a n=,其前n项之和为,有数列通项的特点利用裂项相消得方法得到n的方程解出n的值是直线(n+1)x+y+n=0的方程具体化,再利用直线在y 轴上的截距求出所求.【解答】解:因为数列{a n}的通项公式为且其前n项和为:++…+=1﹣==,∴n=9,∴直线方程为10x+y+9=0.令x=0,得y=﹣9,∴在y轴上的截距为﹣9.故选B12.已知F(x)=f(x+)﹣1是R上的奇函数,a n=f(0)+f()+f()+…+f()+f(1)(n∈N*),则数列{a n}的通项公式为()A.a n=n﹣1 B.a n=n C.a n=n+1 D.a n=n2【考点】数列与函数的综合.【分析】由F(x)=f(x+)﹣1在R上为奇函数,知f(﹣x)+f(+x)=2,令t=﹣x,则+x=1﹣t,得到f(t)+f(1﹣t)=2.由此能够求出数列{a n}的通项公式.【解答】解:F(x)=f(x+)﹣1在R上为奇函数故F(﹣x)=﹣F(x),代入得:f(﹣x)+f(+x)=2,(x∈R)当x=0时,f()=1.令t=﹣x,则+x=1﹣t,上式即为:f(t)+f(1﹣t)=2.当n为偶数时:a n=f(0)+f()+f()+…+f()+f(1)(n∈N*)=[f(0)+f(1)]+[f()+f()]+…+[f()+f()]+f()==n+1.当n为奇数时:a n=f(0)+f()+f()+…+f()+f(1)(n∈N*)=[f(0)+f(1)]+[f()+f()]+…+[f()+f()]=2×=n+1.综上所述,a n=n+1.故选C.二、填空题.(每题5分,共20分.)13.在△ABC中,角A,B,C的对边分别为a,b,c.若(a2+c2﹣b2)tan B=ac,则角B的值为或.【考点】余弦定理的应用.【分析】先根据余弦定理进行化简,进而得到sinB的值,再由正弦函数的性质可得到最后答案.【解答】解:∵,∴cosB×tanB=sinB=∴B=或故选B.=1﹣(n≥2),则a16=.14.已知数列{a n}中,a1=,a n+1【考点】数列递推式.【分析】由,可分别求a2,a3,a4,从而可得数列的周期,可求【解答】解:∵,则=﹣1=2=∴数列{a n }是以3为周期的数列∴a 16=a 1=故答案为:15.设等差数列{a n },{b n }的前n 项和分别为S n ,T n 若对任意自然数n 都有=,则的值为 .【考点】等差数列的性质.【分析】由等差数列的性质和求和公式可得原式=,代值计算可得.【解答】解:由等差数列的性质和求和公式可得:=+======故答案为:16.已知数列{a n }满足a 1=1,a n =2(a n ﹣1+a n ﹣2+…+a 2+a 1)(n ≥2,n ∈N *)则数列{a n }的通项公式为 n =.【考点】数列递推式.【分析】可求得当n ≥2时,a n +1=3a n ,且a 1=1,a 2=2;从而解得. 【解答】解:∵a n =2(a n ﹣1+a n ﹣2+…+a 2+a 1)=2S n ﹣1, ∴a n +1=2(a n +a n ﹣1+…+a 2+a 1)=2S n , 两式作差可得,a n﹣a n=2a n,+1=3a n,故a n+1且a1=1,a2=2;故a n=.故答案为:n=.三、解决问题.(其中17题10分;18,19,20,21,22题12分,共70分.)17.在△ABC中,角A,B,C所对的边分别是a,b,c.己知(b﹣2a)cosC+ccosB=0.(1)求C;(2)若c=,b=3a,求△ABC的面积.【考点】余弦定理的应用;正弦定理的应用.【分析】(1)利用正弦定理化简已知的表达式,结合两角和的正弦函数以及三角形的内角,求出C的值即可;(2)通过余弦定理,以及b=3a,求出a与b的值,然后直接利用三角形的面积公式求出三角形的面积.【解答】解:(1)∵(b﹣2a)cosC+c cosB=0,∴由正弦定理得(sinB﹣2sinA)cosC+sinCcosB=0,sinBcosC+cosBsinC=2sinAcosC,即sin(B+C)=2sinAcosC,∴sinA=2sinAcosC,∵sinA≠0,∴cosC=,又∵C∈(0,π),∴C=;(2)由余弦定理得:c2=a2+b2﹣2abcosC,∴解得:a=1,b=3,∴△ABC的面积S=absinC=×1×3×=.18.已知数列{a n}满足前n项和S n=n2+1,数列{b n}满足b n=,且前n项和为T n,设c n=T2n﹣T n.+1(1)求数列{b n}的通项公式;(2)判断数列{c n}的增减性.【考点】数列递推式.【分析】(1)数列{a n}满足前n项和S n=n2+1,可得a1=S1,n≥2时,a n=S n﹣S n.可得﹣1a n=.进而得到b n.(2)由c n=T2n+1﹣T n=b n+1+b n+2+…+b2n+1,作差c n+1﹣c n,即可得出{c n}的单调性.【解答】解:(1)∵数列{a n}满足前n项和S n=n2+1,∴a1=S1=2,a1=2,n≥2时,a n=S n﹣S n﹣1=2n﹣1(n≥2).∴a n=.n=1时,b1=;n≥2时,b n==.∴b n=.(2)∵c n=T2n+1﹣T n=b n+1+b n+2+…+b2n+1=++…+,∴c n+1﹣c n=﹣<0,∴{c n}是递减数列.19.等比数列{a n}中,已知a3=8,a6=64.(1)求数列{a n}的通项公式;(2)若a3,a5分别为等差数列{b n}的第3项和第5项,试求数列{b n}的通项公式及前n项和S n.【考点】等差数列的前n项和;等比数列的通项公式;数列的求和.【分析】(1)设等比数列{a n}的首项为a1、公比为q,由性质求出q,再求出a1,代入等比数列的通项公式;(2)由(1)求出b3、b5,由等差数列的性质求出公差d,再求出b1,代入等差数列的通项公式和前n项和公式化简即可.