2020年高考数学第二轮复习 逻辑与推理教学案 精品
2019-2020年高考数学二轮复习 难点2.12 推理与新定义问题教学案 理

2019-2020年高考数学二轮复习难点2.12 推理与新定义问题教学案理随着新课标的深入实施,素质教育要求不断提高,全国各地的高考试卷都相继推出了以能力立意为目标,以增大思维容量为特色,具有相当浓度和明确导向的创新题型脱颖而出,为高考试题增添了活力.纵观近年各地高考的创新题型,不难发现,推理与“新定义”型这种题目是高考试题的一大热点.所谓“新定义”型问题,主要是指在问题中定义了中学数学中没有学过的一些新概念、新运算、新符号,要求学生读懂题意并结合已有的知识、能力进行理解,并根据新的定义进行运算、推理、迁移的一种题型.这类题目具有启发性、思考性、挑战性和隐蔽性等特点,由于它构思巧妙,题意新颖,是考察学生综合素质和能力、挖掘学生潜力的较佳题型,因而它受到的青睐.一.新定义以新课标内容为背景,这种类型的问题很多,一般是以新课标教材内容为背景,给出某种新概念、新运算(符号)、新法则(公式)等,学生在理解相关新概念、新运算(符号)、新法则(公式)之后,运用新课标学过的知识,结合已掌握的技能,通过推理、运算等寻求问题解决.纵观这几年的高考试题,可以发现,“新定义”型问题按其命题背景可分为三种类型:以新课标内容为背景、以高等数学为背景、以跨学科为背景.现就相关类型作探讨:1.新定义集合所谓“新定义集合”,给出集合元素满足的性质,探讨集合中的元素属性,要求有较高的抽象思维和逻辑推理能力.由于此类题目编制角度新颖,突出能力立意,突出学生数学素质的考查,特别能够考查学生“现场做题”的能力,并且在近几年高考模拟试题和高考试题中出现频繁出现.下面选取几例进行分类归纳,解题时应时刻牢记集合元素的三要素:确定性,互异性,无序性.例1.已知集合,若对于任意,存在,使得成立,则称集合是“理想集合”.给出下列4个集合:①;②;③;④.其中所有“理想集合”的序号是()A.①③B.②③C.②④D.③④【答案】B的点都能找到对应的点,使得成立,故正确;③项由图象可得,直角始终存在,故正确;④项,由图象可知,点在曲线上不存在另外一个点,使得成立,故错误;综合②③正确,所以选B.点评:本题主要考查的是平面向量数量积的应用,元素与集合的关系,数形结合的思想,推理分析与综合运算能力,属于难题,此类新定义问题最主要是弄明白问题的实质是什么,对于此题而言,通过可得出就是在函数的曲线上找任意一个点都能找到一个点,使得成立,找到新定义的含义了,剩余的选项中都是我们所熟知的基本初等函数,可通过数形结合分析即可求解,所以对新定义的转化能力是解这类问题的关键. 2.新定义函数例2.【xx湖南株洲两校联考】设函数f(x)的定义域为D,若f(x)满足条件:存在[a,b]⊆D(a<b),使f(x)在[a,b]上的值域也是[a,b],则称为“优美函数”,若函数为“优美函数”,则t的取值范围是()A. B. C. D.【答案】D点评:定义新函数的定义域与值域相同,先判定函数的单调性,然后转化为函数方程根的情况,本题的关键也是能否转化为函数根的问题,然后求解.例3.若函数在区间上,,,,,,均可为一个三角形的三边长,则称函数为“三角形函数”.已知函数在区间上是“三角形函数”,则实数的取值范围为()A. B. C. D.【答案】A点评:本题主要考查了利用导数研究函数在闭区间上的最值,考查考生应用所学知识解决问题的能力,属于中档题.解答本题首先通过给出的定义把问题转化为函数的最值问题,通过导数研究其单调性,得到最小值,通过比较区间端点的函数值求出最大值,列出关于参数的不等式,进而求得其范围.3.新定义数列例4. 【上海市静安区xx 届质检】设数列满足:①;②所有项;③ 1211n n a a a a +=<<⋅⋅⋅<<<⋅⋅⋅.设集合,将集合中的元素的最大值记为.换句话说, 是数列中满足不等式的所有项的项数的最大值.我们称数列为数列的伴随数列.例如,数列1,3,5的伴随数列为1,1,2,2,3.(1)若数列的伴随数列为1,1,1,2,2,2,3,请写出数列;(2)设,求数列的伴随数列的前100之和;(3)若数列的前项和(其中常数),试求数列的伴随数列前项和.思路分析:(1)根据伴随数列的定义求出数列;(2)根据伴随数列的定义得: ,由对数的运算对分类讨论求出伴随数列的前100项以及它们的和;(3)由题意和与的关系式求出,代入得,并求出伴随数列的各项,再对分类讨论,分别求出伴随数列的前项和.(3)∵ ∴ ,当时, ,∴ ,由得: ,∵使得成立的的最大值为,∴()*123456323131,2,,t t t b b b b b b b b b t t N --======⋅⋅⋅===∈ ,当时: ()()()()211313112226m t t t T t t m m +--=⋅⋅-+==++,当时: ()()()()2113131212226m t t t T t t m m +-+=⋅⋅-+==++ ,当时:()()231133226m t t t T t m m ++=⋅⋅==+ ,∴()()()()()**123231,6{ 33,6m m m m t m t t N T m m m t t N ++=-=-∈=+=∈或 点评:本题考查数列的应用,着重考查对抽象概念的理解与综合应用的能力,观察、分析寻找规律是难点,是难题.4. 定义新运算型例5.【四川省成都市xx 届12月月考】定义一种运算,若,当有5个不同的零点时,则实数的取值范围是( )A. B. C. D.【答案】A点评:已知函数零点(方程根)的个数,求参数取值范围的三种常用的方法:(1)直接法,直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法,先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法,先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.一是转化为两个函数的图象的交点个数问题,画出两个函数的图象,其交点的个数就是函数零点的个数,二是转化为的交点个数的图象的交点个数问题 .5. 定义新法则型例6.一个二元码是由0和1组成的数字串 ,其中 称为第位码元,二元码是通信中常用的码,但在通信过程中有时会发生码元错误(即码元由0变为1,或者由1变为0),已知某种二元码 的码元满足如下校验方程组:4567236713570,0,0,x x x x x x x x x x x x ⊕⊕⊕=⎧⎪⊕⊕⊕=⎨⎪⊕⊕⊕=⎩ 其中运算 定义为:000,011,101,110⊕=⊕=⊕=⊕=.现已知一个这种二元码在通信过程中仅在第 位发生码元错误后变成了1101101,那么利用上述校验方程组可判定 等于 .思路分析:根据二元码及新定义,分析新定义的特点,按照所给的数学规则和要求进行逻辑推理和计算求得.【答案】.点评:本题以二元码为背景考查新定义问题,解决时候要耐心读题,并分析新定义的特点,按照所给的数学规则和要求进行逻辑推理和计算等,从而达到解决问题的目的.对于新法则,关键在于找到元素之间的对应关系,我们可以借助图表等方法寻找它们之间的对应关系,利用对应关系列方程.6. 以高等数学为背景本类型的题目通常是以高等数学符号、概念直接出现或以高等数学概念、定理作为依托融于初等数学知识中.此类问题的设计虽来源于高等数学,但一般是起点高,落点低,它的解决的方法还是运用中学数学的基本知识和基本技能.这要求学生认真阅读相关定义或方法,在充分理解题意的基础上,结合已有的知识进行解题.例7.对于使成立的所有常数M 中,我们把M 的最大值-1,称为函数的“下确界”,若xz y z y x R z y x 2,02,,,=+-∈+的“下确界”为 A 、8 B 、6 C 、 4 D 、1【思路分析】根据“下确界”的定义,将问题转化为求的最小值.【解析】由且,,即,从而,由“下确界”的定义得“下确界”为8.点评:本题要充分理解题意,准确把握“下确界”的实质是什么?从而转化求的最小值的问题,运用学过的知识,便能求出相应函数的最值.3 以跨学科为背景本类型的题目,主要是介绍数学知识在其他学科或领域的运用,一般都会介绍运用时的知识背景、数学模型,因而题中文字、信息较多.学生必须准确地把握题意、理顺线索、分析相应数学模型与数学知识的内在联系,结合学生已有的知识和能力进行推理、运算.例8.设数列A:,,… ().如果对小于()的每个正整数都有<,则称是数列A的一个“G时刻”.记“是数列A的所有“G时刻”组成的集合.(1)对数列A:-2,2,-1,1,3,写出的所有元素;(2)证明:若数列A中存在使得>,则;(3)证明:若数列A满足- ≤1(n=2,3, …,N),则的元素个数不小于 -.思路分析:(1)关键是理解G时刻的定义,根据定义即可写出的所有元素;(2)要证,即证中含有一元素即可;(3)当时,结论成立.只要证明当时仍然成立即可.点评:数列的实际应用题要注意分析题意,将实际问题转化为常用的数列模型,数列的综合问题涉及到的数学思想:函数与方程思想(如:求最值或基本量)、转化与化归思想(如:求和或应用)、特殊到一般思想(如:求通项公式)、分类讨论思想(如:等比数列求和,或)等.由上各例可见,“新定义”型的问题,通常是选取合适的数学背景,把新定义、新运算、新符号等巧妙的融入高考试题中来,虽然它的构思巧妙、题意新颖、隐蔽性强,到处都体现出新意,但是,它考查的还是基本知识和基本技能,解题的关键在于全面准确理解题意,科学合理的推理运算.因此,“新题”不一定是“难题”,只有夯实基础,掌握好双基,以不变应万变才是我们取胜的法宝.二.推理问题最近几年,在高考数学命题中,在考查考生对基础知识掌握情况的同时,也逐渐加大了对学生综合应用能力的考查.合情推理创新题型的考查力度增大,要求考生在推理过程中具备独特的方法和技巧.这类题型在高考试题中的位置较为特殊,尤其是“类比推理”和“归纳推理”题型.1.类比推理类比推理是由两类对象具有某些类似特征和已知其中一类对象的某些特征,推出另一类对象也具有这些特征的推理.类比推理在具体实施过程中,关键是找到两类对象之间可以确切表述的相似特征.然后,用一类对象的已知特征,去推测另一类对象的特征,从而得到一个猜想,最后检验这个猜想.它是数学的重要方法之一.要找到类比,往往需要一点想象力和创新精神,在高中阶段类比方向主要集中在等差数列与等比数列,平面几何与立体几何,平面向量与空间向量等.例9.已知是的三边,若满足,即,为直角三角形,类比此结论:若满足(,3)n n na b c n N n +=∈≥时,的形状为________.(填“锐角三角形”,“直角三角形”或“钝角三角形”).思路分析:本题考查解三角形、类比推理,涉及分类讨论思想、数形结合思想和转化化归思想,考查逻辑思维能力、等价转化能力、运算求解能力,综合性较强,属于较难题型.首先判断得最大,则角最大,22(,3)1n n nn n n a b a b a a b c n N n c c c c c ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+=∈≥⇒+=⇒+>+ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ 222cos 0022a b c C C ab π+-⇒=>⇒<<,故该三角形为锐角三角形. 【答案】锐角三角形222222221cos 0022n na b a b a b c a b c C C c c c c ab π+-⎛⎫⎛⎫⎛⎫⎛⎫⇒+>+=⇒+>⇒=>⇒<< ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,故该三角形为锐角三角形.点评:类比推理是合情推理中的一类重要推理,强调的是两类事物之间的相似性,有共同要素是产生类比迁移的客观因素,类比可以由概念性质上的相似性引起,如等差数列与等比数列的类比,也可以由解题方法上的类似引起.当然首先是在某些方面有一定的共性,才能有方法上的类比.一般来说,高考中的类比问题多发生在横向与纵向类比上,如圆锥曲线中椭圆与双曲线等的横向类比以及平面与空间中三角形与三棱锥的纵向类比等.2.归纳推理例10.观察如下数表的规律(仿杨辉三角:下一行的数等于上一行肩上相邻两数的和):该数表最后一行只有一个数,则这个数是______.思路分析:本题主要考查了归纳推理委托,着重考查了由数表探究数列的规律,根据数字的排布规律,计算数表数列问题,以及等差数列的应用,考查了学生分析问题和解答问题的能力,对于归纳推理问题解答的关键在于根据给定的数表数列,寻找数字的排布规律,根据规律解答.【答案】点评:归纳递推思想在解决问题时,从特殊情况入手,通过观察、分析、概括,猜想出一般性结论,然后予以证明,这一数学思想方法在解决探索性问题、存在性问题或与正整数有关的命题时有着广泛的应用.其思维模式是“观察——归纳——猜想——证明”,解题的关键在于正确的归纳猜想.由上各例可见,在进行归纳推理时,要先根据已知的部分个体,把它们适当变形,找出它们之间的联系,从而归纳出一般结论.在进行类比推理时,要充分考虑已知对象性质的推理过程,然后通过类比,推导出类比对象的性质.归纳推理关键是找规律,类比推理关键是看共性. 即合情推理的关键是寻求规律,明确已知结论的性质或特征.高考中此类问题的指向性很强,要得到正确结论的归纳或类比.。
【精品】备战2020高考理科数学二轮考点专题突破 专题01 集合与简单逻辑(教学案)(学生版)

专题1 集合与简单逻辑集合知识一般以一个选择题的形式出现,其中以集合知识为载体,集合与不等式、解析几何知识相结合是考查的重点,难度为中、低档;对常用逻辑用语的考查一般以一个选择题或一个填空题的形式出现,以集合、函数、数列、三角函数、不等式及立体几何中的线面关系为载体,考查充要条件或命题的真假判断等,难度一般不大.1.集合的概念、运算和性质(1)集合的表示法:列举法,描述法,图示法.(2)集合的运算:①交集:A∩B={x|x∈A,且x∈B}.②并集:A∪B={x|x∈A,或x∈B}.③补集:∁U A={x|x∈U,且x∉A}.(3)集合的关系:子集,真子集,集合相等.(4)需要特别注意的运算性质和结论.①A∪∅=A,A∩∅=∅;②A∩(∁U A)=∅,A∪(∁U A)=U.A∩B=A⇔A⊆B,A∪B=A⇔B⊆A2.四种命题(1)用p、q表示一个命题的条件和结论,¬p和¬q分别表示条件和结论的否定,那么若原命题:若p则q;则逆命题:若q则p;否命题:若¬p则¬q;逆否命题:若¬q则¬p.(2)四种命题的真假关系原命题与其逆否命题同真同真;原命题的逆命题与原命题的否命题同真同假.3.充要条件(1)若p⇒q,则p是q成立的充分条件,q是p成立的必要条件.(2)若p⇒q且q⇒/ p,则p是q的充分不必要条件,q是p的必要不充分条件.(3)若p⇔q,则p是q的充分必要条件.4.简单的逻辑联结词“且”、“或”、“非”用逻辑联结词“且”把命题p和命题q联结起来,就得到一个新命题,记作“p∧q”;用逻辑联结词“或”把命题p和命题q联结起来,就得到一个新命题,记作“p∨q”;对一个命题p全盘否定,就得到一个新命题,记作“¬p”.5.全称量词与存在量词(1)全称命题p:∀x∈M,p(x).它的否定¬p:∃x0∈M,¬p(x0).(2)特称命题(存在性命题)p:∃x0∈M,p(x0).它的否定¬p:∀x∈M,¬p(x).高频考点一集合的概念及运算例1、(1)[2019·全国卷Ⅲ]已知集合A={-1,0,1,2},B={x|x2≤1},则A∩B=()A.{-1,0,1} B.{0,1}C.{-1,1} D.{0,1,2}(2)[2019·全国卷Ⅲ]已知集合M={x|-4<x<2},N={x|x2-x-6<0},则M∩N=()A.{x|-4<x<3} B.{x|-4<x<-2}C.{x|-2<x<2} D.{x|2<x<3}【方法技巧】解答集合问题的策略先正确理解各个集合的含义,弄清集合元素的属性;再依据元素的不同属性采用不同的方法对集合进行化简求解,一般的策略为:(1)若给定的集合是不等式的解集,用数轴求解.(2)若给定的集合是点集,用图象法求解.(3)若给定的集合是抽象集合,常用Venn图求解.【举一反三】(2018年浙江卷)已知全集U={1,2,3,4,5},A={1,3},则A. B. {1,3} C. {2,4,5} D. {1,2,3,4,5}【变式探究】(1)已知集合A={-2,-1,0,1,2},B={x|(x-1)(x+2)<0},则A∩B=()A.{-1,0}B.{0,1}C.{-1,0,1} D.{0,1,2}(2)已知集合A={0,1,2},则集合B={x-y|x∈A,y∈A}中元素的个数是() A.1 B.3C.5 D.9高频考点二充分、必要条件例2、(1)[2019·天津卷]设x∈R,则“x2-5x<0”是“|x-1|<1”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件(2)[2019·浙江卷]设a>0,b>0,则“a+b≤4”是“ab≤4”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【举一反三】(2018年天津卷)设,则“”是“”的A. 充分而不必要条件B. 必要而不重复条件C. 充要条件D. 既不充分也不必要条件【变式探究】【2017天津,理4】设θ∈R,则“ππ||1212θ-<”是“1sin2θ<”的(A)充分而不必要条件(B)必要而不充分条件(C)充要条件(D)既不充分也不必要条件高频考点三命题的真假与逻辑联结词例3、(1)[2018·北京卷]能说明“若f(x)>f(0)对任意的x∈(0,2]都成立,则f(x)在[0,2]上是增函数”为假命题的一个函数是________;(2)[2019·福建漳州一中模拟]已知命题p:椭圆25x2+9y2=225与双曲线x2-3y2=12有相同的焦点;命题q:函数f(x)=x2+5x2+4的最小值为52.则下列命题为真命题的是()A.p∧q B.(┐p)∧qC.┐(p∨q) D.p∧(┐q)【举一反三】(1)设命题p:∃n∈N,n2>2n,则┐p为()A.∀n∈N,n2>2n B.∃n∈N,n2≤2nC.∀n∈N,n2≤2n D.∃n∈N,n2=2n(2)已知命题p:∀x∈R,2x<3x;命题q:∃x∈R,x3=1-x2,则下列命题中为真命题的是()A .p ∧qB .(┐p)∧qC .p ∧(┐q)D .(┐p)∧(┐q)【变式探究】已知命题p :∃x ∈R ,2x>3x;命题q :∀x ∈⎝⎛⎭⎫0,π2,tan x >sin x ,则下列是真命题的是( )A .(┐p)∧qB .(┐p)∨(┐q)C .p ∧(┐q)D .p ∨(┐q)1.【2019年高考全国Ⅲ卷】已知集合2|42{|60}{},M x x N x x x =-<<=--<,则M N I =( )A .}{43x x -<<B .}42{x x -<<-C .}{22x x -<<D .}{23x x <<2.【2019年高考全国Ⅲ卷】设集合A ={x |x 2–5x +6>0},B ={x |x –1<0},则A ∩B =( ) A .(–∞,1) B .(–2,1)C .(–3,–1)D .(3,+∞)3.【2019年高考全国Ⅲ卷】已知集合2{1,0,1,2},{|1}A B x x =-=≤,则A B =I ( )A .{}1,0,1-B .{}0,1C .{}1,1-D .{}0,1,24.【2019年高考天津】设集合{1,1,2,3,5},{2,3,4},{|13}A B C x x =-==∈≤<R ,则()A C B =I U ( )A .{}2B .{}2,3C .{}1,2,3-D .{}1,2,3,45.【2019年高考浙江】已知全集{}1,0,1,2,3U =-,集合{}0,1,2A =,{}1,0,1B =-,则()U A B I ð=( )A .{}1-B .{}0,1C .{}1,2,3-D .{}1,0,1,3-6.【2019年高考浙江】若a >0,b >0,则“a +b ≤4”是 “ab ≤4”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件7.【2019年高考天津】设x ∈R ,则“250x x -<”是“|1|1x -<”的( ) A .充分而不必要条件 B .必要而不充分条件C .充要条件D .既不充分也不必要条件8.【2019年高考全国Ⅲ卷】设α,β为两个平面,则α∥β的充要条件是( ) A .α内有无数条直线与β平行 B .α内有两条相交直线与β平行 C .α,β平行于同一条直线D .α,β垂直于同一平面1. (2018年浙江卷)已知全集U={1,2,3,4,5},A={1,3},则( )A. B. {1,3} C. {2,4,5} D. {1,2,3,4,5} 2. (2018年天津卷)设全集为R ,集合,,则( )A.B.C.D.3. (2018年北京卷)设集合则( )A. 对任意实数a ,B. 对任意实数a ,(2,1)C. 当且仅当a<0时,(2,1)D. 当且仅当时,(2,1)4. (2018年北京卷)已知集合A={x||x|<2},B={–2,0,1,2},则A B=( )A. {0,1}B. {–1,0,1}C. {–2,0,1,2}D. {–1,0,1,2} 5. (2018年全国I 卷)已知集合,则( )A. B.C.D.6 .(2018年全国Ⅲ卷)已知集合,则中元素的个数为( )A. 9B. 8C. 5D. 4 7.(2018年全国Ⅲ卷)已知集合,,则( )A.B.C.D.8.(2018年浙江卷)已知平面α,直线m ,n 满足m α,n α,则“m ∥n”是“m ∥α”的( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件9. (2018年天津卷)设,则“”是“”的( )A. 充分而不必要条件B. 必要而不重复条件C. 充要条件D. 既不充分也不必要条件10. (2018年北京卷)设a ,b 均为单位向量,则“”是“a ⊥b ”的( )A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件 11. (2018年江苏卷)已知集合,,那么________.12. (2018年北京卷)设n 为正整数,集合A=.对于集合A 中的任意元素和,记M ()=. (Ⅲ)当n=3时,若,,求M ()和M ()的值;(Ⅲ)当n=4时,设B 是A 的子集,且满足:对于B 中的任意元素,当相同时,M ()是奇数;当不同时,M ()是偶数.求集合B 中元素个数的最大值;(Ⅲ)给定不小于2的n ,设B 是A 的子集,且满足:对于B 中的任意两个不同的元素,M ()=0.写出一个集合B ,使其元素个数最多,并说明理由.1.【2017课标1,理1】已知集合A={x|x<1},B={x|31x <},则( ) A .{|0}A B x x =<IB .A B =R UC .{|1}A B x x =>UD .A B =∅I2.【2017课标II ,理】设集合{}1,2,4A =,{}240x x x m B =-+=。
2020版高考数学二轮复习专题教案汇编全集 理

第1讲 三角函数的图象与性质[做小题——激活思维]1.函数f (x )=sin ⎝ ⎛⎭⎪⎫2x +π3的最小正周期为( ) A .4π B .2π C .πD .π2C [函数f (x )=sin ⎝ ⎛⎭⎪⎫2x +π3的最小正周期为2π2=π.故选C.] 2.函数y =cos 2x 图象的一条对称轴方程是( ) A .x =π12B .x =π6C .x =π3D .x =π2D [由题意易知其一条对称轴的方程为x =π2,故选D.]3.函数g (x )=3sin ⎝ ⎛⎭⎪⎫x -π12在⎣⎢⎡⎦⎥⎤-π4,3π4上的最小值为________.-32 [因为x ∈⎣⎢⎡⎦⎥⎤-π4,3π4,所以x -π12∈⎣⎢⎡⎦⎥⎤-π3,2π3.当x -π12=-π3,即x =-π4时,g (x )取得最小值-32.]4.函数y =cos ⎝⎛⎭⎪⎫π4-2x 的单调递减区间为________.⎣⎢⎡⎦⎥⎤k π+π8,k π+5π8(k ∈Z ) [由y =cos ⎝ ⎛⎭⎪⎫π4-2x =cos ⎝ ⎛⎭⎪⎫2x -π4,得2k π≤2x -π4≤2k π+π(k ∈Z ),解得k π+π8≤x ≤k π+5π8(k ∈Z ),所以函数的单调递减区间为⎣⎢⎡⎦⎥⎤k π+π8,k π+5π8(k ∈Z ).]5.函数y =A sin(ωx +φ)A >0,ω>0,|φ|<π2的部分图象如图所示,则该函数的解析式为________.y =2sin ⎝⎛⎭⎪⎫2x -π3[由题图易知A =2,由T =2×⎝⎛⎭⎪⎫2π3-π6=π,可知ω=2πT =2ππ=2.于是y =2sin(2x+φ),把⎝⎛⎭⎪⎫π6,0代入y =2sin(2x +φ)得,0=2sin ⎝ ⎛⎭⎪⎫2×π6+φ,故π3+φ=k π(k ∈Z ),又|φ|<π2,故φ=-π3,综上可知,该函数的解析式为y =2sin ⎝⎛⎭⎪⎫2x -π3.]6.将函数y =sin ⎝ ⎛⎭⎪⎫x +π6的图象上所有的点向左平移π4个单位长度,再把图象上各点的横坐标扩大到原来的2倍(纵坐标不变),则所得图象的解析式为________.y =sin ⎝ ⎛⎭⎪⎫x 2+5π12 [将函数y =sin ⎝ ⎛⎭⎪⎫x +π6――――――――――――→函数图象上所有的点向左平移π4个单位长度y =sin ⎝ ⎛⎭⎪⎫x +5π12―――――――――――→横坐标扩大到原来的2倍纵坐标不变y =sin 12x +5π12.][扣要点——查缺补漏]1.函数y =A sin(ωx +φ)表达式的确定A 由最值确定;ω由周期确定T =2πω;φ由五点中的零点或最值点作为解题突破口,列方程确定即ωx i +φ=0,π2,π,3π2,2π,如T 5.2.三种图象变换:平移、伸缩、对称注意:由y =A sin ωx 的图象得到y =A sin(ωx +φ)的图象时,需向左或向右平移⎪⎪⎪⎪⎪⎪φω个单位,如T 6.3.函数y =A sin(ωx +φ)(ω>0,A >0)的性质研究三角函数的性质,关键是将函数化为y =A sin(ωx +φ)+B (或y =A cos(ωx +φ)+B )的形式,利用正、余弦函数与复合函数的性质求解.(1)T =2πω,如T 1.(2)类比y =sin x 的性质,将y =A sin(ωx +φ)中的“ωx +φ”看作一个整体t ,可求得函数的对称轴、对称中心、单调性、最值.①y =A sin(ωx +φ),当φ=k π(k ∈Z )时为奇函数;当φ=k π+π2(k ∈Z )时为偶函数;对称轴方程可由ωx +φ=k π+π2(k ∈Z )求得,对称中心可由ωx +φ=k π(k ∈Z )求得.②y =A cos(ωx +φ),当φ=k π+π2(k ∈Z )时为奇函数;当φ=k π(k ∈Z )时为偶函数;对称轴方程可由ωx +φ=k π(k ∈Z )求得,对称中心可由ωx +φ=k π+π2(k ∈Z )求得.注意对称中心必须写成点坐标.如T 2.③y =A tan(ωx +φ),当φ=k π(k ∈Z )时为奇函数,对称中心可由ωx +φ=k π2(k ∈Z )求得.④单调性、最值,如T 3,T4.三角函数的值域、最值问题(5年3考)[高考解读] 高考对该点的考查常与三角恒等变换交汇命题,求最值时,一般化为f x =A sin ωx +φ+B 的形式或化f x 为二次函数形式,难度中等.预测2020年会依旧延续该命题风格.1.(2019·全国卷Ⅰ)函数f (x )=sin ⎝ ⎛⎭⎪⎫2x +3π2-3cos x 的最小值为________.-4 [∵f (x )=sin ⎝ ⎛⎭⎪⎫2x +3π2-3cos x=-cos 2x -3cos x =-2cos 2x -3cos x +1, 令t =cos x ,则t ∈[-1,1],∴f (x )=-2t 2-3t +1.又函数f (x )图象的对称轴t =-34∈[-1,1],且开口向下,∴当t =1时,f (x )有最小值-4.]2.(2017·全国卷Ⅱ)函数f (x )=sin 2x +3cos x -34⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤0,π2的最大值是________.1 [f (x )=1-cos 2x +3cos x -34=-⎝⎛⎭⎪⎫cos x -322+1.∵x ∈⎣⎢⎡⎦⎥⎤0,π2,∴cos x ∈[0,1],∴当cos x =32时,f (x )取得最大值,最大值为1.] 3.(2018·全国卷Ⅰ)已知函数f (x )=2sin x +sin 2x ,则f (x )的最小值是________. -332[因为f (x )=2sin x +sin 2x , 所以f ′(x )=2cos x +2cos 2x =4cos 2x +2cos x -2=4⎝ ⎛⎭⎪⎫cos x -12(cos x +1),由f ′(x )≥0得12≤cos x ≤1,即2k π-π3≤x ≤2k π+π3,k ∈Z ,由f ′(x )≤0得-1≤cos x ≤12,2k π+π3≤x ≤2k π+π或2k π-π≤x ≤2k π-π3,k ∈Z ,所以当x =2k π-π3(k ∈Z )时,f (x )取得最小值,且f (x )min =f ⎝ ⎛⎭⎪⎫2k π-π3=2sin ⎝ ⎛⎭⎪⎫2k π-π3+sin 2⎝ ⎛⎭⎪⎫2k π-π3=-332.] [教师备选题]1.(2013·全国卷Ⅰ)设当x =θ时,函数f (x )=sin x -2cos x 取得最大值,则cos θ=________.-255 [y =sin x -2cos x =5⎝ ⎛⎭⎪⎫15sin x -25cos x ,设15=cos α,25=sin α, 则y =5(sin x cos α-cos x sin α)=5sin(x -α). ∵x ∈R ∴x -α∈R ,∴y max = 5. 又∵x =θ时,f (x )取得最大值, ∴f (θ)=sin θ-2cos θ= 5. 又sin 2θ+cos 2θ=1,∴⎩⎪⎨⎪⎧sin θ=15,cos θ=-25,即cos θ=-255.]2.(2014·全国卷Ⅱ)函数f (x )=sin(x +2φ)-2sin φ·cos(x +φ)的最大值为________.1 [∵f (x )=sin(x +2φ)-2sin φcos(x +φ) =sin[(x +φ)+φ]-2sin φcos(x +φ)=sin(x +φ)cos φ+cos(x +φ)sin φ-2sin φcos(x +φ) =sin(x +φ)cos φ-cos(x +φ)sin φ =sin[(x +φ)-φ]=sin x , ∴f (x )的最大值为1.]三角函数值域(最值)的3种求法(1)直接法:利用sin x ,cos x 的有界性直接求.(2)单调性法:化为y =A sin(ωx +φ)+B 的形式,采用整体思想,求出ωx +φ的范围,根据y =sin x 的单调性求出函数的值域(最值).(3)换元法:对于y =a sin 2x +b sin x +c 和y =a (sin x +cos x )+b sin x cos x +c 型常用到换元法,转化为二次函数在限定区间内的最值问题.1.(求取得最值时的变量x )当函数y =3sin x -cos x (0≤x <2π)取得最大值时,x =________.2π3 [∵y =3sin x -cos x =2⎝ ⎛⎭⎪⎫32sin x -12cos x =2sin ⎝ ⎛⎭⎪⎫x -π6.∵0≤x <2π,∴-π6≤x -π6<11π6.∴当x -π6=π2,即x =2π3时,函数取得最大值.]2.(求参数的范围)已知函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π4(ω>0)在⎝ ⎛⎭⎪⎫π12,π3上有最大值,但没有最小值,则ω的取值范围是________.⎝ ⎛⎭⎪⎫34,3 [函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π4(ω>0)在⎝ ⎛⎭⎪⎫π12,π3上有最大值,但没有最小值,所以ω·π12+π4<π2<ω·π3+π4≤3π2⇒ω∈⎝ ⎛⎭⎪⎫34,3.] 3.(与导数交汇求最值)已知函数f (x )=2cos x +sin 2x ,则f (x )的最大值为________. 332 [∵f ′(x )=-2sin x +2cos 2x =2-4sin 2x -2sin x =-2(2sin x -1)(sin x +1),由f ′(x )=0得sin x =12或sin x =-1.∴当-1<sin x <12时,f ′(x )>0,当12<sin x <1时,f ′(x )<0.∴当sin x =12时,f (x )取得极大值.此时cos x =-32或cos x =32. 经验证可知,当cos x =32时,f (x )有最大值,又f (x )=2cos x (sin x +1), ∴f (x )max =2×32×⎝ ⎛⎭⎪⎫1+12=332.]三角函数的图象(5年5考)[高考解读] 高考对该点的考查主要有两种:一是由图象求解析式;二是图象的平移变换.前者考查图象的识别和信息提取能力,后者考查逻辑推理能力.估计2020年高考会侧重考查三角函数图象变换的应用.1.(2016·全国卷Ⅱ)函数y =A sin(ωx +φ)的部分图象如图所示,则( )A .y =2sin ⎝ ⎛⎭⎪⎫2x -π6B .y =2sin ⎝⎛⎭⎪⎫2x -π3 C .y =2sin ⎝ ⎛⎭⎪⎫x +π6 D .y =2sin ⎝⎛⎭⎪⎫x +π3 A [根据图象上点的坐标及函数最值点,确定A ,ω与φ的值.由图象知T 2=π3-⎝ ⎛⎭⎪⎫-π6=π2,故T =π,因此ω=2ππ=2.又图象的一个最高点坐标为⎝ ⎛⎭⎪⎫π3,2,所以A =2,且2×π3+φ=2k π+π2(k ∈Z ),故φ=2k π-π6(k ∈Z ),结合选项可知y =2sin ⎝⎛⎭⎪⎫2x -π6.故选A.]2.(2017·全国卷Ⅰ)已知曲线C 1:y =cos x ,C 2:y =sin ⎝ ⎛⎭⎪⎫2x +2π3,则下面结论正确的是( )A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2D [因为y =sin ⎝ ⎛⎭⎪⎫2x +2π3=cos ⎝ ⎛⎭⎪⎫2x +2π3-π2=cos ⎝ ⎛⎭⎪⎫2x +π6,所以曲线C 1:y =cos x上各点的横坐标缩短到原来的12,纵坐标不变,得到曲线y =cos 2x ,再把得到的曲线y =cos2x 向左平移π12个单位长度,得到曲线y =cos 2⎝ ⎛⎭⎪⎫x +π12=cos ⎝⎛⎭⎪⎫2x +π6.故选D.] [教师备选题](2016·全国卷Ⅲ)函数y =sin x -3cos x 的图象可由函数y =sin x +3cos x 的图象至少向右平移________个单位长度得到.2π3 [因为y =sin x +3cos x =2sin ⎝ ⎛⎭⎪⎫x +π3,y =sin x -3cos x =2sin ⎝ ⎛⎭⎪⎫x -π3,所以把y =2sin ⎝ ⎛⎭⎪⎫x +π3的图象至少向右平移2π3个单位长度可得y =2sin ⎝⎛⎭⎪⎫x -π3的图象.]求函数y =A sin(ωx +φ)+Β(Α>0,ω>0)解析式的方法字母确定途径 说明A 、B 由最值确定 A =y max -y min 2,B =y max +y min2ω由函数的 周期确定 利用图象中最高点、最低点与x 轴交点的横坐标确定周期φ由图象上的 特殊点确定代入图象上某一个已知点的坐标,表示出φ后,利用已知范围求φ提醒:三角函数图象的平移问题(1)当原函数与所要变换得到的目标函数的名称不同时,首先要将函数名称统一,如T 2. (2)将y =sin ωx (ω>0)的图象变换成y =sin(ωx +φ)的图象时,应把ωx +φ变换成ω⎝⎛⎭⎪⎫x +φω,根据⎪⎪⎪⎪⎪⎪φω确定平移量的大小,根据φω的符号确定平移的方向.1.(知图求值)函数f (x )=A sin(ωx +φ)(A >0,ω>0,0≤φ<2π)的部分图象如图所示,则f (2 019)的值为________.-1 [由题图易知,函数f (x )的最小正周期T =4×⎝ ⎛⎭⎪⎫52-1=6,所以ω=2πT =π3,所以f (x )=A sin ⎝ ⎛⎭⎪⎫π3x +φ,将(0,1)代入,可得A sin φ=1,所以f (2 019)=f (6×336+3)=f (3)=A sin ⎝ ⎛⎭⎪⎫π3×3+φ=-A sin φ=-1.]2.(平移变换的应用)将偶函数f (x )=sin(3x +φ)(0<φ<π)的图象向右平移π12个单位长度后,得到的曲线的对称中心为( )A.⎝ ⎛⎭⎪⎫k π3+π4,0(k ∈Z )B.⎝ ⎛⎭⎪⎫k π3+π12,0(k ∈Z )C.⎝⎛⎭⎪⎫k π3+π6,0(k ∈Z ) D.⎝⎛⎭⎪⎫k π3+7π36,0(k ∈Z )A [因为函数f (x )=sin(3x +φ)为偶函数且0<φ<π,所以φ=π2,f (x )的图象向右平移π12个单位长度后可得g (x )=sin ⎣⎢⎡⎦⎥⎤3⎝ ⎛⎭⎪⎫x -π12+π2=sin ⎝ ⎛⎭⎪⎫3x +π4的图象,分析选项知⎝ ⎛⎭⎪⎫k π3+π4,0(k ∈Z )为曲线y =g (x )的对称中心.