【解答】解:(1)设等比数列{a n}的首项为a1、公比为q,∵a3=8,a6=64,∴=8,解得q=2,且a1=2,则,(2)由(1)得,a3=8、a5=32,则b3=8、b5=32,则数列{b n}的公差d==12,再代入b3=b1+2d=8,解得b1=﹣16,∴b n=b1+(n﹣1)d=12n﹣28,∴前n项和S n==6n2﹣22n.20.已知等比数列{a n}和等差数列{b n}均是首项为2,各项为正数的数列,且b2=4a2,a2b3=6.(1)求数列{a n}、{b n}的通项公式;(2)求使a<0.001成立的正整数n的最小值.【考点】数列与不等式的综合.【分析】(1)利用等比数列与等差数列的通项公式即可得出.(2)由(1)得a bn=a2n=,利用a bn<0.001,化简即可得出.【解答】解:(1)设{a n}的公比为q,{b n}的公差为d,d>0.∵b2=4a2,a2b3=6.∴2+d=4×2q,2q×(2+2d)=6,解得d=2,q=.∴a n==,b n=2+2(n﹣1)=2n.(2)由(1)得a bn=a2n=,∵a bn<0.001,即<0.001,∴22n﹣2>1 000,∴2n﹣2≥10,即n≥6,∴满足题意的正整数n的最小值为6.21.在△ABC中,角A、B、C所对的边分别为a、b、c,已知=,(Ⅰ)求A的大小;(Ⅱ)若a=6,求b+c的取值范围.【考点】余弦定理的应用;正弦定理的应用.【分析】(Ⅰ)利用正弦定理把原等式转化为关于A的等式,求得tanA的值,进而求得A.(Ⅱ)先根据三角形三边的关系求得b+c的一个范围,进而利用余弦定理求得b+c的关系式,利用基本不等式求得b+c的范围,最后取交集即可.【解答】解:(Ⅰ)由正弦定理知==,∴sinA=cosA,即tanA=,∵0<A<π,∴A=.(Ⅱ)由已知:b>0,c>0,b+c>a=6,由余弦定理得36=b2+c2﹣2bccos=(b+c)2﹣3bc≥(b+c)2﹣(b+c)2=(b+c)2,(当且仅当b=c时取等号),∴(b+c)2≤4×36,又b+c>6,∴6<b+c≤12,即b +c 的取值范围是(6,12].22.已知数列{a n }的前n 项和为S n ,且满足S n =2a n ﹣2. (1)求数列{a n }的通项公式; (2)设b n =log 2a n ,求数列{a n •b n }的前n 项和T n .【考点】数列的求和;数列递推式.【分析】(1)利用当n ≥2时,a n =S n ﹣S n ﹣1,即可求数列{a n }的通项公式; (2)求出数列{b n }的通项,由于该数列的通项是一个等差数列与等比数列的积构成的新数列,利用错位相减法求出数列的和.【解答】解:(1)当n=1时,a 1=S 1=2a 1﹣2,解得a 1=2, 当n ≥2时,a n =S n ﹣S n ﹣1=2a n ﹣2﹣2a n ﹣1+2,有a n =2a n ﹣1,所以数列{a n }是以2为首项,2为公比的等比数列,有.(2)由(1)知,有①①×2,② ①﹣②,得﹣S n =2+22+23+…+2n ﹣n •2n +1,整理得.2016年12月24日。

叶县高级中学2018-2019学年上学期高二数学12月月考试题含解析

叶县高级中学2018-2019学年上学期高二数学12月月考试题含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. “3<-b a ”是“圆056222=++-+a y x y x 关于直线b x y 2+=成轴对称图形”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【命题意图】本题考查圆的一般方程、圆的几何性质、常用逻辑等知识,有一定的综合性,突出化归能力的考查,属于中等难度.2. 在如图5×5的表格中,如果每格填上一个数后,每一横行成等差数列,每一纵列成等比数列,那么x+y+zA .1B .2C .3D .43. 复数的虚部为( )A .﹣2B .﹣2iC .2D .2i4. 执行如图的程序框图,则输出S 的值为( )A .2016B .2C .D .﹣15. 如图,程序框图的运算结果为( )A.6 B.24 C.20 D.1206.已知某运动物体的位移随时间变化的函数关系为,设物体第n秒内的位移为a n,则数列{a n}是()A.公差为a的等差数列B.公差为﹣a的等差数列C.公比为a的等比数列D.公比为的等比数列7.双曲线上一点P到左焦点的距离为5,则点P到右焦点的距离为()A.13 B.15 C.12 D.118.如图是某工厂对一批新产品长度(单位:mm)检测结果的频率分布直方图.估计这批产品的中位数为()A.20 B.25 C.22.5 D.22.759.若P是以F1,F2为焦点的椭圆=1(a>b>0)上的一点,且=0,tan∠PF1F2=,则此椭圆的离心率为()A .B .C .D .10.函数()2cos()f x x ωϕ=+(0ω>,0ϕ-π<<)的部分图象如图所示,则 f (0)的值为( )A.32-B.1-C.D.【命题意图】本题考查诱导公式,三角函数的图象和性质,数形结合思想的灵活应用. 11.已知集合{}|5A x N x =∈<,则下列关系式错误的是( )A .5A ∈B .1.5A ∉C .1A -∉D .0A ∈12.设复数1i z =-(i 是虚数单位),则复数22z z+=( ) A.1i - B.1i + C. 2i + D. 2i -【命题意图】本题考查复数的有关概念,复数的四则运算等基础知识,意在考查学生的基本运算能力.二、填空题13.一个总体分为A ,B ,C 三层,用分层抽样的方法从中抽取一个容量为15的样本,若B 层中每个个体被抽到的概率都为,则总体的个数为 .14.如图是一个正方体的展开图,在原正方体中直线AB 与CD 的位置关系是 .15.