故选A.]3.(与函数的零点交汇)设函数f (x )=⎩⎪⎨⎪⎧2sin x ,x ∈[0,π],|cos x |,x ∈π,2π],若函数g (x )=f (x )-m 在[0,2π]内恰有4个不同的零点,则实数m 的取值范围是( )A .(0,1)B .[1,2]C .(0,1]D .(1,2)A [画出函数f (x )在[0,2π]上的图象,如图所示: 若函数g (x )=f (x )-m 在[0,2π]内恰有4个不同的零点,即y =f (x )和y =m 在[0,2π]内恰有4个不同的交点,结合图象,知0<m <1.]三角函数的性质及应用(5年7考)[高考解读] 高考对该点的考查主要立足两点,一是函数性质的判断或求解,二是利用性质求参数的范围值,准确理解y =sin x y =cos x 的有关性质是求解此类问题的关键.预测2020年以考查函数性质的应用为主.1.(2017·全国卷Ⅲ)设函数f (x )=cos ⎝⎛⎭⎪⎫x +π3,则下列结论错误的是( )A .f (x )的一个周期为-2πB .y =f (x )的图象关于直线x =8π3对称C .f (x +π)的一个零点为x =π6D .f (x )在⎝ ⎛⎭⎪⎫π2,π单调递减 D [A 项,因为f (x )=cos ⎝⎛⎭⎪⎫x +π3的周期为2k π(k ∈Z ),所以f (x )的一个周期为-2π,A 项正确.B 项,由f ⎝⎛⎭⎪⎫8π3=cos ⎝ ⎛⎭⎪⎫8π3+π3=cos 3π=-1,可知B 正确;C 项,由f (x +π)=cos ⎝ ⎛⎭⎪⎫π+π3+x =-cos ⎝ ⎛⎭⎪⎫x +π3得f ⎝ ⎛⎭⎪⎫π6+π=-cos π2=0,故C正确.D 项,由f ⎝⎛⎭⎪⎫2π3=cos π=-1可知,D 不正确.]2.[一题多解](2018·全国卷Ⅱ)若f (x )=cos x -sin x 在[-a ,a ]是减函数,则a 的最大值是( )A.π4 B.π2C.3π4D .πA [法一:(直接法)f (x )=cos x -sin x =2cos ⎝⎛⎭⎪⎫x +π4,且函数y =cos x 在区间[0,π]上单调递减,则由0≤x +π4≤π,得-π4≤x ≤3π4.因为f (x )在[-a ,a ]上是减函数,所以⎩⎪⎨⎪⎧-a ≥-π4,a ≤3π4,解得a ≤π4,所以0<a ≤π4,所以a 的最大值是π4,故选A.法二:(单调性法)因为f (x )=cos x -sin x ,所以f ′(x )=-sin x -cos x ,则由题意,知f ′(x )=-sin x -cos x ≤0在[-a ,a ]上恒成立,即sin x +cos x ≥0,即2sin ⎝ ⎛⎭⎪⎫x +π4≥0在[-a ,a ]上恒成立,结合函数y =2sin ⎝⎛⎭⎪⎫x +π4的图象(图略),可知有⎩⎪⎨⎪⎧-a +π4≥0,a +π4≤π,解得a ≤π4,所以0<a ≤π4,所以a 的最大值是π4,故选A.]3.[重视题][一题多解](2019·全国卷Ⅰ)关于函数f (x )=sin|x |+|sin x |有下述四个结论:①f (x )是偶函数;②f (x )在区间⎝ ⎛⎭⎪⎫π2,π单调递增;③f (x )在[-π,π]有4个零点;④f (x )的最大值为2.其中所有正确结论的编号是( ) A .①②④ B .②④ C .①④D .①③C [法一:f (-x )=sin|-x |+|sin(-x )|=sin|x |+|sin x |=f (x ),∴f (x )为偶函数,故①正确;当π2<x <π时,f (x )=sin x +sin x =2sin x ,∴f (x )在⎝ ⎛⎭⎪⎫π2,π单调递减,故②不正确;f (x )在[-π,π]的图象如图所示,由图可知函数f (x )在[-π,π]只有3个零点,故③不正确;∵y =sin|x |与y =|sin x |的最大值都为1且可以同时取到,∴f (x )可以取到最大值2,故④正确.综上,正确结论的序号是①④.故选C.法二:∵f (-x )=sin|-x |+|sin(-x )|=sin|x |+|sin x |=f (x ),∴f (x )为偶函数,故①正确,排除B ;当π2<x <π时,f (x )=sin x +sin x=2sin x ,∴f (x )在⎝⎛⎭⎪⎫π2,π单调递减,故②不正确,排除A ;∵y =sin |x |与y =|sin x |的最大值都为1且可以同时取到,∴f (x )的最大值为2,故④正确.故选C.法三:画出函数f (x )=sin|x |+|sin x |的图象,由图象可得①④正确,故选C.][教师备选题]1.(2015·全国卷Ⅰ)函数f (x )=cos(ωx +φ)的部分图象如图所示,则f (x )的单调递减区间为( )A.⎝⎛⎭⎪⎫k π-14,k π+34,k ∈Z B.⎝⎛⎭⎪⎫2k π-14,2k π+34,k ∈Z C.⎝ ⎛⎭⎪⎫k -14,k +34,k ∈ZD.⎝⎛⎭⎪⎫2k -14,2k +34,k ∈Z D [由图象知,最小正周期T =2⎝ ⎛⎭⎪⎫54-14=2,∴2πω=2,∴ω=π.由π×14+φ=π2+2k π,k ∈Z ,不妨取φ=π4,∴f (x )=cos ⎝⎛⎭⎪⎫πx +π4.由2k π<πx +π4<2k π+π,得2k -14<x <2k +34,k ∈Z ,∴f (x )的单调递减区间为⎝⎛⎭⎪⎫2k -14,2k +34,k ∈Z .故选D.]2.(2016·全国卷Ⅰ)已知函数f (x )=sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|≤π2,x =-π4为f (x )的零点,x =π4为y =f (x )图象的对称轴,且f (x )在⎝ ⎛⎭⎪⎫π18,5π36上单调,则ω的最大值为( )A .11B .9C .7D .5B [先根据函数的零点及图象、对称轴,求出ω,φ满足的关系式,再根据函数f (x )在⎝⎛⎭⎪⎫π18,5π36上单调,则⎝ ⎛⎭⎪⎫π18,5π36的区间长度不大于函数f (x )周期的12,然后结合|φ|≤π2计算ω的最大值.因为f (x )=sin(ωx +φ)的一个零点为x =-π4,x =π4为y =f (x )图象的对称轴,所以T 4·k =π2(k 为奇数).又T =2πω,所以ω=k (k 为奇数).又函数f (x )在⎝⎛⎭⎪⎫π18,5π36上单调,所以π12≤12×2πω,即ω≤12.若ω=11,又|φ|≤π2,则φ=-π4,此时,f (x )=sin ⎝ ⎛⎭⎪⎫11x -π4,f (x )在⎝ ⎛⎭⎪⎫π18,3π44上单调递增,在⎝⎛⎭⎪⎫3π44,5π36上单调递减,不满足条件.若ω=9,又|φ|≤π2,则φ=π4,此时,f (x )=sin ⎝ ⎛⎭⎪⎫9x +π4,满足f (x )在⎝ ⎛⎭⎪⎫π18,5π36上单调的条件.故选B.]1.求三角函数单调区间的方法(1)代换法:求形如y =A sin(ωx +φ)(或y =A cos(ωx +φ))(A ,ω,φ为常数,A ≠0,ω>0)的单调区间时,令ωx +φ=z ,得y =A sin z (或y =A cos z ),然后由复合函数的单调性求得.(2)图象法:画出三角函数的图象,结合图象求其单调区间. 2.判断对称中心与对称轴的方法利用函数y =A sin(ωx +φ)的对称轴一定经过图象的最高点或最低点,对称中心一定是函数的零点这一性质,通过检验f (x 0)的值进行判断.3.求三角函数周期的常用结论(1)y =A sin(ωx +φ)和y =A cos(ωx +φ)的最小正周期为2π|ω|,y =tan(ωx +φ)的最小正周期为π|ω|.(2)正弦曲线(余弦曲线)相邻两对称中心、相邻两对称轴之间的距离是12个周期,相邻的对称中心与对称轴之间的距离是14个周期;正切曲线相邻两对称中心之间的距离是12个周期.1.(求单调区间)(2019·武昌调研)已知函数f (x )=3sin ωx -cos ωx (ω>0)的最小正周期为2π,则f (x )的单调递增区间是( )A.⎣⎢⎡⎦⎥⎤2k π-π6,2k π+π6(k ∈Z ) B.⎣⎢⎡⎦⎥⎤2k π-π3,2k π+2π3(k ∈Z ) C.⎣⎢⎡⎦⎥⎤2k π-2π3,2k π+π3(k ∈Z ) D.⎣⎢⎡⎦⎥⎤2k π-π6,2k π+5π6(k ∈Z ) B [因为f (x )=232sin ωx -12cos ωx =2sin ωx -π6,f (x )的最小正周期为2π,所以ω=2π2π=1,所以f (x )=2sin ⎝ ⎛⎭⎪⎫x -π6,由2k π-π2≤x -π6≤2k π+π2(k ∈Z ),得2k π-π3≤x ≤2k π+2π3(k ∈Z ),所以f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤2k π-π3,2k π+2π3(k ∈Z ),故选B.]2.(求参数的值)已知函数f (x )=sin ωx 的图象关于点⎝ ⎛⎭⎪⎫2π3,0对称,且f (x )在⎣⎢⎡⎦⎥⎤0,π4上为增函数,则ω=( )A.32 B .3 C.92D .6A [依题意,f ⎝ ⎛⎭⎪⎫2π3=sin ⎝ ⎛⎭⎪⎫2π3ω=0,∴2π3ω=k π(k ∈Z ). ∴ω=3k2(k ∈Z ).又f (x )=sin ωx 在⎣⎢⎡⎦⎥⎤0,π4上为增函数,∴0<ω·π4≤π2,即0<ω≤2.∴k =1,ω=32,故选A.]3.(求参数的范围)(2019·攀枝花模拟)已知f (x )=sin ⎝ ⎛⎭⎪⎫ωx +φ+π3(ω>0)同时满足下列三个条件:①|f (x 1)-f (x 2)|=2时,|x 1-x 2|的最小值为π2;②y =f ⎝⎛⎭⎪⎫x -π3是奇函数;③f (0)<f ⎝ ⎛⎭⎪⎫π6.若f (x )在[0,t )上没有最小值,则实数t 的取值范围是( )A.⎝⎛⎦⎥⎤0,5π12B.⎝⎛⎦⎥⎤0,5π6C.⎝⎛⎦⎥⎤5π12,11π12D.⎝⎛⎦⎥⎤5π6,11π12D [由①得周期为π,ω=2.由y =f ⎝ ⎛⎭⎪⎫x -π3是奇函数且f (0)<f ⎝ ⎛⎭⎪⎫π6,可得其中一个φ=-2π3,那么f (x )=sin ⎝⎛⎭⎪⎫2x -π3.∵x ∈[0,t ),∴2x -π3∈⎣⎢⎡⎭⎪⎫-π3,2t -π3.因为f (x )在[0,t )上没有最小值, 可得t >0,且f (0)=f ⎝ ⎛⎭⎪⎫5π6=-32,4π3<2t -π3≤3π2, 解得5π6<t ≤11π12,故选D.]第2讲 恒等变换与解三角形[做小题——激活思维]1.在△ABC 中,a =3,b =5,sin A =13,则sin B =( )A.15 B.59 C.53D .1B [根据a sin A =bsin B,有313=5sin B ,得sin B =59.故选B.] 2.在△ABC 中,已知a 2=b 2+bc +c 2,则角A 为( ) A.π3 B.π6 C.2π3D.π3或2π3C [由a 2=b 2+bc +c 2, 得b 2+c 2-a 2=-bc ,由余弦定理的推论得:cos A =b 2+c 2-a 22bc =-12,∴A =2π3.]3.若sin(α-β)sin β-cos(α-β)cos β=45,且α为第二象限角,则tan ⎝ ⎛⎭⎪⎫α+π4=( )A .7B .17C .-7D .-17B [sin(α-β)sin β-cos(α-β)cos β=-[cos(α-β)cos β-sin(α-β)sin β]=-cos(α-β+β)=-cos α=45,即cos α=-45.又α为第二象限角,∴tan α=-34,∴tan ⎝⎛⎭⎪⎫α+π4=1+tan α1-tan α=17.] 4.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,a =3,C =π3,△ABC 的面积为334,则c =( )A .13B .3 3C .7D .13C [∵△ABC 的面积为334,∴12ab sin C =12×3×b ×32=334,∴b =1,∴由余弦定理得c =a 2+b 2-2ab cos C =32+12-2×3×1×12=7.故选C.]5.已知tan α=-13,则sin 2α-cos 2α1+cos 2α=________.-56 [sin 2α-cos 2α1+cos 2α=2sin αcos α-cos 2α1+2cos 2α-1 =2sin αcos α-cos 2α2cos 2α=tan α-12=-56.] 6.函数y =32sin 2x +cos 2x 的最小正周期为________. π [∵y =32sin 2x +cos 2x =32sin 2x +12cos 2x +12=sin ⎝⎛⎭⎪⎫2x +π6+12,∴函数的最小正周期T =2π2=π.][扣要点——查缺补漏]1.正弦定理a sin A =b sin B =csin C =2R (其中R 为△ABC 外接圆的半径),如T 1. 2.余弦定理及其变形a 2=b 2+c 2-2bc cos A , cos A =b 2+c 2-a 22bc,如T 2.3.如图所示,在△ABC 中,AD 平分角A ,则AB AC =BDDC.4.两角和与差的正弦、余弦、正切公式(1)sin(α±β)=sin αcos β±cos αsin β; (2)cos(α±β)=cos αcos β∓sin αsin β; (3)tan(α±β)=tan α±tan α1∓tan αtan β,如T 3.5.面积公式S =12ab sin C =12ac sin B =12bc sin A =12(a +b +c )·r (其中r 为△ABC 内切圆的半径),如T 4.6.二倍角公式及其变形 (1)sin 2α=2sin αcos α; (2)(3)tan 2α=2tan α1-tan2α.如T5. 7.辅助角公式a sin x+b cos x=a2+b2sin(x+φ),其中sin φ=ba2+b2,cos φ=aa2+b2,如T6.三角恒等变换(5年3考)[高考解读] 高考对该点的考查突出一个“变”字,即“变角、变名、变形”.从“角”入手,用活三角恒等变换公式是破解此类问题的关键.预测2020年高考还是以给值求值为主.1.[一题多解](2016·全国卷Ⅱ)若cos ⎝ ⎛⎭⎪⎫π4-α=35,则sin 2α =( )A.725 B.15 C .-15 D .-725D [法一:(公式法)cos π4-α=35,sin 2α=cos ⎝ ⎛⎭⎪⎫π2-2α=cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫π4-α=2cos 2⎝ ⎛⎭⎪⎫π4-α-1=-725,故选D.法二:(整体代入法)由cos ⎝ ⎛⎭⎪⎫π4-α=22(sin α+cos α)=35,得sin α+cos α=352,所以(sin α+cos α)2=1+2sin αcos α=1825,即sin 2α=2sin αcos α=-725.]2.(2018·全国卷Ⅱ)已知sin α+cos β=1,cos α+sin β=0,则sin(α+β)=________.-12 [∵sin α+cos β=1,① cos α+sin β=0,②∴①2+②2得1+2(sin αcos β+cos αsin β)+1=1, ∴sin αcos β+cos αsin β=-12,∴sin(α+β)=-12.][教师备选题]1.(2015·全国卷Ⅰ)sin 20°cos 10°-cos 160°sin 10°=( ) A .-32 B.32 C .-12 D.12D [sin 20°cos 10°-cos 160°sin 10°=sin 20°cos 10°+cos 20°sin 10°=sin(20°+10°)=sin 30°=12,故选D.]2.[一题多解](2014·全国卷Ⅰ)设α∈⎝ ⎛⎭⎪⎫0,π2,β∈⎝ ⎛⎭⎪⎫0,π2,且tan α=1+sin βcos β,则( )A .3α-β=π2B .2α-β=π2C .3α+β=π2D .2α+β=π2B [法一:由tan α=1+sin βcos β得sin αcos α=1+sin βcos β,即sin αcos β=cos α+cos αsin β, ∴sin(α-β)=cos α=sin ⎝⎛⎭⎪⎫π2-α.∵α∈⎝ ⎛⎭⎪⎫0,π2,β∈⎝⎛⎭⎪⎫0,π2,∴α-β∈⎝ ⎛⎭⎪⎫-π2,π2,π2-α∈⎝⎛⎭⎪⎫0,π2,∴由sin(α-β)=sin ⎝ ⎛⎭⎪⎫π2-α,得α-β=π2-α,∴2α-β=π2.法二:tan α=1+sin βcos β=1+cos ⎝ ⎛⎭⎪⎫π2-βsin ⎝ ⎛⎭⎪⎫π2-β=2cos 2⎝ ⎛⎭⎪⎫π4-β22sin ⎝ ⎛⎭⎪⎫π4-β2cos ⎝ ⎛⎭⎪⎫π4-β2=cot ⎝ ⎛⎭⎪⎫π4-β2=tan ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫π4-β2=tan ⎝ ⎛⎭⎪⎫π4+β2, ∴α=k π+⎝ ⎛⎭⎪⎫π4+β2,k ∈Z ,∴2α-β=2k π+π2,k ∈Z . 当k =0时,满足2α-β=π2,故选B.]三角函数式化简求值的“三看”原则(1)看“角”:分析未知角与已知角间的差别与联系,实现角的合理拆分; (2)看“名”:常采用切化弦或诱导公式实现函数名称的统一;(3)看“形”,常借助和、差、倍、半角公式实现三角函数式的形式统一.1.(给值求值)若α,β都是锐角,且cos α=55,sin(α+β)=35,则cos β=( ) A.2525B.255 C.2525或255D.55或525A [因为α,β都是锐角,且cos α=55<12,所以π3<α<π2,又sin(α+β)=35>12,所以π2<α+β<5π6, 所以cos(α+β)=-1-sin 2α+β=-45,sin α=1-cos 2α=255,cos β=cos(α+β-α)=cos(α+β)cos α+sin(α+β)sin α=2525,故选A.]2.(给角求值)(2019·安阳模拟)化简sin 235°-12cos 10°cos 80°等于( )A .-2B .-12C .-1D .1C [sin 235°-12cos 10°cos 80°=1-cos 70°2-12cos 10°sin 10°=-cos 70°sin 20°=-1.]3.