【启东中学2018届高三上学期第一次月考(10月)】已知函数()f x xlnx ax =-+在()0e ,上是增函数,函数()22xa g x e a =-+,当[]03x ln ∈,时,函数g (x )的最大值M 与最小值m 的差为32,则a 的值为______.16.在极坐标系中,直线l的方程为ρcosθ=5,则点(4,)到直线l的距离为.17.在极坐标系中,曲线C1与C2的方程分别为2ρcos2θ=sinθ与ρcosθ=1,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,则曲线C1与C2交点的直角坐标为.18.为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y(毫克)与时间t(小时)成正比;药物释放完毕后,y与t的函数关系式为y=()t﹣a(a为常数),如图所示,据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那从药物释放开始,至少需要经过小时后,学生才能回到教室.三、解答题19.如图的三个图中,上面的是一个长方体截去一个角所得多面体的直观图,它的正视图和侧视图在下面画出(单位:cm).(1)在正视图下面,按照画三视图的要求画出该多面体的俯视图;(2)按照给出的尺寸,求该多面体的体积;(3)在所给直观图中连结BC′,证明:BC′∥面EFG.20.等差数列{a n }的前n 项和为S n ,已知a 1=10,a 2为整数,且S n ≤S 4。

叶城县二中学2018-2019学年高二上学期二次月考试卷数学

叶城县第二中学2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 已知点A (0,1),B (﹣2,3)C (﹣1,2),D (1,5),则向量在方向上的投影为( )A .B .﹣C .D .﹣2. 若命题“p 或q ”为真,“非p ”为真,则( )A .p 真q 真B .p 假q 真C .p 真q 假D .p 假q 假3. 过抛物线y=x 2上的点的切线的倾斜角( )A .30°B .45°C .60°D .135°4. 若抛物线y 2=2px 的焦点与双曲线﹣=1的右焦点重合,则p 的值为( )A .﹣2B .2C .﹣4D .45. 函数f (x ﹣)=x 2+,则f (3)=( ) A .8B .9C .11D .106. 已知α∈(0,π),且sin α+cos α=,则tan α=( )A .B .C .D .7. 过抛物线y 2=﹣4x 的焦点作直线交抛物线于A (x 1,y 1),B (x 2,y 2),若x 1+x 2=﹣6,则|AB|为( ) A .8B .10C .6D .48. △ABC 中,A (﹣5,0),B (5,0),点C 在双曲线上,则=( )A .B .C .D .±9. 已知函数()3sin cos (0)f x x x ωωω+>,()y f x =的图象与直线2y =的两个相邻交点的距离等于π,则()f x 的一条对称轴是( )A .12x π=-B .12x π=C .6x π=-D .6x π=10.阅读如图所示的程序框图,运行相应的程序.若该程序运行后输出的结果不大于20,则输入的整数i 的最大值为( )A .3B .4C .5D .611.复数Z=(i 为虚数单位)在复平面内对应点的坐标是( )A .(1,3)B .(﹣1,3)C .(3,﹣1)D .(2,4)12.设有直线m 、n 和平面α、β,下列四个命题中,正确的是( ) A .若m ∥α,n ∥α,则m ∥n B .若m ⊂α,n ⊂α,m ∥β,n ∥β,则α∥β C .若α⊥β,m ⊂α,则m ⊥βD .若α⊥β,m ⊥β,m ⊄α,则m ∥α二、填空题13.已知tan()3αβ+=,tan()24πα+=,那么tan β= .14.设,则15.已知函数f (x )=cosxsinx ,给出下列四个结论: ①若f (x 1)=﹣f (x 2),则x 1=﹣x 2; ②f (x )的最小正周期是2π;③f (x )在区间[﹣,]上是增函数;④f (x )的图象关于直线x=对称.其中正确的结论是 . 16.不等式的解为 .17.对于集合M ,定义函数对于两个集合A ,B ,定义集合A △B={x|f A (x )f B (x )=﹣1}.已知A={2,4,6,8,10},B={1,2,4,8,12},则用列举法写出集合A △B 的结果为 .18.过原点的直线l 与函数y=的图象交于B ,C 两点,A 为抛物线x 2=﹣8y 的焦点,则|+|= .三、解答题19.已知函数()()x f x x k e =-(k R ∈). (1)求()f x 的单调区间和极值; (2)求()f x 在[]1,2x ∈上的最小值.(3)设()()'()g x f x f x =+,若对35,22k ⎡⎤∀∈⎢⎥⎣⎦及[]0,1x ∀∈有()g x λ≥恒成立,求实数λ的取值范围.20.甲、乙两位同学参加数学竞赛培训,在培训期间他们参加5次预赛,成绩如下: 甲:78 76 74 90 82 乙:90 70 75 85 80(Ⅰ)用茎叶图表示这两组数据;(Ⅱ)现要从中选派一人参加数学竞赛,你认为选派哪位学生参加合适?说明理由.21.2016年1月1日起全国统一实施全面两孩政策.为了解适龄民众对放开生育二胎政策的态度,某市选取7080100位,得到数据如表:70后公民中随机抽取3位,记其中生二胎的人数为X,求随机变量X的分布列和数学期望;(Ⅱ)根据调查数据,是否有90%以上的把握认为“生二胎与年龄有关”,并说明理由.2.072 2.7063.841 5.024(参考公式:,其中n=a+b+c+d)22.已知数列{a n}的前n项和为S n,首项为b,若存在非零常数a,使得(1﹣a)S n=b﹣a n+1对一切n∈N*都成立.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)问是否存在一组非零常数a,b,使得{S n}成等比数列?若存在,求出常数a,b的值,若不存在,请说明理由.23.【淮安市淮海中学2018届高三上第一次调研】已知函数()133x x af x b+-+=+.(1)当1a b ==时,求满足()3xf x =的x 的取值;(2)若函数()f x 是定义在R 上的奇函数①存在t R ∈,不等式()()2222f t t f t k -<-有解,求k 的取值范围;②若函数()g x 满足()()()12333xx f x g x -⎡⎤⋅+=-⎣⎦,若对任意x R ∈,不等式()()211g x m g x ≥⋅-恒成立,求实数m 的最大值.24.(本小题满分12分)在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,1)cos 2cos a B b A c -=, (Ⅰ)求tan tan AB的值;(Ⅱ)若a =4B π=,求ABC ∆的面积.叶城县第二中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】D【解析】解:∵;∴在方向上的投影为==.故选D.【点评】考查由点的坐标求向量的坐标,一个向量在另一个向量方向上的投影的定义,向量夹角的余弦的计算公式,数量积的坐标运算.2.【答案】B【解析】解:若命题“p或q”为真,则p真或q真,若“非p”为真,则p为假,∴p假q真,故选:B.【点评】本题考查了复合命题的真假的判断,是一道基础题.3.【答案】B【解析】解:y=x2的导数为y′=2x,在点的切线的斜率为k=2×=1,设所求切线的倾斜角为α(0°≤α<180°),由k=tanα=1,解得α=45°.故选:B.【点评】本题考查导数的运用:求切线的斜率,考查直线的倾斜角的求法,考查运算能力,属于基础题.4.【答案】D【解析】解:双曲线﹣=1的右焦点为(2,0),即抛物线y2=2px的焦点为(2,0),∴=2,∴p=4.故选D.【点评】本题考查双曲线、抛物线的性质,考查学生的计算能力,属于基础题.5.【答案】C【解析】解:∵函数=,∴f(3)=32+2=11.故选C.6.【答案】D【解析】解:将sinα+cosα=①两边平方得:(sinα+cosα)2=1+2sinαcosα=,即2sinαcosα=﹣<0,∵0<α<π,∴<α<π,∴sinα﹣cosα>0,∴(sinα﹣cosα)2=1﹣2sinαcosα=,即sinα﹣cosα=②,联立①②解得:sinα=,cosα=﹣,则tanα=﹣.故选:D.7.【答案】A【解析】解:由题意,p=2,故抛物线的准线方程是x=1,∵抛物线y2=﹣4x 的焦点作直线交抛物线于A(x1,y1)B(x2,y2)两点∴|AB|=2﹣(x1+x2),又x1+x2=﹣6∴∴|AB|=2﹣(x1+x2)=8故选A8.【答案】D【解析】解:△ABC中,A(﹣5,0),B(5,0),点C在双曲线上,∴A与B为双曲线的两焦点,根据双曲线的定义得:|AC﹣BC|=2a=8,|AB|=2c=10,则==±=±.故选:D.【点评】本题考查了正弦定理的应用问题,也考查了双曲线的定义与简单性质的应用问题,是基础题目.9.【答案】D【解析】试题分析:由已知()2sin()6f x xπω=+,Tπ=,所以22πωπ==,则()2sin(2)6f x xπ=+,令2,62x k k Zπππ+=+∈,得,26kx k Zππ=+∈,可知D正确.故选D.考点:三角函数()sin()f x A xωϕ=+的对称性.10.【答案】B【解析】解:模拟执行程序框图,可得s=0,n=0满足条件n<i,s=2,n=1满足条件n<i,s=5,n=2满足条件n<i,s=10,n=3满足条件n<i,s=19,n=4满足条件n<i,s=36,n=5所以,若该程序运行后输出的结果不大于20,则输入的整数i的最大值为4,有n=4时,不满足条件n<i,退出循环,输出s的值为19.故选:B.【点评】本题主要考查了循环结构的程序框图,属于基础题.11.【答案】A【解析】解:复数Z===(1+2i)(1﹣i)=3+i在复平面内对应点的坐标是(3,1).故选:A.【点评】本题考查了复数的运算法则、几何意义,属于基础题.12.【答案】D【解析】解:A不对,由面面平行的判定定理知,m与n可能相交,也可能是异面直线;B不对,由面面平行的判定定理知少相交条件;C不对,由面面垂直的性质定理知,m必须垂直交线;故选:D .二、填空题13.【答案】43【解析】试题分析:由1tan tan()241tan πααα++==-得1tan 3α=, tan tan[()]βαβα=+-tan()tan 1tan()tan αβααβα+-=++134313133-==+⨯. 考点:两角和与差的正切公式. 14.【答案】9【解析】由柯西不等式可知15.【答案】 ③④ .【解析】解:函数f (x )=cosxsinx=sin2x ,对于①,当f (x 1)=﹣f (x 2)时,sin2x 1=﹣sin2x 2=sin (﹣2x 2) ∴2x 1=﹣2x 2+2k π,即x 1+x 2=k π,k ∈Z ,故①错误;对于②,由函数f (x )=sin2x 知最小正周期T=π,故②错误;对于③,令﹣+2π≤2x ≤+2k π,k∈Z 得﹣+kπ≤x ≤+k π,k ∈Z 当k=0时,x ∈[﹣,],f (x )是增函数,故③正确;对于④,将x=代入函数f (x)得,f()=﹣为最小值,故f(x )的图象关于直线x=对称,④正确.综上,正确的命题是③④.故答案为:③④.16.【答案】 {x|x >1或x <0} .【解析】解:即即x (x ﹣1)>0 解得x >1或x <0故答案为{x|x >1或x <0}【点评】本题考查将分式不等式通过移项、通分转化为整式不等式、考查二次不等式的解法.注意不等式的解以解集形式写出17.