(给值求角)如图,在平面直角坐标系xOy 中,以Ox 轴为始边做两个锐角α,β,它们的终边分别与单位圆相交于A ,B 两点,已知A ,B 的横坐标分别为210,255,则α+2β的值为________.3π4 [∵cos α=210,α∈⎝ ⎛⎭⎪⎫0,π2,∴sin α=7210,∴tan α=7;cos β=255,β∈⎝ ⎛⎭⎪⎫0,π2,∴sin β=55, ∴tan β=12,∴tan 2β=2tan β1-tan 2β=43, ∴tan(α+2β)=7+431-7×43=-1,∵α∈⎝ ⎛⎭⎪⎫0,π2,β∈⎝ ⎛⎭⎪⎫0,π2,∴α+2β∈⎝⎛⎭⎪⎫0,3π2,∴α+2β=3π4.]利用正、余弦定理解三角形(5年11考)[高考解读] 高考对该点的考查常以平面几何图形为载体,借助三角恒等变换公式及正余弦定理实现边角的相互转化,从而达到求值的目的,预测2020年高考依旧这样考查. 1.(2018·全国卷Ⅲ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若△ABC 的面积为a 2+b 2-c 24,则C =( )A.π2 B.π3 C.π4D.π6C [根据题意及三角形的面积公式知12ab sin C =a 2+b 2-c 24,所以sin C =a 2+b 2-c22ab=cosC ,所以在△ABC 中,C =π4.]2.(2017·全国卷Ⅰ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知△ABC 的面积为a 23sin A.(1)求sin B sin C ;(2)若6cos B cos C =1,a =3,求△ABC 的周长.切入点:△ABC 面积公式S △ABC =12ab sin C =12bc sin A =12ac sin B .关键点:余弦定理公式的变形:a 2=(b +c )2-2bc -2bc cos A. [解](1)由题设得12ac sin B =a 23sin A ,即12c sin B =a3sin A .由正弦定理得12sin C sin B =sin A3sin A.故sin B sin C =23.(2)由题设及(1)得cos B cos C -sin B sin C =-12,即cos(B +C )=-12.所以B +C =2π3,故A =π3.由题意得12bc sin A =a23sin A ,a =3,所以bc =8.由余弦定理得b 2+c 2-bc =9,即(b +c )2-3bc =9.由bc =8,得b +c =33. 故△ABC 的周长为3+33. [教师备选题]1.[一题多解](2019·全国卷Ⅱ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若b =6,a =2c ,B =π3,则△ABC 的面积为____________.63 [法一:因为a =2c ,b =6,B =π3,所以由余弦定理b 2=a 2+c 2-2ac cos B ,得62=(2c )2+c 2-2×2c ×c cos π3,得c =23,所以a =43,所以△ABC 的面积S =12ac sin B =12×43×23×sin π3=6 3. 法二:因为a =2c ,b =6,B =π3,所以由余弦定理b 2=a 2+c 2-2ac cos B ,得62=(2c )2+c 2-2×2c ×c cos π3,得c =23,所以a =43,所以a 2=b 2+c 2,所以A =π2,所以△ABC的面积S =12×23×6=6 3.]2.(2018·全国卷Ⅰ)在平面四边形ABCD 中,∠ADC =90°,∠A =45°,AB =2,BD =5. (1)求cos∠ADB ; (2)若DC =22,求BC .[解](1)在△ABD 中,由正弦定理得BD sin A =ABsin∠ADB .由题设知,5sin 45°=2sin∠ADB ,所以sin∠ADB =25.由题设知,∠ADB <90°,所以cos∠ADB =1-225=235. (2)由题设及(1)知,cos∠BDC =sin∠ADB =25.在△BCD中,由余弦定理得BC2=BD2+DC2-2·BD·DC·cos∠BDC=25+8-2×5×22×2 5=25.即BC=5.用正、余弦定理求解三角形注意2点,1分析已知的边角关系,选择恰当的公式、定理.,结合三角形固有的性质三角形内角和,大边对大角等求解三角形.2在三角形中,正、余弦定理可以实现边角互化,尤其在余弦定理a2=b2+c2-2bc cos A中,有b2+c2和bc两项,二者的关系b2+c2=b+c2-2bc经常用到.提醒:解三角形时忽视对三角形解的个数讨论而出错.1.(以平面图形为载体)在平面四边形ABCD 中,∠D =90°,∠BAD =120°,AD =1,AC =2,AB =3,则BC =( )A. 5B. 6C.7D .2 2C [如图,在△ACD 中,∠D =90°,AD =1,AC =2,所以∠CAD =60°.又∠BAD =120°,所以∠BAC =∠BAD -∠CAD =60°.在△ABC 中,由余弦定理得BC 2=AB 2+AC 2-2AB ·AC cos∠BAC =7,所以BC =7.故选C.]2.(知识间的内在联系)已知△ABC 的面积为S ,三个内角A ,B ,C 的对边分别为a ,b ,c ,若4S =a 2-(b -c )2,bc =4,则S =( )A .2B .4 C. 3D .2 3A [由4S =a 2-(b -c )2可得4×12bc sin A =a 2-b 2-c 2+2bc ,∴2bc sin A =2bc -2bc cos A , 即sin A +cos A =1, 所以sin ⎝⎛⎭⎪⎫A +π4=22, 又0<A <π,所以π4<A +π4<5π4,即A +π4=3π4,∴A =π2.∴S △ABC =12bc sin A =12×4=2.故选A.]3.(以空间图形为载体)如图,为了估测某塔的高度,在同一水平面的A ,B 两点处进行测量,在点A 处测得塔顶C 在西偏北20°的方向上,仰角为60°;在点B 处测得塔顶C 在东偏北40°的方向上,仰角为30°.若A ,B 两点相距130 m ,则塔的高度CD =________m.1039 [设CD =h ,则AD =h3,BD =3h .在△ADB 中,∠ADB =180°-20°-40°=120°, 则由余弦定理AB 2=BD 2+AD 2-2BD ·AD ·cos 120°,可得1302=3h 2+h 23-2·3h ·h 3·⎝ ⎛⎭⎪⎫-12,解得h =1039,故塔的高度为1039 m .]4.(恒等变换与解三角形)(2019·北京高考)在△ABC 中,a =3,b -c =2,cos B =-12.(1)求b ,c 的值; (2)求sin(B -C )的值.[解](1)∵a =3,b -c =2,cos B =-12.∴由余弦定理,得b 2=a 2+c 2-2ac cos B=9+(b -2)2-2×3×(b -2)×⎝ ⎛⎭⎪⎫-12,∴b =7,∴c =b -2=5.(2)在△ABC 中,∵cos B =-12,∴s in B =32,由正弦定理:c sin C =bsin B ,∴sin C =c sin Bb =5×327=5314,∵b >c ,∴B >C ,∴C 为锐角, ∴cos C =1114,∴sin(B -C )=sin B cos C -cos B sin C =32×1114-⎝ ⎛⎭⎪⎫-12×5314=437. 与三角形有关的最值(范围)问题(5年1考)[高考解读] 与三角形有关的最值范围问题主要涉及三角形的内角、边长、周长、面积等的最大、最小值问题,借助三角函数的有界性及均值不等式建立不等关系是解答此类问题的关键所在.(2019·全国卷Ⅲ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A +C2=b sin A.(1)求B ;(2)若△ABC 为锐角三角形,且c =1,求△ABC 面积的取值范围. 切入点:(1)借助正弦定理及三角形内角和定理求解;(2)由△ABC 为锐角三角形求得C 的范围,借助正弦定理及三角函数的有界性求面积的取值范围.[解](1)由题设及正弦定理得sin A sin A +C2=sin B sin A.因为sin A ≠0,所以sinA +C2=sin B .由A +B +C =180°,可得sinA +C 2=cosB 2,故cos B 2=2sin B 2cos B2.因为cos B 2≠0,故sin B 2=12,因此B =60°.(2)由题设及(1)知△ABC 的面积S △ABC =34a . 由正弦定理得a =c sin A sin C =sin 120°-C sin C =32tan C +12. 由于△ABC 为锐角三角形,故0°<A <90°,0°<C <90°.由(1)知A +C =120°,所以30°<C <90°,故12<a <2,从而38<S △ABC <32.因此,△ABC 面积的取值范围是⎝ ⎛⎭⎪⎫38,32. [教师备选题]1.(2015·全国卷Ⅰ)在平面四边形ABCD 中,∠A =∠B =∠C =75°,BC =2,则AB 的取值范围是________.(6-2,6+2) [如图所示,延长BA 与CD 相交于点E ,过点C 作CF ∥AD 交AB 于点F ,则BF <AB <BE .在等腰三角形CFB 中,∠FCB =30°,CF =BC =2,∴BF =22+22-2×2×2cos 30°=6- 2.在等腰三角形ECB 中,∠CEB =30°,∠ECB =75°,BE =CE ,BC =2,B Esin 75°=2sin 30°,∴BE =212×6+24=6+ 2.∴6-2<AB <6+ 2.]2.(2013·全国卷Ⅱ)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知a =b cos C +c sin B .(1)求B ;(2)若b =2,求△ABC 面积的最大值.[解](1)由题意及正弦定理得sin A =sin B cos C +sin C sin B , ① 又A =π-(B +C ),故sin A =sin(B +C )=sin B cos C +cos B sin C , ②由①,②和C ∈(0,π)得sin B =cos B ,又B ∈(0,π),所以B =π4.(2)△ABC 的面积S =12ac sin B =24ac .由已知及余弦定理得4=a 2+c 2-2ac cos π4.又a 2+c 2≥2ac ,故ac ≤42-2,当且仅当a =c 时,等号成立.因此△ABC 面积的最大值为2+1.与三角形有关的最值(范围)问题的求解策略策略一:可选择适当的参数将问题转化为三角函数的问题处理,解题中要借助于正弦定理、余弦定理等工具将边角问题统一转化为形如y =A sin(ωx +φ)(或y =A cos(ωx +φ))的函数的最值问题,然后根据参数的范围求解.策略二:借助正、余弦定理,化角为边,然后借助均值不等式对含有a 2+b 2,a +b ,ab 的等式求最值.1.(角度的最值范围问题)(2019·武汉模拟)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a ,b ,c 成等比数列,则角B 的取值范围是( )A.⎝ ⎛⎦⎥⎤0,π6B.⎣⎢⎡⎭⎪⎫π6,πC.⎝⎛⎦⎥⎤0,π3 D.⎣⎢⎡⎭⎪⎫π3,πC [∵a ,b ,c 成等比数列,∴b 2=ac ,由余弦定理,得cos B =a 2+c 2-b 22ac =a 2+c 2-ac 2ac ≥2ac -ac 2ac =12,又B ∈(0,π),∴B ∈⎝⎛⎦⎥⎤0,π3,故选C.] 2.(长度的最值范围问题)在△ABC 中,若C 是钝角,且B =π3,则ca 的取值范围是________.(2,+∞) [∵C 为钝角,∴C =2π3-A >π2,∴0<A <π6.由正弦定理,得c a =sin ⎝ ⎛⎭⎪⎫2π3-A sin A=32cos A +12sin A sin A =12+32·1tan A .∵0<tan A <33,∴1tan A>3, ∴c a >12+32×3=2,即ca>2.] 3.(综合应用)已知a ,b ,c 分别是△ABC 的内角A ,B ,C 所对的边,向量m =(sin A ,sin B ),n =(sin C ,sin A ),且m ∥n .(1)若cos A =12,b +c =6,求△ABC 的面积;(2)求absin B 的取值范围.[解] 因为m ∥n ,所以sin 2A =sinB sinC ,结合正弦定理可得a 2=bc . (1)因为cos A =12,所以b 2+c 2-a 22bc =12,即b +c 2-3bc 2bc =12,解得bc =9.从而△ABC 的面积S △ABC =12bc sin A =12×9×32=934,故△ABC 的面积为934.(2)因为a 2=bc ,所以cos A =b 2+c 2-a 22bc =b 2+c 2-bc 2bc ≥2bc -bc 2bc =12(当且仅当b =c 时,取等号).因为0<A <π,所以角A 的取值范围是⎝⎛⎦⎥⎤0,π3.由正弦定理,知0<absin B =sin A ≤32,所以a b sin B 的取值范围是⎝⎛⎦⎥⎤0,32.解密高考① 三角函数问题重在“变”——变式、变角————[思维导图]————————[技法指津]————1.常用的变角技巧(1)已知角与特殊角的变换,如:75°=30°+45°; (2)已知角与目标角的变换,如:π3+α=π2-⎝ ⎛⎭⎪⎫π6-α; (3)角与其倍角的变换, 如:α+β=2·α+β2;(4)两角与其和差角的变换以及三角形内角和定理的变换运用.如:α=(α+β)-β=(α-β)+β,α+β2=⎝ ⎛⎭⎪⎫α-β2-⎝ ⎛⎭⎪⎫α2-β等.2.常用的变式技巧(1)解决与三角函数性质有关的问题,常先将它的表达式统一化为y =A sin(ωx +φ)+B 的形式;(2)涉及sin x ±cos x 、sin x ·cos x 的问题,常做换元处理,如令t =sin x ±cos x ∈[-2,2],将原问题转化为关于t 的函数来处理;(3)在解决三角形的问题时,常利用正、余弦定理化边为角或化角为边等.母题示例:2019年全国卷Ⅰ,本小题满分12分△ABC的内角A,B,C的对边分别为a,b,c,设(sin B-sin C)2=sin2A-sin B sin C.(1)求A;(2)若2a+b=2c,求sin C. 本题考查:三角恒等变换、正(余)弦定理等知识,等价转化、转化化归的能力,数学运算、逻辑推理等核心素养.[审题指导·发掘条件](1)看到sin A、sin B、sin C的等量关系,想到利用正(余)弦定理求A;(2)看到边a,b,c的等量关系想到利用正弦定理化边为角,看到求sin C想到B=180°-A-C;缺与角C的相关的三角函数值,借助同角三角函数的关系补找该条件.[构建模板·四步解法] 三角函数类问题的求解策略第一步找条件第二步巧转化第三步得结论第四步再反思分析寻找三角形中的边角关系根据已知条件,选择使用的定理或公式,确定转化方向,实现边角互化利用三角恒等变换进行变形,得出结论审视转化过程的等价性与合理性母题突破:2019年天津高考,本小题满分12分在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知b +c =2a,3c sin B =4a sin C . (1)求cos B 的值; (2)求sin ⎝⎛⎭⎪⎫2B +π6的值. [解](1)在△ABC 中,由正弦定理b sin B =csin C,得b sin C =c sin B ,又由3c sin B =4a sinC ,得3b sin C =4a sin C ,即3b =4a . 1分又因为b +c =2a ,得到b =43a ,c =23a . 2分由余弦定理得cos B =a 2+c 2-b 22ac =a 2+49a 2-169a 22·a ·23a=-14.4分(2)由(1)得sin B =1-cos 2B =154, 5分 从而sin 2B =2sin B cos B =-158, 6分 cos 2B =cos 2B -sin 2B =-78,8分故sin ⎝ ⎛⎭⎪⎫2B +π6=sin 2B cos π6+cos 2B sin π6 10分=-158×32-78×12=-35+716. 12分第1讲 等差数列、等比数列[做小题——激活思维]1.在数列{a n }中,a n +1-a n =2,a 2=5,则{a n }的前4项和为( ) A .9 B .22 C .24D .32C [依题意得,数列{a n }是公差为2的等差数列,a 1=a 2-2=3,因此数列{a n }的前4项和等于4×3+4×32×2=24,选C.]2.(2019·全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和.已知S 4=0,a 5=5,则( ) A .a n =2n -5 B .a n =3n -10 C .S n =2n 2-8nD .S n =12n 2-2nA [设等差数列{a n }的公差为d ,∵⎩⎪⎨⎪⎧S 4=0,a 5=5,∴⎩⎪⎨⎪⎧4a 1+4×32d =0,a 1+4d =5,解得⎩⎪⎨⎪⎧a 1=-3,d =2,∴a n =a 1+(n -1)d =-3+2(n -1)=2n -5,S n =na 1+n n -12d =n 2-4n .故选A.]3.如果等差数列{a n }中,a 3+a 4+a 5=12,那么a 1+a 2+…+a 7等于( ) A .14 B .21 C .28D .35C [∵a 3+a 4+a 5=12,∴3a 4=12,a 4=4.∴a 1+a 2+…+a 7=(a 1+a 7)+(a 2+a 6)+(a 3+a 5)+a 4=7a 4=28.]4.已知数列{a n }满足3a n +1+a n =0,a 2=-13,则{a n }的前10项和等于________.34⎝ ⎛⎭⎪⎫1-1310 [由3a n +1+a n =0,a 2=-13得{a n }成首项为1,公比q =-13的等比数列,∴S 10=1-⎝ ⎛⎭⎪⎫-13101+13=34⎝ ⎛⎭⎪⎫1-1310.] 5.在等比数列{a n }中,a n +1<a n ,a 2a 8=6,a 4+a 6=5,则a 4a 6等于________.32 [因为a 2a 8=a 4a 6=6 ①,又a 4+a 6=5 ②,联立①②,解得⎩⎪⎨⎪⎧a 4=3,a 6=2或⎩⎪⎨⎪⎧a 4=2,a 6=3(舍),所以a 4a 6=32.][扣要点——查缺补漏]1.判断等差(比)数列的常用方法 (1)定义法:若a n +1-a n =d ,d 为常数⎝ ⎛⎭⎪⎫a n +1a n =q ,q 为常数,q ≠0,则{a n }为等差(比)数列,如T 1,T 4.(2)中项公式法. (3)通项公式法.2.等差数列的通项公式及前n 项和公式 (1)a n =a 1+(n -1)d =a m +(n -m )d ; (2)S n =n a 1+a n2=na 1+n n -12d .如T 2.3.等比数列的通项公式及前n 项和公式 (1)a n =a 1qn -1=a m ·qn -m(q ≠0);(2)S n =⎩⎪⎨⎪⎧na 1,q =1,a 11-q n1-q,q ≠1.如T 4.4.等差数列与等比数列的性质(1)在等差数列中,若m +n =p +q (m ,n ,p ,q ∈N *),则a m +a n =a p +a q .如T 3.(2)若{a n }是等差数列,则⎩⎨⎧⎭⎬⎫S n n 也是等差数列.(3)在等差数列{a n }中,S n ,S 2n -S n ,S 3n -S 2n 也成等差数列.(4)在等比数列中,若m +n =p +q (m ,n ,p ,q ∈N *),则a m ·a n =a p ·a q .如T 5. (5)在等比数列中,S n ,S 2n -S n ,S 3n -S 2n 也成等比数列(n 为偶数且q =-1除外).等差(比)数列的基本运算(5年9考) [高考解读] 高考对该点的考查以等差数列、等比数列的通项公式与求和公式为考查目。