【答案】 {1,6,10,12} .【解析】解:要使f A (x )f B (x )=﹣1, 必有x ∈{x|x ∈A 且x ∉B}∪{x|x ∈B 且x ∉A} ={6,10}∪{1,12}={1,6,10,12,}, 所以A △B={1,6,10,12}. 故答案为{1,6,10,12}.【点评】本题是新定义题,考查了交、并、补集的混合运算,解答的关键是对新定义的理解,是基础题. 18.【答案】 4 .【解析】解:由题意可得点B 和点C 关于原点对称,∴|+|=2||, 再根据A 为抛物线x 2=﹣8y 的焦点,可得A (0,﹣2),∴2||=4,故答案为:4.【点评】本题主要考查抛物线的方程、简单性质,属于基础题,利用|+|=2||是解题的关键.三、解答题19.【答案】(1)()f x 的单调递增区间为(1,)k -+∞,单调递减区间为(,1)k -∞-,1()(1)k f x f k e -=-=-极小值,无极大值;(2)2k ≤时()(1)(1)f x f k e ==-最小值,23k <<时1()(1)k f x f k e -=-=-最小值,3k ≥时,2()(2)(2)f x f k e ==-最小值;(3)2e λ≤-.【解析】(2)当11k -≤,即2k ≤时,()f x 在[]1,2上递增,∴()(1)(1)f x f k e ==-最小值;当12k -≥,即3k ≥时,()f x 在[]1,2上递减,∴2()(2)(2)f x f k e ==-最小值;当112k <-<,即23k <<时,()f x 在[]1,1k -上递减,在[]1,2k -上递增, ∴1()(1)k f x f k e -=-=-最小值.(3)()(221)x g x x k e =-+,∴'()(223)x g x x k e =-+, 由'()0g x =,得32x k =-, 当32x k <-时,'()0g x <; 当32x k >-时,'()0g x >,∴()g x 在3(,)2k -∞-上递减,在3(,)2k -+∞递增,故323()()22k g x g k e -=-=-最小值,又∵35,22k ⎡⎤∈⎢⎥⎣⎦,∴[]30,12k -∈,∴当[]0,1x ∈时,323()()22k g x g k e -=-=-最小值,∴()g x λ≥对[]0,1x ∀∈恒成立等价于32()2k g x e λ-=-≥最小值;又32()2k g x e λ-=-≥最小值对35,22k ⎡⎤∀∈⎢⎥⎣⎦恒成立.∴32min (2)k ek --≥,故2e λ≤-.1考点:1、利用导数研究函数的单调性进而求函数的最值;2、不等式恒成立问题及分类讨论思想的应用. 【方法点睛】本题主要考查利用导数研究函数的单调性进而求函数的最值、不等式恒成立问题及分类讨论思想的应用.属于难题. 数学中常见的思想方法有:函数与方程的思想、分类讨论思想、转化与划归思想、数形结合思想、建模思想等等,分类讨论思想解决高中数学问题的一种重要思想方法,是中学数学四种重要的数学思想之一,尤其在解决含参数问题发挥着奇特功效,大大提高了解题能力与速度.运用这种方法的关键是将题设条件研究透,这样才能快速找准突破点. 充分利用分类讨论思想方法能够使问题条理清晰,进而顺利解答,希望同学们能够熟练掌握并应用与解题当中.本题(2)就是根据这种思想讨论函数单调区间的.20.【答案】【解析】解:(Ⅰ)用茎叶图表示如下:(Ⅱ)=,==80,=[(74﹣80)2+(76﹣80)2+(78﹣80)2+(82﹣80)2+(90﹣80)2]=32,=[(70﹣80)2+(75﹣80)2+(80﹣80)2+(85﹣80)2+(90﹣80)2]=50,∵=,,∴在平均数一样的条件下,甲的水平更为稳定,应该派甲去.21.【答案】【解析】解:(Ⅰ)由已知得该市70后“生二胎”的概率为=,且X~B(3,),P(X=0)==,P(X=1)==,P(X=2)==,P(X=3)==,∴E (X )=3×=2.(Ⅱ)假设生二胎与年龄无关,K 2==≈3.030>2.706,所以有90%以上的把握认为“生二胎与年龄有关”.22.【答案】【解析】解:(Ⅰ)∵数列{a n }的前n 项和为S n ,首项为b ,存在非零常数a ,使得(1﹣a )S n =b ﹣a n+1对一切n ∈N *都成立,由题意得当n=1时,(1﹣a )b=b ﹣a 2,∴a 2=ab=aa 1, 当n ≥2时,(1﹣a )S n =b ﹣a n+1,(1﹣a )S n+1=b ﹣a n+1, 两式作差,得:a n+2=a •a n+1,n ≥2, ∴{a n }是首项为b ,公比为a 的等比数列,∴.(Ⅱ)当a=1时,S n =na 1=nb ,不合题意,当a ≠1时,,若,即,化简,得a=0,与题设矛盾,故不存在非零常数a ,b ,使得{S n }成等比数列.【点评】本题考查数列的通项公式的求法,考查使得数列成等比数列的非零常数是否存在的判断与求法,是中档题,解题时要认真审题,注意等比数列的性质的合理运用.23.【答案】(1)1x =-(2)①()1,-+∞,②6【解析】试题解析:(1)由题意,131331x xx +-+=+,化简得()2332310x x ⋅+⋅-= 解得()13133x x=-=舍或,所以1x =-(2)因为()f x 是奇函数,所以()()0f x f x -+=,所以1133033x x x x a ab b-++-+-++=++ 化简并变形得:()()333260x xa b ab --++-=要使上式对任意的x 成立,则30260a b ab -=-=且 解得:11{{ 33a a b b ==-==-或,因为()f x 的定义域是R ,所以1{ 3a b =-=-舍去 所以1,3a b ==,所以()13133x x f x +-+=+①()131********x x x f x +-+⎛⎫==-+ ⎪++⎝⎭对任意1212,,x x R x x ∈<有:()()()()211212121222333313133131x x x x x x f x f x ⎛⎫-⎛⎫⎪-=-= ⎪ ⎪++++⎝⎭⎝⎭因为12x x <,所以21330x x->,所以()()12f x f x >,因此()f x 在R 上递减.因为()()2222f t t f t k -<-,所以2222t t t k ->-,即220t t k +-<在时有解所以440t ∆=+>,解得:1t >-,所以的取值范围为()1,-+∞②因为()()()12333x xf xg x -⎡⎤⋅+=-⎣⎦,所以()()3323x x g x f x --=-即()33xxg x -=+所以()()222233332x x x xg x --=+=+-不等式()()211g x m g x ≥⋅-恒成立, 即()()23323311x xx x m --+-≥⋅+-,即:93333x xx xm --≤+++恒成立令33,2x x t t -=+≥,则9m t t≤+在2t ≥时恒成立令()9h t t t =+,()29'1h t t=-,()2,3t ∈时,()'0h t <,所以()h t 在()2,3上单调递减()3,t ∈+∞时,()'0h t >,所以()h t 在()3,+∞上单调递增所以()()min 36h t h ==,所以6m ≤ 所以,实数m 的最大值为6考点:利用函数性质解不等式,不等式恒成立问题【思路点睛】利用导数研究不等式恒成立或存在型问题,首先要构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造函数,直接把问题转化为函数的最值问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

叶县二中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 函数()()f x x R Î是周期为4的奇函数,且在02[,]上的解析式为(1),01()sin ,12x x x f x x x ì-#ï=íp <?ïî,则1741()()46f f +=( ) A .716 B .916 C .1116 D .1316【命题意图】本题考查函数的奇偶性和周期性、分段函数等基础知识,意在考查转化和化归思想和基本运算能力.2. 下列函数中,定义域是R 且为增函数的是( )A.xy e -= B.3y x = C.ln y x = D.y x =3. 在△ABC 中,C=60°,AB=,AB 边上的高为,则AC+BC 等于( )A .B .5C .3D .4. 一个空间几何体的三视图如图所示,其中正视图为等腰直角三角形,侧视图与俯视图为正方形, 则该几何体的体积为( )A .64B .32C .643 D .3235. 若一个底面为正三角形、侧棱与底面垂直的棱柱的三视图如下图所示,则这个棱柱的体积为( )A .B .C .D .66. 从5名男生、1名女生中,随机抽取3人,检查他们的英语口语水平,在整个抽样过程中,若这名女生第一次、第二次均未被抽到,那么她第三次被抽到的概率是( )A .B .C .D .7. 已知角α的终边经过点(sin15,cos15)-,则2cos α的值为( )A .124+ B .124- C. 34D .0 8. 如果执行如图所示的程序框图,那么输出的a=( )A .2B .C .﹣1D .以上都不正确9. 设a 是函数x 的零点,若x 0>a ,则f (x 0)的值满足( )A .f (x 0)=0B .f (x 0)<0C .f (x 0)>0D .f (x 0)的符号不确定10.已知e 为自然对数的底数,若对任意的1[,1]x e∈,总存在唯一的[1,1]y ∈-,使得2ln 1yx x a y e -++= 成立,则实数a 的取值范围是( )A.1[,]e eB.2(,]e eC.2(,)e +∞D.21(,)e e e+【命题意图】本题考查导数与函数的单调性,函数的最值的关系,函数与方程的关系等基础知识,意在考查运用转化与化归思想、综合分析问题与解决问题的能力. 11.某个几何体的三视图如图所示,该几何体的表面积为92+14π,则该几何体的体积为()A.80+20πB.40+20πC.60+10πD.80+10π12.如图表示的是四个幂函数在同一坐标系中第一象限内的图象,则幂函数y=x的图象是()A.①B.②C.③D.④二、填空题13.不等式的解集为R,则实数m的范围是.14.已知sinα+cosα=,且<α<,则sinα﹣cosα的值为.15.命题:“∀x∈R,都有x3≥1”的否定形式为.16.直角坐标P(﹣1,1)的极坐标为(ρ>0,0<θ<π).17.用“<”或“>”号填空:30.830.7.18.下列关于圆锥曲线的命题:其中真命题的序号.(写出所有真命题的序号).①设A,B为两个定点,若|PA|﹣|PB|=2,则动点P的轨迹为双曲线;②设A,B为两个定点,若动点P满足|PA|=10﹣|PB|,且|AB|=6,则|PA|的最大值为8;③方程2x2﹣5x+2=0的两根可分别作椭圆和双曲线的离心率;④双曲线﹣=1与椭圆有相同的焦点.三、解答题19.在极坐标系内,已知曲线C1的方程为ρ2﹣2ρ(cosθ﹣2sinθ)+4=0,以极点为原点,极轴方向为x正半轴方向,利用相同单位长度建立平面直角坐标系,曲线C2的参数方程为(t为参数).(Ⅰ)求曲线C1的直角坐标方程以及曲线C2的普通方程;(Ⅱ)设点P为曲线C2上的动点,过点P作曲线C1的切线,求这条切线长的最小值.20.已知函数f(x)=(log2x﹣2)(log4x﹣)(1)当x∈[2,4]时,求该函数的值域;(2)若f(x)>mlog2x对于x∈[4,16]恒成立,求m的取值范围.21.数列{a n}满足a1=,a n∈(﹣,),且tana n+1•cosa n=1(n∈N*).