最新高考数学第二轮专题教案11

合情推理1-归纳推理 教案一、新课引入:1、引出推理的概念:推理是人们思维活动的过程,是根据一个或几个已知的判断来确定一个新的判断的思维过程。
(2分钟)2、日常生活中,推理。
例如:医生诊断病人的病症,警察侦破案件,气象专家预测天气的可能状态, 考古学家推断遗址的年代,数学家论证命题的真伪等等。
3、生活中我们遇到这样的情形,你能得到怎样的推理?4、看见柳树发芽,冰雪融化。
5、看见乌云密布,燕子低飞。
6、看见花儿凋谢,树叶变黄。
(5-6分钟) 二、数学猜想例1、设f(n)=n 2+n+41,1、观察下列数据,你能猜到什么结论?2、由此猜想:n 为任何正整数时f(n)=n 2+n+41都是质数3、n=40呢?n=41呢?(10-12分钟)4、引出归纳推理定义,(板书课题)5、归纳推理的一般步骤.(12-14分钟)感受归纳推理的魅力,重点介绍两大猜想(同时指出:归纳推理所得的结论仅是一种猜想,未必可靠,还需证明。
)1、费马猜想。
已知12,12,12,1243212222++++都是质数, 614144)4(534133)3(474122)2(434111)1(2222=++==++==++==++=f f f f运用归纳推理你能得出什么样的结论? 半个世纪后欧拉发现说明了什么? 后来人们又发现12,12,12876222+++都是合数,你们又能得到什么样的结论? 这个结论是否正确呢?(16-18分钟)2.介绍歌德巴赫猜想观察下列等式:10=3+7 ,20=3+17 ,30=13+17你们能从中发现什么规律?你能多写几个这样的式子么?这个规律对于其他偶数是否成立? 介绍歌德巴赫猜想(22-25分钟)3、请同学们举出一些其他学科中运用归纳推理得到的重要发现的实例。
三、归纳推理的练习及归纳推理的作用1.发现新事实:应用归纳推理可以发现新事实,获得新结论,下面是一个数学中的例子。
观察:1+3=4=22,1+3+5=9=32,1+3+5+7=16=42,1+3+5+7+9=25=52,……由上述具体事实能提出怎样的结论?可以猜想:前n 个连续奇数的和等于n 的平方,即 (26-30分钟)由上述具体事实能提出怎样的结论?1、已知数列{}n a 的首项11=a ,且有11+=+n n n a a a ,求这个数列的通项公式。
2019-2020年高三数学第二轮复习集合与简易逻辑学案

2019-2020 年高三数学第二轮复习集合与简易逻辑学案一、考试要求1.理解集合、子集、交集、并集、补集的概念。
了解空集和全集的意义。
了解属于、包含、相等关系的意义。
能掌握有关的术语和符号,能正确地表示一些较简单的集合。
2.理解充分条件,必要条件及充要条件的意义,会判断两个命题的充要关系;二、考点扫描1.集合中元素特征:确定性,互异性,无序性;集合按元素特征分类:数集,点集。
2、两类关系:( 1)元素与集合的关系,用或表示;( 2)集合与集合的关系,用,, =表示,当 AB 时,称 A 是 B 的子集;(3)当 AB时,称 A是B的真子集。
如果一个集合 A有n个元素( Crad(A)=n ),那么它有个个子集,个非空真子集注:(1)元素与集合间的关系用符号表示;(2)集合与集合间的关系用符号表示3、集合运算:交,并,补,定义: A∩B={x|x ∈A且 x∈B},A∪ B={x|x ∈A,或 x∈B} , C U A={x|x ∈U,且 xA}。
4 命题:(1)复合命题的形式: p 且 q,p 或 q,非 p;p 或 q(记作“p∨ q” );p 且 q(记作“ p∧ q” );非 p(记作“┑ q” )(2)或”、“且”、“非”的真值判断:1)“非 p”形式复合命题的真假与 P 的真假相反;2)“ p 且 q”形式复合命题当 P与 q 同为真时为真,其他情况时为假;3)“ p 或 q”形式复合命题当 p 与 q 同为假时为假,其他情况时为真( 3)四种命题:记“若 q 则 p”为原命题,则否命题为“若非p 则非 q”,逆命题为“若 q则 p“,逆否命题为” 若非 q则非 p“。
其中互为逆否的两个命题同真假,即等价。
因此,四种命题为真的个数只能是偶数个。
5、分条件与必要条件(1)定义:对命题“若 p则 q”而言,当它是真命题时, p是 q的充分条件, q是 p的必要条件,当它的逆命题为真时, q 是 p的充分条件, p 是 q 的必要条件,两种命题均为真时,称 p 是 q 的充要条件。
2020届高考数学二轮专题复习教案共23讲精品专题

专题一集合、简单逻辑用语、函数、不等式、导数及应用第1讲集合与简单逻辑用语1. 理解集合中元素的意义是解决集合问题的关键:弄清元素是函数关系式中自变量的取值?还是因变量的取值?还是曲线上的点?…2. 数形结合是解集合问题的常用方法:解题时要尽可能地借助数轴、直角坐标系或韦恩图等工具,将抽象的代数问题具体化、形象化、直观化,然后利用数形结合的思想方法解决.3. 已知集合A、B,当A∩B=时,你是否注意到“极端”情况:A=或B=?求集合的子集时是否忘记?分类讨论思想的建立在集合这节内容学习中要得到强化.4. 对于含有n个元素的有限集合M, 其子集、真子集、非空子集、非空真子集的个数依次为2n,2n -1,2n-1,2n-2.是任何集合的子集,是任何非空集合的真子集.1. A、B是非空集合,定义A×B={x|x∈A∪B,且∩B},若A={x∈R|y=x2-3x},B={y|y =3x,x∈R},则A×B=______________.2. 已知命题P:n∈N,2n>1 000,则P为________.3. 条件p:a∈M={x|x2-x<0},条件q:a∈N={x||x|<2},p是q的______________条件.(填“充分不必要”“必要不充分”“充要”或“既不充分也不必要”)4. 若命题“∈R,x2+(a-1)x+1>0”是假命题,则实数a的取值范围为________.【例1】已知集合A={x|x2-3x-10≤0},集合B={x|p+1≤x≤2p-1}.若,求实数p的取值范围.【例2】设A={(x,y)|y2-x-1=0},B={(x,y)|4x2+2x-2y+5=0},C={(x,y)|y=kx+b},是否存在k、b∈N,使得(A∪B)∩C=?若存在,求出k,b的值;若不存在,请说明理由.【例3】(2011·广东)设S是整数集Z的非空子集,如果,b∈S,有ab∈S,则称S关于数的乘法是封闭的,若T,V是Z的两个不相交的非空子集,T∪V=Z且,b,c∈T,有abc∈T,,y,z∈V,有xyz∈V.则下列结论恒成立的是________.A. T,V中至少有一个关于乘法封闭B. T,V中至多有一个关于乘法封闭C. T,V中有且只有一个关于乘法封闭D. T,V中每一个关于乘法封闭【例4】已知a>0,函数f(x)=ax-bx2.(1) 当b>0时,若∈R,都有f(x)≤1,证明:0<a≤2b;(2) 当b>1时,证明:∈[0,1],|f(x)|≤1的充要条件是b-1≤a≤2 b.1. (2011·江苏)已知集合A={-1,1,2,4},B={-1,0,2},则A∩B=________.2.(2011·天津)命题“若f(x)是奇函数,则f(-x)是奇函数”的否命题是________.3.(2009·江苏)已知集合A={x|log2x≤2},B=(-∞,a),若,则实数a的取值范围是(c,+∞),其中c=________.4.(2009·陕西)某班有36名同学参加数学、物理、化学课外探究小组,每名同学至多参加两个小组,已知参加数学、物理、化学小组的人数分别为26,15,13,同时参加数学和物理小组的有6人,同时参加物理和化学小组的有4人,则同时参加数学和化学小组的有________人.5.(2011·陕西)设n∈N+,一元二次方程x2-4x+n=0有正整数根的充要条件是n=________.6.(2011·福建)在整数集Z中,被5除所得余数为k的所有整数组成一个“类”,记为[k],即[k]={5n +k|n∈Z},k=0,1,2,3,4.给出如下四个结论:①2 011∈[1];②-3∈[3];③Z=[0]∪[1]∪[2]∪[3]∪[4];④“整数a,b属于同一‘类’”的充要条件是“a-b∈[0]”.其中,正确结论的个数是________个.(2011·全国)(本小题满分14分)设a∈R,二次函数f(x)=ax2-2x-2a.若f(x)>0的解集为A,B={x|1<x<3},A ∩B ≠,求实数a 的取值范围.解:由f(x)为二次函数知a ≠0,令f(x)=0解得其两根为x 1=1a -2+1a 2,x 2=1a +2+1a2, 由此可知x 1<0,x 2>0,(3分)① 当a>0时,A ={x|x<x 1}∪{x|x>x 2},(5分) A ∩B ≠的充要条件是x 2<3,即1a +2+1a 2<3,解得a>67,(9分) ② 当a<0时, A ={x|x 1<x<x 2},(10分) A ∩B ≠的充要条件是x 2>1,即1a+2+1a 2>1,解得a<-2,(13分) 综上,使A ∩B ≠成立的实数a 的取值范围为(-∞,-2)∪⎝⎛⎭⎫67,+∞.(14分)一 集合、简单逻辑用语、函数、不等式、导数及应用第1讲 集合与简单逻辑用语1. (2011·安徽)设集合A ={1,2,3,4,5,6},B ={4,5,6,7},则满足S 且S ∩B ≠的集合S 的个数为________.A. 57B. 56C. 49D. 8【答案】 B 解析:集合A 的所有子集共有26=64个,其中不含4,5,6,7的子集有23=8个,所以集合S 共有56个.故选B.2. (2011·江苏)设集合A =-2)2+y 2≤m 2,x ,y ∈R }, B ={(x ,y)|2m ≤x +y ≤2m +1,x ,y ∈R }, 若A ∩B ≠,则实数m 的取值范围是________.【答案】 ⎣⎡⎦⎤12,2+2 解析:由A ∩B ≠得,A ≠,所以m 2≥m 2,m ≥12或m ≤0.当m ≤0时,|2-2m|2=2-2m >-m ,且|2-2m -1|2=22-2m >-m ,又2+0=2>2m +1,所以集合A 表示的区域和集合B 表示的区域无公共部分;当m ≥12时,只要|2-2m|2≤m 或|2-2m -1|2≤m ,解得2-2≤m ≤2+2或1-22≤m ≤1+22,所以实数m 的取值范围是⎣⎡⎦⎤12,2+2. 点评:解决此类问题要挖掘问题的条件,并适当转化,画出必要的图形,得出求解实数m 的取值范围的相关条件.基础训练1. (-∞,3) 解析:A =(-∞,0]∪[3,+∞),B =(0,+∞),A ∪B =(-∞,+∞),A ∩B =[3,+∞).∈N,2n ≤1 0003. 充分不必要 解析:M ==(-2,2).4. a ≥3或a ≤-1 解析:Δ=(a -1)2-4≥0,a ≥3或a ≤-1. 例题选讲例1 解:由x 2-3x -10≤0得-2≤x ≤5. ∴ A =[-2,5]. ① 当B ≠时,即p +1≤2p -≥2.由得-2≤p +1且2p -1≤5.得-3≤p ≤3.∴ 2≤p ≤3. ② 当B =时,即p +1>2p -<成立.综上得p ≤3.点评:从以上解答应看到:解决有关A ∩B =,A ∪B =A ,A ∪B =B 或等集合问题易忽视空集的情况而出现漏解,这需要在解题过程中全方位、多角度审视问题.变式训练 设不等式x 2-2ax +a +2≤0的解集为M ,如果,求实数a 的取值范围. 解: 有n 种情况:其一是M =,此时Δ<0;其二是M ≠,此时Δ≥0,分三种情况计算a 的取值范围.设f(x)=x 2-2ax +a +2,有Δ=(-2a)2-(4a +8)=4(a 2-a -2), ① 当Δ<0时,-1<a <2,M =成立; ② 当Δ=0时,a =-1或2,当a =-1时,M ={-,当a =2时,M =;③ 当Δ>0时,a <-1或a >2.设方程f(x)=0的两根为x 1,x 2,且x 1<x 2,那么M =[x 1,x 2],≤x 1<x 2≤⎩⎪⎨⎪⎧f (1)≥0且f (4)≥0,1≤a ≤4且Δ>0. 即⎩⎪⎨⎪⎧-a +3≥0,18-7a ≥0,1≤a ≤4,a <-1或a >2,解得:2<a ≤187,综上实数a 的取值范围是⎝⎛⎦⎤-1,187. 例2 解: ∵ (A ∪B)∩C =,∵A ∩C =且B ∩C =,由 ⎩⎪⎨⎪⎧y 2=x +1,y =kx +b得k 2x 2+(2bk -1)x +b 2-1=0, ∵ A ∩C =,∴ k ≠0,Δ1=(2bk -1)2-4k 2(b 2-1)<0,∴ 4k 2-4bk +1<0,此不等式有解,其充要条件是16b 2-16>0,即b 2>1,①∵ ⎩⎪⎨⎪⎧4x 2+2x -2y +5=0,y =kx +b , ∴ 4x 2+(2-2k)x +(5-2b)=0,∵ B ∩C =,∴ Δ2=4(1-k)2-16(5-2b)<0,∴ k 2-2k +8b -19<0, 从而8b<20,即b<2.5, ②由①②及b ∈N ,得b =2,代入由Δ1<0和Δ2<0组成的不等式组,得⎩⎪⎨⎪⎧4k 2-8k +1<0,k 2-2k -3<0, ∴ k =1,故存在自然数k =1,b =2,使得(A ∪B)∩C =.点评:把集合所表示的意义读懂,分辨出所考查的知识点,进而解决问题.变式训练 已知集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )⎪⎪⎪1-y x +1=3,B ={(x ,y)|y =kx +3},若A ∩B =, 求实数k 的取值范围.解: 集合A 表示直线y =-3x -2上除去点(-1,1)外所有点的集合,集合B 表示直线y =kx +3上所有点的集合,A ∩B =,所以两直线平行或直线y =kx +3过点(-1,1),所以k =2或k =-3.例3 【答案】 A 解析:由于T ∪V =Z ,故整数1一定在T ,V 两个集合中的一个中,不妨设1∈T ,则,b ∈T ,由于a ,b,1∈T ,则a·b·1∈T ,即ab ∈T ,从而T 对乘法封闭;另一方面,当T ={非负整数},V ={负整数}时,T 关于乘法封闭,V 关于乘法不封闭,故D 不对; 当T ={奇数},V ={偶数}时,T ,V 显然关于乘法都是封闭的,故B ,C 不对. 从而本题就选A.例4 证明:(1) ax -bx 2≤1对x ∈R 恒成立,又b >0, ∴ a 2-4b ≤0,∴ 0<a ≤2 b. (2) 必要性,∵ ∈[0,1],|f(x)|≤1恒成立,∴ bx 2-ax ≤1且bx 2-ax ≥-1, 显然x =0时成立,对x ∈(0,1]时a ≥bx -1x 且a ≤bx +1x ,函数f(x)=bx -1x 在x ∈(0,1]上单调增,f(x)最大值f(1)=b -1.函数g(x)=bx +1x 在⎝⎛⎦⎤0,1b 上单调减,在⎣⎡⎦⎤1b ,1上单调增,函数g(x)的最小值为g ⎝⎛⎭⎫1b =2b ,∴ b -1≤a ≤2b ,故必要性成立;充分性:f(x)=ax -bx 2=-b(x -a 2b )2+a 24b ,a 2b =a 2b ×1b ≤1×1b≤1,f(x)max =a 24b≤1,又f(x)是开口向下的抛物线,f(0)=0,f(1)=a -b ,f(x)的最小值从f(0)=0,f(1)=a -b 中取最小的,又a -b ≥-1, ∴ -1≤f(x)≤1,故充分性成立; 综上命题得证.变式训练 命题甲:方程x 2+mx +1=0有两个相异负根;命题乙:方程4x 2+4(m -2)x +1=0无实根,这两个命题有且只有一个成立,求实数m 的取值范围.解: 使命题甲成立的条件是: ⎩⎪⎨⎪⎧Δ1=m 2-4>0,x 1+x 2=-m <0>2.∴ 集合A ={m|m>2}.使命题乙成立的条件是:Δ2=16(m -2)2-16<0,∴ 1<m <3. ∴ 集合B ={m|1<m<3}.若命题甲、乙有且只有一个成立,则有: ① m ∈A ∩B ,② m ∈A ∩B.若为①,则有:A ∩B ={m|m>2}∩{m|m ≤1或m ≥3}={m|m ≥3}; 若为②,则有:B ∩A ={m|1<m<3}∩{m|m ≤2}={m|1<m ≤2};综合①、②可知所求m 的取值范围是{m|1<m ≤2或m ≥3}. 点评:明确命题为真时的充要条件,再分类确定. 高考回顾 1. {-1,2}2. 若f(x)不是奇函数,则f(-x)不是奇函数3. 4 解析:A =(0,4],∴ a >4, ∴ c =4.4. 8 解析:画韦恩图.设同时参加数学和化学小组的有x 人,则20-x +11+x +4+9-x =36,x =8.5. 3或4 解析:令f(x)=x 2-4x +n ,n ∈N *,f(0)=n >0, ∴ f(2)≤0即n ≤4,故n =1,2,3,4,经检验,n =3,4适合,或直接解出方程的根,x =2±4-n ,n ∈N *,只有n =3,4适合.6. 3 解析:正确的是①③④,在②中-3∈[2]才对.第2讲 函数、图象及性质1. 函数在高考中的题型设置有小题也有大题,其中大题有简单的函数应用题、函数与其他知识综合题,也有复杂的代数推理题,可以说函数性质的应用是高考考查的主要着力点之一.2. 