(Ⅰ)证明数列{tan2a n}是等差数列,并求数列{tan2a n}的前n项和;(Ⅱ)求正整数m,使得11sina1•sina2•…•sina m=1.22.某少数民族的刺绣有着悠久的历史,图(1)、(2)、(3)、(4)为她们刺绣最简单的四个图案,这些图案都由小正方形构成,小正方形数越多刺绣越漂亮,现按同样的规律刺绣(小正方形的摆放规律相同),设第n个图形包含f(n)个小正方形.(Ⅰ)求出f(5);(Ⅱ)利用合情推理的“归纳推理思想”归纳出f(n+1)与f(n)的关系式,并根据你得到的关系式求f(n)的表达式.23.某公司春节联欢会中设一抽奖活动:在一个不透明的口袋中装入外形一样号码分别为1,2,3,…,10的十个小球.活动者一次从中摸出三个小球,三球号码有且仅有两个连号的为三等奖;奖金30元,三球号码都连号为二等奖,奖金60元;三球号码分别为1,5,10为一等奖,奖金240元;其余情况无奖金.(1)员工甲抽奖一次所得奖金的分布列与期望;(2)员工乙幸运地先后获得四次抽奖机会,他得奖次数的方差是多少?24.为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y(毫克)与时间t(小时)成正比;药物释放完毕后,y与t的函数关系式为1()16t ay-=(a为常数),如图所示.据图中提供的信息,回答下列问题:(1)写出从药物释放开始,每立方米空气中的含药量y(毫克)与时间t(小时)之间的函数关系式;(2)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室。

那么药物释放开始,至少需要经过多少小时后,学生才能回到教室?叶县二中2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】C2. 【答案】B【解析】试题分析:对于A ,xy e =为增函数,y x =-为减函数,故xy e -=为减函数,对于B ,2'30y x =>,故3y x =为增函数,对于C ,函数定义域为0x >,不为R ,对于D ,函数y x =为偶函数,在(),0-∞上单调递减,在()0,∞上单调递增,故选B. 考点:1、函数的定义域;2、函数的单调性.3. 【答案】D【解析】解:由题意可知三角形的面积为S===AC •BCsin60°,∴AC •BC=.由余弦定理AB 2=AC 2+BC 2﹣2AC •BCcos60°=(AC+BC )2﹣3AC •BC , ∴(AC+BC )2﹣3AC •BC=3, ∴(AC+BC )2=11.∴AC+BC=故选:D【点评】本题考查解三角形,三角形的面积与余弦定理的应用,整体法是解决问题的关键,属中档题.4. 【答案】B 【解析】试题分析:由题意可知三视图复原的几何体是一个放倒的三棱柱,三棱柱的底面是直角边长为的等腰直角三角形,高为的三棱柱, 所以几何体的体积为:1444322⨯⨯⨯=,故选B. 考点:1、几何体的三视图;2、棱柱的体积公式.【方法点睛】本题主要考查利几何体的三视图、棱柱的体积公式,属于难题.三视图问题是考查学生空间想象能力及抽象思维能力的最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,解题时不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响.5.【答案】B【解析】解:此几何体为一个三棱柱,棱柱的高是4,底面正三角形的高是,设底面边长为a,则,∴a=6,故三棱柱体积.故选B【点评】本题考点是由三视图求几何体的面积、体积,考查对三视图的理解与应用,主要考查三视图与实物图之间的关系,用三视图中的数据还原出实物图的数据,再根据相关的公式求表面积与体积,本题求的是本棱柱的体积.三视图的投影规则是:“主视、俯视长对正;主视、左视高平齐,左视、俯视宽相等”.三视图是新课标的新增内容,在以后的高考中有加强的可能.6.【答案】B【解析】解:由题意知,女生第一次、第二次均未被抽到,她第三次被抽到,这三个事件是相互独立的,第一次不被抽到的概率为,第二次不被抽到的概率为,第三次被抽到的概率是,∴女生第一次、第二次均未被抽到,那么她第三次被抽到的概率是=,故选B.7.【答案】B【解析】考点:1、同角三角函数基本关系的运用;2、两角和的正弦函数;3、任意角的三角函数的定义.8.【答案】B【解析】解:模拟执行程序,可得a=2,n=1执行循环体,a=,n=3满足条件n≤2016,执行循环体,a=﹣1,n=5满足条件n≤2016,执行循环体,a=2,n=7满足条件n≤2016,执行循环体,a=,n=9…由于2015=3×671+2,可得:n=2015,满足条件n≤2016,执行循环体,a=,n=2017不满足条件n≤2016,退出循环,输出a的值为.故选:B.9.【答案】C【解析】解:作出y=2x和y=log x的函数图象,如图:由图象可知当x0>a时,2>log x0,∴f(x0)=2﹣log x0>0.故选:C.10.【答案】B【解析】11.【答案】【解析】解析:选D.该几何体是在一个长方体的上面放置了半个圆柱.依题意得(2r×2r+12)×2+5×2r×2+5×2r+πr×5=92+14π,2πr即(8+π)r2+(30+5π)r-(92+14π)=0,即(r-2)[(8+π)r+46+7π]=0,∴r=2,∴该几何体的体积为(4×4+12)×5=80+10π.2π×212.【答案】D【解析】解:幂函数y=x为增函数,且增加的速度比价缓慢,只有④符合.故选:D.【点评】本题考查了幂函数的图象与性质,属于基础题.二、填空题13.【答案】.【解析】解:不等式,x2﹣8x+20>0恒成立可得知:mx2+2(m+1)x+9x+4<0在x∈R上恒成立.显然m<0时只需△=4(m+1)2﹣4m(9m+4)<0,解得:m<﹣或m>所以m<﹣故答案为:14.