重点:①函数的奇偶性、单调性和周期性;②函数与不等式结合;③函数与方程的综合;④函数与数列的综合;⑤函数与向量的综合;⑥利用导数来刻画函数.3. 难点:①新定义的函数问题;②代数推理问题,常作为高考压轴题.1. 已知f(x)是二次函数,且f(0)=0,f(x +1)=f(x)+x +1,则f(x)=________.2.函数f(x)=(x +1)0|x|-x的定义域为________.3.函数f(x)的定义域是R ,其图象关于直线x =1和点(2 , 0)都对称,f ⎝⎛⎭⎫-12=2,则f ⎝⎛⎭⎫12+f ⎝⎛⎭⎫20092=________.4.函数f(x)=x 2-2x ,g(x)=mx +2,对1∈[-1,2],0∈[-1,2],使g(x 1)=f(x 0),则实数m 的取值范围是________.【例1】 已知f(x)是二次函数,不等式f(x)<0的解集是(0,5) ,且f(x)在区间[-1,4]上的最大值是12.(1) 求f(x)的解析式;(2) 是否存在整数m 使得方程f(x)+37x =0在区间(m ,m +1)内有且只有两个不等的实数根?若存在,求出m 值;若不存在,说明理由.【例2】 已知函数f(x)=x 2+ax (x ≠0,常数a ∈R ).(1) 讨论函数f(x)的奇偶性,并说明理由;(2) 若函数f(x)在x ∈[2,+∞)上为增函数,求a 的取值范围.【例3】 设函数f(x)=x 2+|2x -a|(x ∈R ,常数a 为实数). (1) 若f(x)为偶函数,求实数a 的值; (2) 设a>2,求函数f(x)的最小值.【例4】 (2011·苏锡常镇模拟)已知函数f(x)=x +a +a|x|,a 为实数.(1) 当a =1,x ∈[-1,1]时,求函数f(x)的值域;(2) 设m 、n 是两个实数,满足m <n ,若函数f(x)的单调减区间为(m ,n),且n -m ≤3116,求a 的取值范围.1. (2011·辽宁)若函数f(x)=x(2x +1)(x -a )为奇函数,则a =________.2.(2011·湖北)若定义在R 上的偶函数f(x)和奇函数g(x)满足f(x)+g(x)=e x ,则g(x)=________.3.(2011·上海)设g(x)是定义在R 上、以1为周期的函数,若f(x)=x +g(x)在[0,1]上的值域为[-2,5],则f(x)在区间[0,3]上的值域为____________.4.(2011·北京)已知点A(0,2),B(2,0),若点C 在函数y =x 2的图象上,则使得△ABC 的面积为2的点C 的个数为________.5.(2011·上海) 已知函数f(x)=a·2x +b·3x ,其中常数a ,b 满足ab ≠0. (1) 若ab>0,判断函数f(x)的单调性;(2) 若ab<0,求f(x +1)>f(x)时x 的取值范围.6.(2011·湖北)提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时.研究表明:当20≤x ≤200时,车流速度v 是车流密度x 的一次函数.(1) 当0≤x ≤200时,求函数v(x)的表达式;(2) 当车流密度x 为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f(x)=x·v(x)可以达到最大,并求出最大值.(精确到1辆/小时)(2011·镇江一模)(本小题满分14分)已知函数f(x)=3-2log 2x ,g(x)=log 2x. (1) 如果x ∈[1,4],求函数h(x)=(f(x)+1)g(x)的值域; (2) 求函数M(x)=f (x )+g (x )-|f (x )-g (x )|2的最大值;(3) 如果对不等式f(x 2)f(x)>kg(x)中的任意x ∈[1,4],不等式恒成立,求实数k 的取值范围. 解:令t =log 2x ,(1分) (1) h(x)=(4-2log 2x)·log 2x =-2(t -1)2+2,(2分) ∵ x ∈[1,4],∴ t ∈[0,2],(3分) ∴ h(x)的值域为[0,2].(4分) (2) f(x)-g(x)=3(1-log 2x),当0<x ≤2时,f(x)≥g(x);当x >2时,f(x)<g(x),(5分)∴ M(x)=⎩⎪⎨⎪⎧ g (x ),f (x )≥g (x ),f (x ),f (x )<g (x ), M(x)=⎩⎪⎨⎪⎧log 2x ,0<x ≤2,3-2log 2x ,x>2,(6分)当0<x ≤2时,M(x)最大值为1;(7分)当x >2时,M(x)<1.(8分)综上:当x =2时,M(x)取到最大值为1.(9分)(3) 由f(x 2)f(x)>kg(x),得(3-4log 2x)(3-log 2x)>k·log 2x , ∵ x ∈[1,4],∴ t ∈[0,2],∴ (3-4t)(3-t)>kt 对一切t ∈[0,2]恒成立,(10分) ①当t =0时,k ∈R ;(11分)②t ∈(0,2]时,k <(3-4t )(3-t )t 恒成立,即k <4t +9t -15,(12分)∵ 4t +9t ≥12,当且仅当4t =9t ,即t =32时取等号.(13分)∴ 4t +9t -15的最小值为-3.综上:k <-3.(14分)第2讲 函数、图象及性质1. 已知a =5-1,函数f(x)=a x ,若实数m 、n 满足f(m)>f(n),则m 、n 的大小关系为________.考查指数函数的单调性 a f(x)=a x 在R 上递减.由f(m)>f(n)得:m<n. 2. 设a 为实数,函数f(x)=2x 2+(x -a)|x -a|. (1) 若f(0)≥1,求a 的取值范围; (2) 求f(x)的最小值;(3) 设函数h(x)=f(x),x ∈(a ,+∞),直接写出(不需给出演算步骤)不等式h(x)≥1的解集.点拨: 本小题主要考查函数的概念、性质、图象及解一元二次不等式等基础知识,考查灵活运用数形结合、分类讨论的思想方法进行探索、分析与解决问题的综合能力.解:(1) 若f(0)≥1,则-a|a|≥⎩⎪⎨⎪⎧a <0,a 2≥1≤-1.∴ a 的取值范围是(-∞,-1](2) 当x ≥a 时,f(x)=3x 2-2ax +a 2, f(x)min =⎩⎪⎨⎪⎧f (a ),a ≥0,f ⎝⎛⎭⎫a 3,a <0=⎩⎪⎨⎪⎧2a 2,a ≥0,2a 23,a <0,当x ≤a 时,f(x)=x 2+2ax -a 2,f(x)min =⎩⎪⎨⎪⎧ f (-a ),a ≥0,f (a ),a <0=⎩⎪⎨⎪⎧-2a 2,a ≥0,2a 2,a <0,综上f(x)min =⎩⎪⎨⎪⎧-2a 2,a ≥0,2a 23,a <0.(3) x ∈(a ,+∞)时,h(x)≥1得3x 2-2ax +a 2-1≥0,Δ=4a 2-12(a 2-1)=12-8a 2. 当a ≤-62或a ≥62时,Δ≤0,x ∈(a ,+∞); 当-62<a <62时,Δ>0,得:⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫x -a -3-2a 23⎝ ⎛⎭⎪⎫x -a +3-2a 23≥0,x >a ,讨论得:当a ∈⎝⎛⎭⎫22,62时,解集为(a ,+∞); 当a ∈⎝⎛⎭⎫-62,-22时,解集为⎝ ⎛⎦⎥⎤a ,a -3-2a 23∪⎣⎢⎡⎭⎪⎫a +3-2a 23,+∞ 当a ∈⎣⎡⎦⎤-22,22时,解集为⎣⎢⎡⎭⎪⎫a +3-2a 23,+∞. 综上,当a ∈⎝⎛⎦⎤-∞,-62∪⎣⎡⎭⎫22,+∞时,解集为(a ,+∞),当a ∈⎣⎡⎦⎤-22,22时,解集为⎣⎢⎡⎭⎪⎫a +3-2a 23,+∞,当a ∈⎣⎡⎦⎤-62,-22时,解集为⎝ ⎛⎦⎥⎤a ,a -3-2a 23∪⎣⎢⎡⎭⎪⎫a +3-2a 23,+∞.基础训练2. (-∞,-1)∪(-1,0) 解析:⎩⎪⎨⎪⎧x +1≠0,|x|-x >0<0,x ≠-1.3. -4 解析:函数图象关于直线x =1对称,则f(x)=f(2-x),函数图象关于点(2 , 0)对称,则f(x)=-f(4-x),∴ f(x +2)=-f(x),∴ f(x +4)=f(x),∴ f ⎝⎛⎭⎫2 0092=f ⎝⎛⎭⎫1 004+12=f ⎝⎛⎭⎫12,又f ⎝⎛⎭⎫-12=-f ⎝⎛⎭⎫4+12= -f ⎝⎛⎭⎫12,f ⎝⎛⎭⎫12+f ⎝⎛⎭⎫2 0092=2f ⎝⎛⎭⎫12=-2f ⎝⎛⎭⎫-12=-4. 4. ⎣⎡⎦⎤-1,12 解析:x ∈[-1,2]时,f(x)∈[-1,3].m ≥0,x ∈[-1,2]时,g(x)∈[2-m,2+2m];m <0,x ∈[-1,2]时,g(x)∈[2+2m,2-m].m ≥0,[2-m ,2+-1,3];m <0,[2+2m,2--1,3]得0≤m ≤12或-1≤m<0,故实数m 的取值范围是⎣⎡⎦⎤-1,12. 例题选讲例1 解: (1) ∵ f(x)是二次函数,且f(x)<0的解集是(0,5), ∴ 可设f(x)=ax(x -5)(a >0). ∴ f(x)在区间[-1,4]上的最大值是f(-1)=6a.由已知得6a =12, ∴ a =2, ∴ f(x)=2x(x -5)=2x 2-10x(x ∈R ).(2) 方程f(x)+37x =0等价于方程2x 3-10x 2+37=0.设h(x)=2x 3-10x 2+37,则h ′(x)=6x 2-20x =2x(3x -10).当x ∈⎝⎛⎭⎫0,103时,h ′(x)<0,h(x)是减函数;当x ∈⎝⎛⎭⎫103,+∞时,h ′(x)>0,h(x)是增函数. ∵ h(3)=1>0,h ⎝⎛⎭⎫103=-127<0,h(4)=5>0,∴ 方程h(x)=0在区间⎝⎛⎭⎫3,103,⎝⎛⎭⎫103,4内分别有唯一实数根,而在区间(0,3),(4,+∞)内没有实数根,所以存在唯一的自然数m =3,使得方程f(x)+37x =0在区间(m ,m +1)内有且只有两个不同的实数根.变式训练 已知函数y =f (x)是定义在R 上的周期函数,周期T =5,函数y =f(x)(-1≤x ≤1)的图象关于原点对称.又知y =f(x)在[0,1]上是一次函数,在[1,4]上是二次函数,且在x =2时函数取得最小值-5.(1) 证明:f(1)+f(4)=0;(2)求y =f(x),x ∈[1,4]的解析式; (3)求y =f(x)在[4,9]上的解析式.(1)证明: ∵ f (x)是以5为周期的周期函数,∴ f(4)=f(4-5)=f(-1), 又∵ y =f(x)(-1≤x ≤1)关于原点对称,∴ f(1)=-f(-1)=-f(4), ∴ f(1)+f(4)=0.(2)解: 当x ∈[1,4]时,由题意可设f(x)=a(x -2)2-5(a >0), 由f(1)+f(4)=0得a(1-2)2-5+a(4-2)2-5=0,∴ a =2, ∴ f(x)=2(x -2)2-5(1≤x ≤4).(3)解: ∵ y =f(x)(-1≤x ≤1)是奇函数,∴ f(0)=0,又知y =f(x)在[0,1]上是一次函数,∴ 可设f(x)=kx(0≤x ≤1),而f(1)=2(1-2)2-5=-3,∴ k =-3,∴ 当0≤x ≤1时,f(x)=-3x ,从而当-1≤x <0时,f(x)=-f(-x)=-3x ,故-1≤x ≤1时,f(x)=-3x ,∴ 当4≤x ≤6时,有-1≤x -5≤1,∴ f(x)=f(x -5)=-3(x -5)=-3x +15,当6<x ≤9时,1<x -5≤4,∴ f(x)=f(x -5)=2[(x -5)-2]2-5=2(x -7)2-5,∴ f(x)=⎩⎪⎨⎪⎧-3x +15,4≤x ≤6,2(x -7)2-5,6<x ≤9. 点评:紧抓函数几个性质,将未知的转化为已知的,注意函数图象及端点值.例2 解: (1) 当a =0时,f(x)=x 2,对任意x ∈(-∞,0)∪(0,+∞),f(-x)=(-x)2=x 2=f(x), ∴ f(x)为偶函数.当a ≠0时,f(x)=x 2+ax(a ≠0,x ≠0),取x =±1,得f(-1)+f(1)=2≠0,f(-1)-f(1)=-2a ≠0, ∴ f(-1)≠-f(1),f(-1)≠f(1),∴ 函数f(x)既不是奇函数,也不是偶函数. (2) (解法1)设2≤x 1<x 2,f(x 1)-f(x 2)=x 21+a x 1-x 22-a x 2=(x 1-x 2)x 1x 2[x 1x 2(x 1+x 2)-a],要使函数f(x)在x ∈[2,+∞)上为增函数,必须f(x 1)-f(x 2)<0恒成立.∵ x 1-x 2<0,x 1x 2>4,即a <x 1x 2(x 1+x 2)恒成立. 又∵ x 1+x 2>4, ∴ x 1x 2(x 1+x 2)>16. ∴ a 的取值范围是(-∞,16].(解法2)当a =0时,f(x)=x 2,显然在[2,+∞)为增函数. 当a <0时,反比例函数ax在[2,+∞)为增函数,∴ f(x)=x 2+ax 在[2,+∞)为增函数.当a >0时,同解法1.(解法3)f ′(x)=2x -ax 2≥0,对x ∈[2,+∞)恒成立.∴ a ≤2x 3而y ≤2x 3.在[2,+∞)上单调增,最小值为16,∴ a ≤16.点评:本题主要考查函数奇偶性、单调性及分类讨论处理含参数问题. 例3 解:(1) 由已知f(-x)=f(x),即|2x -a|=|2x +a|,解得a =0.(2) f(x)=⎩⎨⎧x 2+2x -a ,x ≥12a ,x 2-2x +a ,x <12a ,当x ≥12a 时,f(x)=x 2+2x -a =(x +1)2-(a +1),由a >2,x ≥12a ,得x >1,从而x >-1,又f ′(x)=2(x +1),故f(x)在x ≥12a 时单调递增,f(x)的最小值为f ⎝⎛⎭⎫a 2=a 24;当x <12a 时,f(x)=x 2-2x +a =(x -1)2+(a -1),故当1<x <a2时,f(x)单调递增,当x <1时,f(x)单调递减,a -1;0,知f(x)的最小值为a -1. 点评:本题考查二次函数含参数最值的讨论方法.变式训练 已知函数f(x)=x|x -2|.设a >0,求f(x)在[0,a]上的最大值.解: f(x)=x|x -2|=⎩⎪⎨⎪⎧x 2-2x =(x -1)2-1,x ≥2,-x 2+2x =-(x -1)2+1,x <2. ∴ f(x)的单调递增区间是(-∞,1]和[2,+∞); 单调递减区间是[1,2].① 当0<a ≤1时,f(x)是[0,a]上的增函数,此时f(x)在[0,a]上的最大值是f(a)=a(2-a);② 当1<a ≤2时,f(x)在[0,1]上是增函数,在[1,a]上是减函数,此时f(x)在[0,a]上的最大值是f(1)=1;③ 当a >2时,令f(a)-f(1)=a(a -2)-1=a 2-2a -1>0, 解得a >1+ 2. 若2<a ≤1+2,则f(a)≤f(1),f(x)在[0,a]上的最大值是f(1)=1; 若a >1+2,则f(a)>f(1),f(x)在[0,a]上的最大值是f(a)=a(a -2).综上,当0<a <1时,f(x)在[0,a]上的最大值是a(2-a);当1≤a ≤1+2时,f(x)在[0,a]上的最大值是1;当a >1+2时,f(x)在[0,a]上的最大值是a(a -2).例4 解: 设y =f(x),(1) a =1时,f(x)=x +1+|x|,当x ∈(0,1]时,f(x)=x +1+x 为增函数,y 的取值范围为(1,1+2]. 当x ∈[-1,0]时,f(x)=x +1-x ,令t =x +1,0≤t ≤1,则x =t 2-1,y =-⎝⎛⎭⎫t -122+54,0≤t ≤1,y 的取值范围为⎣⎡⎦⎤1,54.∵ 54<1+2, ∴x ∈[1,1]时,函数f(x)的值域为[1,1+2].(2) 令t =x +a ,则x =t 2-a ,t ≥0,y =g(t)=t +a|t 2-a|. ① a =0时,f(x)=x 无单调减区间;② a <0时,y =g(t)=at 2+t -a 2,在⎝⎛⎭⎫-12a ,+∞上g(t)是减函数,则在⎝⎛⎭⎫14a 2-a ,+∞上f(x)是减函数.∴a <0不成立.③ a >0时,y =g(t)=⎩⎨⎧-at 2+t +a 2,0≤t ≤a ,at 2+t -a 2,t > a. 仅当12a <a ,即a >312时,在t ∈⎝⎛⎭⎫12a ,a 时,g(t)是减函数,即x ∈⎝⎛⎭⎫14a 2-a ,0时,f(x)是减函数. ∴n -m =a -14a 2≤3116,即(a -2)(16a 2+a +2)≤0. ∴a ≤2. 故a 的取值范围是⎝ ⎛⎦⎥⎤314,2.高考回顾f(x)恒成立或从定义域可直接得到. 2. g(x)=e 2解析: 因为函数f(x)是偶函数,g(x)是奇函数,所以f(-x)+g(-x)=f(x)-g(x)=e -x .又因为f(x)+g(x)=e x,所以g(x)=e x +e -x2.3. [-2,7] 解析:设x 1∈[0,1],则f(x 1)=x 1+g(x 1)∈[-2,5],∵ g(x)是定义域为R 周期为1的函数,∴ 当x 2∈[1,2]时,f(x 2)=x 1+1+g(x 1+1)=1+x 1+g(x 1)=1+f(x 1)∈[-1,6],当x 2∈[2,3]时,f(x 2)=x 1+2+g(x 1+2)=2+x 1+g(x 1)=2+f(x 1)∈[0,7],∴ f(x)在区间[0,3]上的值域为[-2,7].4. 4 解析:AB =22,直线AB 的方程为x +y =2,在y =x 2上取点C(x ,y),点C(x ,y)到直线AB 的距离为2,|x +y -2|2=2,|x +x 2-2|=2,此方程有四个解.5. 解:(1) 当a >0,b >0时,任意x 1,x 2∈R ,x 1<x 2, 则f(x 1)-f(x 2)=a(2x 1-2x 2)+b(3x 1-3x 2), ∵ 2x 1<2x 2,a >1-2x 2)<0,3x 1<3x 2,b >1-3x 2)<0, ∴ f(x 1)-f(x 2)<0,函数f(x)在R 上是增函数.当a <0,b <0时,同理函数f(x)在R 上是减函数.(2) f(x +1)-f(x)=a·2x +2b·3x >0,当a <0,b >0时,⎝⎛⎭⎫32x >-a2b ,则 x >log 1.5⎝⎛⎭⎫-a 2b ;当a >0,b <0时,⎝⎛⎭⎫32x <-a2b,则x <log 1.5⎝⎛⎭⎫-a 2b . 6. 解:(1) 由题意:当0≤x ≤20时,v(x)=60;当20≤x ≤200时,设v(x)=ax +b ,显然v(x)=ax +b 在[20,200]是减函数,由已知得⎩⎪⎨⎪⎧200a +b =0,20a +b =60,解得⎩⎨⎧a =-13,b =2003.故函数v(x)的表达式为v(x)=⎩⎪⎨⎪⎧60,0≤x ≤20,13(200-x ),20<x ≤200.(2) 依题意并由(1)可得f(x)=⎩⎪⎨⎪⎧60x ,0≤x ≤20,13x (200-x ),20<x ≤200.当0≤x ≤20时,f(x)为增函数,故当x =20时,其最大值为60×20=1 200; 当20<x ≤200时,f(x)=13x(200-x)≤13⎣⎡⎦⎤x +(200-x )22=10 0003, 当且仅当x =200-x ,即x =100时,等号成立. 所以,当x =100时,f(x)在区间[20,200]上取得最大值10 0003. 综上,当x =100时,f(x)在区间[0,200]上取得最大值10 0003≈3 333, 即当车流密度为100辆/千米时,车流量可以达到最大,最大值约为3 333辆/小时.第3讲 基本初等函数1. 掌握指数函数的概念、图象和性质.2. 理解对数函数的概念、图象和性质.3. 能够应用函数的性质、指数函数和对数函数性质解决某些简单实际问题.4. 了解幂函数的定义,熟悉常见幂函数的图形与性质.1. 函数y =log a (x +2)+1(a>0,a ≠1)的图象经过的定点坐标为________.2.函数y =lg(x 2-2x)的定义域是________.3.函数y =a x (a>0,a ≠1)在R 上为单调递减函数,关于x 的不等式a 2x -2a x -3>0的解集为________.4.定义:区间[x 1,x 2](x 1<x 2)的长度为x 2-x 1.已知函数y =|log 0.5x|定义域为[a ,b],值域为[0,2],则区间[a ,b]的长度的最大值为________.【例1】 函数f(x)=ax 2+1bx +c (a ,b ,c ∈Z )是奇函数,且f(1)=2,f(2)<3.(1) 求a ,b ,c 的值;(2) 当x<0时,讨论f(x)的单调性.【例2】 已知函数f(x)=2x -12|x|. (1) 若f(x)=2,求x 的值;(2) 若2t f(2t)+mf(t)≥0对于t ∈[1,2]恒成立,求实数m 的取值范围.【例3】 已知函数g(x)=ax 2-2ax +1+b(a ≠0,b<1),在区间[2,3]上有最大值4,最小值1,设f(x)=g (x )x. (1) 求a ,b 的值; (2) 不等式f(2x )-k·2x ≥0在x ∈[-1,1]上恒成立,求实数k 的取值范围;(3) 方程f(|2x -1|)+k ⎝⎛⎭⎫2|2x -1|-3=0有三个不同的实数解,求实数k 的取值范围.【例4】 (2011·盐城二模)已知函数f(x)=x +a x 2+b 是定义在R 上的奇函数,其值域为⎣⎡⎦⎤-14,14. (1) 试求实数a 、b 的值;(2) 函数y =g(x)(x ∈R )满足:当x ∈[0,3)时,g(x)=f(x);g(x +3)=g(x)lnm(m ≠1). ① 求函数g(x)在x ∈[3,9)上的解析式;② 若函数g(x)在x ∈[0,+∞)上的值域是闭区间,试探求实数m 的取值范围,并说明理由.1. (2011·广东)设函数f(x)=x 3cosx +1.若f(a)=11,则f(-a)=________.2.(2011·江苏)函数f(x)=log 5(2x +1)的单调增区间是________.3.(2011·辽宁)设函数f(x)=⎩⎪⎨⎪⎧21-x ,x ≤1,1-log 2x ,x>1,则满足f(x)≤2的x 的取值范围是________.4.(2011·山东)已知函数f(x)=log a x +x -b(a>0且a ≠1).当2<a <3<b <4时,函数f(x)的零点x 0∈(n ,n +1),n ∈N *,则n =________.5.(2009·山东)已知函数f(x)=x -2x +a(2-lnx)(a>0),讨论f(x)的单调性.6.(2011·陕西)设f(x)=lnx ,g(x)=f(x)+f ′(x). (1) 求g(x)的单调区间和最小值; (2) 讨论g(x)与g ⎝⎛⎭⎫1x 的大小关系;(3) 求实数a 的取值范围,使得g(a)-g(x)<1a 对任意x >0成立.(2011·常州模考)(本小题满分16分)已知a 为实数,函数f(x)=(1+ax)e x ,函数g(x)=11-ax,令函数F(x)=f(x)·g(x).(1) 若a =1,求函数f(x)的极小值;F(x)<1;时,求函数F(x)的单调区间. 解:(1) 当a =1时,f(x)=(1+x)e x .则f ′(x)=(x +2)e x .令f ′(x)=0,得x =-2.(1分)∴ 当x =-2时,函数f(x)取得极小值,极小值为f(-2)=-e .(3分) (2) 当a =-12时,F(x)=2-x 2+xe x ,定义域为{x|x ≠-2,x ∈R }.∵ F ′(x)=⎝ ⎛⎭⎪⎫2-x 2+x ′e x +2-x 2+x (e x )′=-x 2e x(2+x )2<0,∴ F(x)在(-∞,-2)及(-2,+∞)上均为减函数.(5分)∵ 当x ∈(-∞,-2)时,F(x)<0,∴ x ∈(-∞,-2)时,F(x)<1. ∵ 当x ∈(-2,+∞)时,F(0)=1,∴ 由F(x)<1=F(0),得x >0. 综上所述,不等式F(x)<1的解集为(-∞,-2)∪(0,+∞).(7分) (3) 函数F(x)=1+ax 1-axe x ,定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪⎭⎫x ∈R ,x ≠1a . 当a <0时,F ′(x)=-a 2x 2+2a +1(1-ax )2e x =-a 2⎝⎛⎭⎫x 2-2a +1a 2(1-ax )2e x .令F ′(x)=0,得x 2=2a +1a 2.(9分)① 当2a +1<0,即a <-12时,F ′(x)<0.∴ 当a <-12时,函数F(x)的单调减区间为⎝⎛⎭⎫-∞,1a ∪⎝⎛⎭⎫1a ,+∞.(11分) ② 当-12<a <0时,解x 2=2a +1a 2得x 1=2a +1a ,x 2=-2a +1a .∵ 1a <2a +1a,∴ 令F ′(x)<0,得x ∈⎝⎛⎭⎫-∞,1a ,x ∈⎝⎛⎭⎫1a ,x 1,x ∈(x 2,+∞); 令F ′(x)>0,得x ∈(x 1,x 2).(13分) ∴ 当-12<a <0时,函数F(x)的单调减区间为⎝⎛⎭⎫-∞,1a ∪⎝ ⎛⎭⎪⎫1a ,2a +1a ∪⎝ ⎛⎭⎪⎫-2a +1a ,+∞; 函数F(x)单调增区间为⎝⎛⎭⎪⎫2a +1a,-2a +1a .(15分) ③ 当2a +1=0,即a =-12时,由(2)知,函数F(x)的单调减区间为(-∞,-2)∪(-2,+∞).(16分)第3讲 基本初等函数1. 已知定义在R 上的奇函数f(x),满足f(x -4)=-f(x)且在区间[0,2]上是增函数,若方程f(x)=m(m>0)在区间[-8,8]上有四个不同的根x 1,x 2,x 3,x 4,则x 1+x 2+x 3+x 4=________.【答案】 -8 解析:因为定义在R 上的奇函数,满足f(x -4)=-f(x),所以f(x -4)=f(-x),对f(x)是奇函数,函数图象关于直线x =2对称且f(0)=0,由f(x -4)=-f(x)知f(x -8)=f(x),所以函数是以8为周期的周期函数,又因为f(x)在区间[0,2]上是增函数,所以f(x)在区间[-2,0]上也是增函数.如图所示,那么方程f(x)=m(m>0)在区间[-8,8]上有四个不同的根x 1,x 2,x 3,x 4,不妨设x 1<x 2<x 3<x 4由对称性知x 1+x 2=-12,x 3+x 4=4,所以x 1+x 2+x 3+x 4=-12+4=-8.2. 已知函数f(x)=x 3-(k 2-k +1)x 2+5x -2,g(x)=k 2x 2+kx +1,其中k ∈R . (1) 设函数p(x)=f(x)+g(x).若p(x)在区间(0,3)上不单调,求k 的取值范围;(2) 设函数q(x)=⎩⎪⎨⎪⎧g (x ),x ≥0,f (x ),x <0.是否存在k ,对任意给定的非零实数x 1,存在唯一的非零实数x 2(x 2≠x 1),使得q ′(x 2)=q ′(x 1)成立?若存在,求k 的值;若不存在,请说明理由.解: (1)因p(x)=f(x)+g(x)=x 3+(k -1)x 2+(k +5)x -1,p ′(x)=3x 2+2(k -1)x +(k +5),因p(x)在区间(0,3)上不单调,所以p ′(x)=0在(0,3)上有实数解,且无重根,由p ′(x)=0得k(2x +1)=-(3x 2-2x +5),∴ k =-(3x 2-2x +5)2x +1=-34⎣⎡⎦⎤(2x +1)+92x +1-103,令t =2x +1,有t ∈(1,7),记h(t)=t +9t ,则h(t)在(1,3]上单调递减,在[3,7)上单调递增,所以有h(t)∈[6,10],于是(2x +1)+92x +1∈[6,10),得k ∈(-5,-2],而当k =-2时有p ′(x)=0在(0,3)上有两个相等的实根x =1,故舍去,所以k ∈(-5,-2).(2) 当x <0时,有q ′(x)=f ′(x)=3x 2-2(k 2-k +1)x +5;当x >0时,有q ′(x)=g ′(x)=2k 2x +k ,因为当k =0时不合题意,因此k ≠0,下面讨论k ≠0的情形,记A =(k ,+∞),B =(5,+∞)①,当x 1>0时,q ′(x)在(0,+∞)上单调递增,所以要使q ′(x 2)=q ′(x 1)成立,只能x 2<0且,因此有k ≥5,②当x 1<0时,q ′(x)在(-∞,0)上单调递减,所以要使q ′(x 2)=q ′(x 1)成立,只能x 2>0且,因此k ≤5,综合①②k =5;当k =5时A =B ,则1<0,q ′(x 1)∈B =A ,即2>0,使得q ′(x 2)=q ′(x 1)成立,因为q ′(x)在(0,+∞)上单调递增,所以x 2的值是唯一的;同理,1<0,即存在唯一的非零实数x 2(x 2≠x 1),使q ′(x 2)=q ′(x 1)成立,所以k =5满足题意. 基础训练 1. (-1,1)2. {x|x <0或x >2}3. (-∞,log a 3) 解析:由题知0<a <1,不等式a 2x -2a x -3>0可化为(a x -3)(a x +1)>0,a x >3,x <log a 3.4.154 解析:由函数y =|log 0.5x|得x =1,y =0;x =4或x =14时y =2,4-14=154. 例题选讲例1 解:(1)函数f(x)为奇函数,f(-x)=-f(x)恒成立,∴ c =0,又由f(1)=2,f(2)<3得⎩⎪⎨⎪⎧a =2b -1,4a +12b <3,0<b <32,b ∈Z ∴ b =1,a =1.(2) f(x)=x 2+1x =x +1x,函数在(-∞,-1)上递增,在(-1,0)上递减.变式训练 已知定义域为R 的函数f(x)=-2x +b 2x +1+a是奇函数.(1) 求a ,b 的值;(2) 若对任意的t ∈R ,不等式f(t 2-2t)+f(2t 2-k)<0恒成立,求实数k 的取值范围. 解: (1) 因为f(x)是定义域为R 的奇函数,所以f(0)=0,即b -1a +2==1, ∴ f(x)=1-2xa +2x +1,又由f(1)= -f(-1)知1-2a +4=-1-12a +1=2.经检验符合题意,∴ a =2,b =1.(2) (解法1)由(1)知f(x)=1-2x 2+2x +1=-12+12x+1, 易知f(x)在(-∞,+∞)上为减函数.又因f(x)是奇函数,从而不等式:f(t 2-2t)+f(2t 2-k)<0等价于f(t 2-2t)<-f(2t 2-k)=f(k -2t 2),因f(x)为减函数,由上式推得:t 2-2t >k -2t 2.即对一切t ∈R 有:3t 2-2t -k >0,从而判别式Δ=4+12k <<-13.(解法2)由(1)知f(x)=1-2x 2+2x +1.又由题设条件得:1-2t 2-2t 2+2t 2-2t +1+1-22t 2-k2+22t 2-k +1<0,即:(22t 2-k +1+2)(1-2t 2-2t)+(2t 2-2t +1+2)(1-22t 2-k)<0,整理得23t 2-2t -k >1,因底数2>1,故: 3t 2-2t -k >0对一切t ∈R 均成立,从而判别式Δ=4+12k <<-13.例2 解:(1)当x <0时,f(x)=0;当x ≥0时,f(x)=2x -12x ,由条件可知2x -12x =2,即22x -2·2x -1=0,解得2x =1±2,∵ x >0,∴ x =log 2(1+2).(2) 当t ∈[1,2]时,2t ⎝⎛⎭⎫22t -122t +m ⎝⎛⎭⎫2t -12t ≥0, 即m(22t -1)≥-(24t -1), ∵ 22t -1>0,∴ m ≥-(22t +1).∵ t ∈[1,2],∴ -(22t +1)∈[-17,-5]. 故m 的取值范围是[-5,+∞).变式训练 设函数f(x)=a x 满足条件:当x ∈(-∞,0)时,f(x)>1.当x ∈(0,1]时,不等式f(3mx -1)>f(1+mx -x 2)>f(m +2)恒成立,求实数m 的取值范围.解: 由已知得0<a <1,由f(3mx -1)>f(1+mx -x 2)>f(m +2),x ∈(0,1]恒成立⎩⎪⎨⎪⎧3mx -1<1+mx -x 2,1+mx -x 2<m +2,在x ∈(0,1]上恒成立. 整理,当x ∈(0,1]时,⎩⎪⎨⎪⎧ 2mx <2-x 2,m (x -1)<1+x 2.恒成立.当x =1时,⎩⎪⎨⎪⎧2mx <2-x 2,m (x -1)<1+x 2恒成立,则m <12. 当x ∈(0,1)时,⎩⎪⎨⎪⎧m <2-x 22x,m >1+x2x -1恒成立, 2-x 22x =1x -x2在(0,1)上单调减,∴ 2-x 22x >12,∴ m ≤12.又∵ x 2+1x -1=(x -1)+2x -1+2,在x ∈(0,1)上是减函数,∴ x 2+1x -1<-1.∴ m >x 2+1x -1恒成立≥-1,当x ∈(0,1)时,⎩⎪⎨⎪⎧m <2-x 22x,m >1+x2x -1,恒成立∈⎣⎡⎦⎤-1,12. 综上,使x ∈(0,1]时,f(3mx -1)>f(1+mx -x 2)>f(m +2)恒成立,实数m 的取值范围是⎣⎡⎭⎫-1,12. 例3 解:(1) g(x)=a(x -1)2+1+b -a ,当a >0时,g(x)在[2,3]上为增函数,故⎩⎪⎨⎪⎧g (3)=4,g (2)=1⎩⎪⎨⎪⎧9a -6a +1+b =4,4a -4a +1+b =1⎩⎪⎨⎪⎧a =1,b =0.当a<0时,g(x)在[2,3]上为减函数.故⎩⎪⎨⎪⎧g (3)=1,g (2)=4⎩⎪⎨⎪⎧9a -6a +1+b =1,4a -4a +1+b =4⎩⎪⎨⎪⎧a =-1,b =3. ∵ b <1 ∴ a =1,b =0即g(x)=x 2-2x +1.f(x)=x +1x -2.(2) 方程f(2x )-k·2x ≥0化为2x +12x -2≥k·2x ,1+⎝⎛⎭⎫12x 2-212x ≥k ,令12x =t ,k ≤t 2-2t +1, ∵ x ∈[-1,1],∴ t ∈⎣⎡⎦⎤12,2.记φ(t)=t 2-2t +1, ∴ φ(t)min =0,∴ k ≤0.(3)由f(|2x -1|)+k ⎝⎛⎭⎫2|2x -1|-3=0得|2x -1|+1+2k|2x -1|-(2+3k)=0,|2x -1|2-(2+3k)|2x -1|+(1+2k)=0,|2x-1|≠0,令|2x -1|=t, 则方程化为t 2-(2+3k)t +(1+2k)=0(t ≠0), ∵ 方程|2x -1|+1+2k|2x -1|-(2+3k)=0有三个不同的实数解, ∴ 由t =|2x -1|的图象(如右图)知,t 2-(2+3k)t +(1+2k)=0有两个根t 1、t 2,且0<t 1<1<t 2或0<t 1<1,t 2=1, 记φ(t)=t 2-(2+3k)t +(1+2k),则⎩⎪⎨⎪⎧φ(0)=1+2k >0,φ(1)=-k <0或⎩⎪⎨⎪⎧φ(0)=1+2k >0,φ(1)=-k =0,0<2+3k 2<1.∴ k >0.例4 解:(1) 由函数f(x)定义域为R ,∴ b >0.又f(x)为奇函数,则f(-x)=-f(x)对x ∈R 恒成立,得a =0. 因为y =f(x)=xx 2+b的定义域为R ,所以方程yx 2-x +by =0在R 上有解. 当y ≠0时,由Δ≥0,得-12b ≤y ≤12b ,而f(x)的值域为⎣⎡⎦⎤-14,14,所以12b =14,解得b =4;当y =0时,得x =0,可知b =4符合题意.所以b =4.(2) ① 因为当x ∈[0,3)时,g(x)=f(x)=xx 2+4,所以当x ∈[3,6)时,g(x)=g(x -3)lnm =(x -3)lnm(x -3)2+4;当x ∈[6,9)时,g(x)=g(x -6)(lnm)2=(x -6)(lnm )2(x -6)2+4,故g(x)=⎩⎪⎨⎪⎧(x -3)lnm (x -3)2+4,x ∈[3,6),(x -6)(lnm )2(x -6)2+4,x ∈[6,9).② 因为当x ∈[0,3)时,g(x)=x x 2+4在x =2处取得最大值为14,在x =0处取得最小值为0,所以当3n ≤x <3n +3(n ≥0,n ∈Z )时,g(x)=(x -3n )(lnm )n (x -3n )2+4分别在x =3n +2和x =3n 处取得最值(lnm )n4与0.(ⅰ) 当|lnm|>1时,g(6n +2)=(lnm )2n4的值趋向无穷大,从而g(x)的值域不为闭区间;(ⅱ) 当lnm =1时,由g(x +3)=g(x)得g(x)是以3为周期的函数,从而g(x)的值域为闭区间⎣⎡⎦⎤0,14; (ⅲ) 当lnm =-1时,由g(x +3)=-g(x)得g(x +6)=g(x),得g(x)是以6为周期的函数,且当x ∈[3,6)时g(x)=-(x -3)(x -3)2+4值域为⎣⎡⎦⎤-14,0,从而g(x)的值域为闭区间⎣⎡⎦⎤-14,14; (ⅳ) 当0<lnm <1时,由g(3n +2)=(lnm )n 4<14,得g(x)的值域为闭区间⎣⎡⎦⎤0,14; (ⅴ) 当-1<lnm <0时,由lnm 4≤g(3n +2)=(lnm )n 4≤14,从而g(x)的值域为闭区间⎣⎡⎦⎤lnm 4,14;⎭⎫∪(1,e],即0<lnm ≤1或-1≤lnm <0时,g(x)的值域为闭区间. 