【答案】.【解析】解:∵sinα+cosα=,<α<,∴sin2α+2sinαcosα+cos2α=,∴2sinαcosα=﹣1=,且sinα>cosα,∴sinα﹣cosα===.故答案为:.15.【答案】∃x0∈R,都有x03<1.【解析】解:因为全称命题的否定是特称命题.所以,命题:“∀x∈R,都有x3≥1”的否定形式为:命题:“∃x0∈R,都有x03<1”.故答案为:∃x0∈R,都有x03<1.【点评】本题考查全称命题与特称命题的否定关系,基本知识的考查.16.【答案】.【解析】解:ρ==,tanθ==﹣1,且0<θ<π,∴θ=.∴点P的极坐标为.故答案为:.17.【答案】>【解析】解:∵y=3x是增函数,又0.8>0.7,∴30.8>30.7.故答案为:>【点评】本题考查对数函数、指数函数的性质和应用,是基础题.18.【答案】②③.【解析】解:①根据双曲线的定义可知,满足|PA|﹣|PB|=2的动点P不一定是双曲线,这与AB的距离有关系,所以①错误.②由|PA|=10﹣|PB|,得|PA|+|PB|=10>|AB|,所以动点P的轨迹为以A,B为焦点的图象,且2a=10,2c=6,所以a=5,c=3,根据椭圆的性质可知,|PA|的最大值为a+c=5+3=8,所以②正确.③方程2x2﹣5x+2=0的两个根为x=2或x=,所以方程2x2﹣5x+2=0的两根可分别作椭圆和双曲线的离心率,所以③正确.④由双曲线的方程可知,双曲线的焦点在x轴上,而椭圆的焦点在y轴上,所以它们的焦点不可能相同,所以④错误.故正确的命题为②③.故答案为:②③.【点评】本题主要考查圆锥曲线的定义和性质,要求熟练掌握圆锥曲线的定义,方程和性质.三、解答题19.【答案】【解析】【专题】计算题;直线与圆;坐标系和参数方程.【分析】(Ⅰ)运用x=ρcosθ,y=ρsinθ,x2+y2=ρ2,即可得到曲线C1的直角坐标方程,再由代入法,即可化简曲线C2的参数方程为普通方程;(Ⅱ)可经过圆心(1,﹣2)作直线3x+4y﹣15=0的垂线,此时切线长最小.再由点到直线的距离公式和勾股定理,即可得到最小值.【解答】解:(Ⅰ)对于曲线C1的方程为ρ2﹣2ρ(cosθ﹣2sinθ)+4=0,可化为直角坐标方程x2+y2﹣2x+4y+4=0,即圆(x﹣1)2+(y+2)2=1;曲线C2的参数方程为(t为参数),可化为普通方程为:3x+4y﹣15=0.(Ⅱ)可经过圆心(1,﹣2)作直线3x+4y﹣15=0的垂线,此时切线长最小.则由点到直线的距离公式可得d==4,则切线长为=.故这条切线长的最小值为.【点评】本题考查极坐标方程、参数方程和直角坐标方程、普通方程的互化,考查直线与圆相切的切线长问题,考查运算能力,属于中档题. 20.【答案】【解析】解:(1)f (x )=(log 2x ﹣2)(log 4x ﹣)=(log 2x )2﹣log 2x+1,2≤x ≤4令t=log 2x ,则y=t 2﹣t+1=(t ﹣)2﹣,∵2≤x ≤4, ∴1≤t ≤2.当t=时,y min =﹣,当t=1,或t=2时,y max =0.∴函数的值域是[﹣,0].(2)令t=log 2x ,得t 2﹣t+1>mt 对于2≤t ≤4恒成立.∴m <t+﹣对于t ∈[2,4]恒成立,设g (t )=t+﹣,t ∈[2,4],∴g (t )=t+﹣=(t+)﹣,∵g (t )=t+﹣在[2,4]上为增函数, ∴当t=2时,g (t )min =g (2)=0, ∴m <0.21.【答案】【解析】(Ⅰ)证明:∵对任意正整数n ,a n ∈(﹣,),且tana n+1•cosa n =1(n ∈N *).故tan 2a n+1==1+tan 2a n ,∴数列{tan 2a n }是等差数列,首项tan 2a 1=,以1为公差.∴=.∴数列{tan2a n}的前n项和=+=.(Ⅱ)解:∵cosa n>0,∴tana n+1>0,.∴tana n=,,∴sina1•sina2•…•sina m=(tana1cosa1)•(tana2•cosa2)•…•(tana m•cosa m)=(tana2•cosa1)•(tana3cosa2)•…•(tana m•cosa m﹣1)•(tana1•cosa m)=(tana1•cosa m)==,由,得m=40.【点评】本题考查了等差数列的通项公式及其前n项和公式、同角三角函数基本关系式,考查了推理能力与计算能力,属于难题.22.【答案】【解析】解:(Ⅰ)∵f(1)=1,f(2)=5,f(3)=13,f(4)=25,∴f(2)﹣f(1)=4=4×1.f(3)﹣f(2)=8=4×2,f(4)﹣f(3)=12=4×3,f(5)﹣f(4)=16=4×4∴f(5)=25+4×4=41.…(Ⅱ)由上式规律得出f(n+1)﹣f(n)=4n.…∴f(2)﹣f(1)=4×1,f(3)﹣f(2)=4×2,f(4)﹣f(3)=4×3,…f(n﹣1)﹣f(n﹣2)=4•(n﹣2),f(n)﹣f(n﹣1)=4•(n﹣1)…∴f(n)﹣f(1)=4[1+2+…+(n﹣2)+(n﹣1)]=2(n﹣1)•n,∴f(n)=2n2﹣2n+1.…23.【答案】【解析】解:(1)由题意知甲抽一次奖,基本事件总数是C103=120,奖金的可能取值是0,30,60,240, ∴一等奖的概率P (ξ=240)=,P (ξ=60)=P (ξ=30)=,P (ξ=0)=1﹣ ∴变量的分布列是ξ0 3060240∴E ξ==20(2)由(1)可得乙一次抽奖中奖的概率是1﹣四次抽奖是相互独立的 ∴中奖次数η~B (4,)∴D η=4×【点评】本题考查离散型随机变量的分布列和期望,考查二项分布的方差公式,解本题的关键是看清题目中所给的变量的特点,看出符合的规律,选择应用的公式.24.【答案】(1)0.110,00.11(),0.116t t t y x -≤≤⎧⎪=⎨>⎪⎩;(2)至少经过0.6小时才能回到教室。

相关文档
最新文档