1. -92. ⎝⎛⎭⎫-12,+∞ 3. [0,+∞) 解析:⎩⎪⎨⎪⎧x ≤1,21-x≤2≤x ≤1或⎩⎪⎨⎪⎧x >1,1-log 2x ≤2>1,综上x ≥0.4. 2 解析:(解法1) 方程log a x +x -b =0(a >0,a ≠1)的根为x 0,即函数y =log a x(2<a <3)的图象与函数y =b -x(3<b <4)的交点横坐标为x 0,且x 0∈(n ,n +1),n ∈N *,结合图象,因为当x =a(2<a <3)时,y =log a x(2<a <3)图象上点的纵坐标为1,对应直线上点的纵坐标为y =b -a ∈(0,2),∴ x 0∈(2,3),n =2.(解法2) f(2)=log a 2+2-b <0,f(3)=log a 3+3-b >0,而f(x)在(0,+∞)上单调增,∴ x 0∈(2,3),n =2.5. 解:f(x)的定义域是(0,+∞),f ′(x)=1+2x 2-a x =x 2-ax +2x 2.设g(x)=x 2-ax +2,二次方程g(x)=0的根判别式Δ=a 2-8.① 当Δ=a 2-8<0,即0<a <22时,对一切x >0都有f ′(x)>0,此时f(x)在(0,+∞)上是增函数.② 当Δ=a 2-8=0,即a =22时,仅对x =2有f ′(x)=0,对其余的x >0都有f ′(x)>0,此时f(x)在(0,+∞)上也是增函数.③ 当Δ=a 2-8>0,即a >22时,方程g(x)=0有两个不同的实根x 1=a -a 2-8,x 2=a +a 2-8,0<x 1<x 2.此时减, 在⎝ ⎛⎭⎪⎫a +a 2-82,+∞上单调递增.6. 解:(1) 由题设知f(x)=lnx ,g(x)=lnx +1x , ∴ g ′(x)=x -1x 2,令g ′(x)=0得x =1,当x ∈(0,1)时,g ′(x)<0,g(x)是减函数,故(0,1)是g(x)的单调减区间.当x ∈(1,+∞)时,g ′(x)>0,g(x)是增函数,故(1,+∞)是g(x)的单调递增区间,因此x =1是g(x)的唯一极值点,且为极小值点,从而是最小值点,所以g(x)的最小值为g(1)=1.(2) g ⎝⎛⎭⎫1x =-lnx +x ,设h(x)=g(x)-g ⎝⎛⎭⎫1x =2lnx -x +1x ,则h ′(x)=-(x -1)2x 2,当x =1时,h(1)=0,即g(x)=g ⎝⎛⎭⎫1x ,当x ∈(0,1)∪(1,+∞)时,h ′(x)<0,因此h(x)在(0,+∞)内单调递减,当0<x <1时,h(x)>h(1)=0,即g(x)>g ⎝⎛⎭⎫1x .x>1时,h(x)<h(1)=0,g(0)<g ⎝⎛⎭⎫1x . (3) 由(1)知g(x)的最小值为1,所以g(a)-g(x)<1a ,对任意x >0恒成立-1<1a,即lna <1从而得0<a <e.第4讲 函数的实际应用1. 零点问题,在掌握二分法的解题步骤基础上,学会分析转化,能够把与之有关的问题化归为方程零点问题.2. 函数模型的实际应用问题,主要抓住常见函数模型的训练,如幂指对模型,二次函数模型,数列模型,分段函数模型等,解答的重点是在信息整理和建模上.3. 掌握解函数应用题的方法与步骤:(1) 正确地将实际问题转化为函数模型(建模);(2) 用相关的函数知识进行合理的设计,确定最佳的解题方案,进行计算与推理(解模);(3) 把计算或推理得到的结果代回到实际问题中去解释实际问题,即对实际问题进行总结作答(检验、作答).1. 函数f(x)=e x +x -2的零点为x 0,则不小于x 0的最小整数为________.2.关于x 的方程⎝⎛⎭⎫34x =3a +25-a 有负实根,则实数a 的取值范围是________.3.某工厂的产值月平均增长率为p ,则年平均增长率为________.4.某人在2009年初贷款 m 万元,年利率为x ,从次年初开始偿还,每年偿还的金额都是n 万元,到2012年初恰好还清,则n 的值是________.【例1】 已知直线y =mx(m ∈R )与函数f(x)=⎩⎨⎧2-⎝⎛⎭⎫12x ,x ≤0,12x 2+1,x>0的图象恰有3个不同的公共点,求实数m 的取值范围.【例2】 某村计划建造一个室内面积为 800 m 2的矩形蔬菜温室.在温室内,沿左、右两侧与后侧内墙各保留 1 m 宽的通道,沿前侧内墙保留3 m 宽的空地.当矩形温室的边长各为多少时,蔬菜的种植面积最大?最大种植面积是多少?【例3】 2014年青奥会水上运动项目将在J 地举行.截至2010年底,投资集团B 在J 地共投资100百万元用于房地产和水上运动两个项目的开发.经调研,从2011年初到2014年底的四年间,B 集团预期可从三个方面获得利润:一是房地产项目,四年获得的利润的值为该项目投资额(单位:百万元)的20%;二是水上运动项目,四年获得的利润的值为该项目投资额(单位:百万元)的算术平方根;三是旅游业,四年可获得利润10百万元.(1) B 集团的投资应如何分配,才能使这四年总的预期利润最大?(2) 假设从2012年起,J 地政府每年都要向B 集团征收资源占用费,2012年征收2百万元,以后每年征收的金额比上一年增加10%.若B 集团投资成功的标准是:从2011年初到2014年底,这四年总的预期利润中值(预期最大利润与最小利润的平均数)不低于总投资额的18%,问B 集团投资是否成功?【例4】 已知函数f(x)=-x 2+8x ,g(x)=6lnx +m. (1) 求f(x)在区间[t ,t +1]上的最大值h(t);(2) 是否存在实数m ,使得y =f(x)的图象与y =g(x)的图象有且只有三个不同的交点?若存在,求出m 的取值范围;若不存在,说明理由.1. (2010·浙江)已知x 0是函数f(x)=2x +11-x的一个零点.若x 1∈(1,x 0),x 2∈(x 0,+∞),则f(x 1)f(x 2)________0.(填“>”或“<”).2.(2011·北京)根据统计,一名工人组装第x 件某产品所用的时间(单位:分钟)为f(x)=⎩⎨⎧cx,x<A ,cA ,x ≥A ,(A ,c 为常数).已知工人组装第4件产品用时30分钟,组装第A 件产品时用时15分钟,那么c 和A 的值分别是________.3.(2010·浙江)某商家一月份至五月份累计销售额达3 860万元,预测六月份销售额为500万元,七月份销售额比六月份递增x%,八月份销售额比七月份递增x%,九、十月份销售总额与七、八月份销售总额相等,若一月至十月份销售总额至少达7 000万元,则x 的最小值为________.4.(2011·重庆)设m ,k 为整数,方程mx 2-kx +2=0在区间(0,1)内有两个不同的实根,则m +k 的最小值为________.5.(2011·山东)某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的体积为80π3立方米,且l ≥2r.假设该容器的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米建造费用为c(c>3)千元.设该容器的建造费用为y 千元.(1) 写出y 关于r 的函数表达式,并求该函数的定义域; (2) 求该容器的建造费用最小时的r.6.(2011·福建)某商场销售某种商品的经验表明,该商品每日的销售量y(单位:千克)与销售价格x(单位:元/千克)满足关系式y =ax -3+10(x -6)2,其中3<x<6,a 为常数,已知销售价格为5元/千克时,每日可售出该商品11千克.(1) 求a 的值;(2) 若该商品的成本为3元/千克, 试确定销售价格x 的值,使商场每日销售该商品所获得的利润最大.。
2020版新高考二轮复习理科数学教学案:第二部分第2讲 逻辑、算法Word版含答案

第2讲逻辑、算法调研一命题及逻辑用语■备考工具——————————————1.命题用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.2.四种命题及其关系(1)原命题为“若p,则q”,则它的逆命题为“若q,则p”;否命题为“若綈p,则綈q”;逆否命题为“若綈q,则綈p”.(2)原命题与它的逆否命题等价;逆命题与它的否命题等价.3.全称命题与特称命题的结构注意:x(指某一类数),“∃”后面跟的一般是单指的数x0(指某一类中的一个数).(2)否定结论时要注意一些词语的否定方法,常见的一些词语及其否定如下:“綈p且綈q”,“p且q”的否定形式是“綈p或綈q”.■自测自评——————————————1.[2019·开封定位考试]若命题p:∀x∈R,x-ln x>0,则綈p 为()A.∃x0∈R,x0-ln x0≤0B.∃x0∈R,x0-ln x0>0C.∀x∈R,x-ln x≤0D.∀x∈R,x-ln x<0解析:因为全称命题的否定是特称命题,所以綈p:∃x0∈R,x0-ln x0≤0,故选A.答案:A2.[2019·湖北重点中学联考]已知p:∃x0∈R,3x0<x30,那么綈p 为()A.∀x∈R,3x<x3B.∃x0∈R,3x0>x30C.∀x∈R,3x≥x3D.∃x0∈R,3x0≥x30解析:因为特称命的否定为全称命题,所以綈p:∀x∈R,3x≥x3,故选C.答案:C3.[2019·安徽示范高中考试]已知下列两个命题,p1:存在正数a,使函数y=2x+a·2-x在R上为偶函数;p 2:函数y =sin x +cos x +2无零点.则在命题q 1:p 1∨p 2,q 2:p 1∧p 2,q 3:(綈p 1)∨p 2,q 4:p 1∧(綈p 2)中,真命题是( )A .q 1,q 4B .q 2,q 3C .q 1,q 3D .q 2,q 4解析:当a =1时,y =2x +a ·2-x 在R 上是偶函数,所以p 1为真命题.当x =5π4时,函数y =sin x +cos x +2=0,所以命题p 2是假命题.所以p 1∨p 2,p 1∧(綈p 2)是真命题,故选A.答案:A4.[2019·济南质量评估]已知命题p :关于m 的不等式log 2m <1的解集为{m |m <2};命题q :函数f (x )=x 3+x 2-1有极值.下列命题为真命题的是( )A .p ∧qB .p ∧(綈q )C .(綈p )∧qD .(綈p )∧(綈q )解析:由log 2m <1,得0<m <2,故命题p 为假命题;f ′(x )=3x 2+2x ,令f ′(x )=0得x =-23或x =0,所以f (x )在⎝⎛⎭⎪⎫-∞,-23和(0,+∞)上单调递增,在⎝ ⎛⎭⎪⎫-23,0上单调递减,故f (x )有极值,所以命题q 为真命题.所以(綈p )∧q 为真命题.答案:C5.[2019·太原一模]下列命题中的真命题是( ) A .若a ·b <0,则向量a 与b 的夹角为钝角 B .若am 2≥bm 2,则a ≥bC .若命题“p ∨q 是真命题”,则命题“p ∧q 是真命题”D .命题“∃x 0∈R,<x 20”的否定是“∀x ∈R ,2x ≥x 2” 解析:对于A ,当向量a 与b 的夹角为π时,cos 〈a ,b 〉=a ·b|a |·|b |=cosπ=-1,此时a ·b <0,但向量a ,b 的夹角不为钝角,故A 是假命题;对于B ,当m =0,a =-1,b =1时,满足am 2≥bm 2,但a <b ,故B 是假命题;对于C ,若p ∨q 是真命题,则p ,q 一真一假,或p ,q 均为真命题,故p ∧q 不一定是真命题,C 是假命题;命题“∃x 0∈R,<x 20”的否定是“∀x ∈R,2x ≥x 2”,故D 是真命题.选D.答案:D6.[2019·南昌二模]已知函数f (x )=ax 2+x +a ,命题p :∃x 0∈R ,f (x 0)=0,若p 为假命题,则实数a 的取值范围是( )A.⎣⎢⎡⎦⎥⎤-12,12B.⎝ ⎛⎭⎪⎫-12,12 C.⎝⎛⎭⎪⎫-∞,-12∪⎝⎛⎭⎪⎫12,+∞D.⎝ ⎛⎦⎥⎤-∞,-12∪⎣⎢⎡⎭⎪⎫12,+∞ 解析:∵命题p :∃x 0∈R ,f (x 0)=0是假命题,∴方程f (x )=0没有实数根,∵f (x )=ax 2+x +a ,∴方程ax 2+x +a =0没有实数根.∵a =0时,x =0为方程ax 2+x +a =0的根, ∴a ≠0,∴Δ=1-4a 2<0且a ≠0, ∴a <-12或a >12,故选C. 答案:C调研二 充要条件■备考工具—————————————— 1.充分条件与必要条件(1)若p ⇒q 且q p ,则p 是q 的充分不必要条件. (2)若q ⇒p 且 p q ,则p 是q 的必要不充分条件. (3)若p ⇒q 且q ⇒p ,则p 是q 的充要条件.(4)若p q 且q p ,则p 是q 的既不充分也不必要条件. 2.充要条件的判断方法记条件p,q对应的集合分别为A,B.若A B,则p是q的充分不必要条件;若A B,则p是q的必要不充分条件;若A=B,则p是q的充要条件1.[2019·天津卷]设x∈R,则“x2-5x<0”是“|x-1|<1”的() A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件解析:由x2-5x<0可得0<x<5.由|x-1|<1可得0<x<2.由于区间(0,2)是(0,5)的真子集,故“x 2-5x <0”是“|x -1|<1”的必要而不充分条件.答案:B2.[2019·浙江卷]设a >0,b >0,则“a +b ≤4”是“ab ≤4”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:通解:因为a >0,b >0,所以a +b ≥2ab ,由a +b ≤4可得2ab ≤4,解得ab ≤4,所以充分性成立;当ab ≤4时,取a =8,b =13,满足ab ≤4,但a +b >4,所以必要性不成立.所以“a +b ≤4”是“ab ≤4”的充分不必要条件.故选A.优解:在同一坐标系内作出函数b =4-a ,b =4a 的图象,如图,则不等式a +b ≤4与ab ≤4表示的平面区域分别是直线a +b =4及其左下方(第一象限中的部分)与曲线b =4a 及其左下方(第一象限中的部分),易知当a +b ≤4成立时,ab ≤4成立,而当ab ≤4成立时,a +b ≤4不一定成立.故选A.答案:A3.[2019·北京卷]设点A ,B ,C 不共线,则“AB →与AC →的夹角为锐角”是“|AB→+AC →|>|BC →|”的( ) A .充分而不必要条件 B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件解析:若|AB→+AC →|>|BC →|,则|AB →+AC →|2>|BC →|2,AB →2+AC →2+2AB →·AC →>|BC →|2,∵点A ,B ,C 不共线,∴线段AB ,BC ,AC 构成一个三角形ABC ,设内角A ,B ,C 对应的边分别为a ,b ,c ,则由平面向量的数量积公式及余弦定理可知,AB →2+AC →2+2AB →·AC →>|BC →|2,即c 2+b 2+2bc ·cos A >c 2+b 2-2bc ·cos A ,∴cos A >0,又A ,B ,C 三点不共线,故AB→与AC →的夹角为锐角.反之,易得当AB →与AC →的夹角为锐角时,|AB→+AC →|>|BC →|,∴“AB →与AC →的夹角为锐角”是“|AB →+AC →|>|BC →|”的充分必要条件,故选C.答案:C4.[2019·合肥质检一]已知偶函数f (x )在[0,+∞)上单调递增,则对实数a ,b ,“a >|b |”是“f (a )>f (b )”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:因为f (x )为偶函数,所以f (x )=f (-x )=f (|x |),由于f (x )在[0,+∞)上单调递增,因此若a >|b |≥0,则f (a )>f (|b |),即f (a )>f (b ),所以a >|b |是f (a )>f (b )的充分条件;若f (a )>f (b ),则f (|a |)>f (|b |),可得|a |>|b |≥0,由于a ,b 的正负不能判断,因此无法得到a >|b |,则a >|b |不是f (a )>f (b )的必要条件,所以“a >|b |”是“f (a )>f (b )”的充分不必要条件,故选A.答案:A5.[2019·南昌一模]已知r >0,y ∈R ,p :“|x |+|y |2≤1”,q :“x 2+y 2≤r 2”,若p 是q 的必要不充分条件,则实数r 的取值范围是( )A.⎝ ⎛⎦⎥⎤0,255 B .(0,1]C.⎣⎢⎡⎭⎪⎫255,+∞ D .[2,+∞)解析:由题意,命题p 对应的是菱形及其内部,当x >0,y >0时,可得菱形的一边所在的直线方程为x +y2=1,即2x +y -2=0,由p 是q 的必要不充分条件,可得圆x 2+y 2=r 2的圆心到直线2x +y -2=0的距离d =24+1=255≥r ,又r >0,所以实数r 的取值范围是⎝ ⎛⎦⎥⎤0,255,故选A.答案:A6.[2019·长沙一模]在等比数列{a n }中,“a 1,a 3是方程x 2+3x +1=0的两根”是“a 2=±1”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:在等比数列{a n }中,a 1·a 3=a 22.由a 1,a 3是方程x 2+3x +1=0的两根可得a 1·a 3=1,所以a 22=1,所以a 2=±1,所以“a 1,a 3是方程x 2+3x +1=0的两根”是“a 2=±1”的充分条件;由a 2=±1得a 1·a 3=1,满足此条件的一元二次方程不止一个.所以“a 1,a 3是方程x 2+3x +1=0的两根”是“a 2=±1”的充分不必要条件,故选A.答案:A调研三 算法■备考工具—————————————— 1.三种基本逻辑结构3.角度:(1)条件结构与分段函数相结合;(2)当型循环结构的结果输出问题;(3)直到型循环结构的结果输出问题.考查题型多为选择题,有时也以填空题形式考查,难度相对较小,属中低档题.复习时,不管面对含什么结构的程序框图,首先要做的就是弄清程序框图想要实现的最终功能.对于条件结构,要根据条件进行判断,弄清程序的流向;对于循环结构,要弄清楚循环体是什么、变量的初始条件是什么和循环的终止条件是什么,要特别注意循环终止时各变量的当前值.4.程序框图的补全及逆向求解问题 (1)先假设参数的判断条件满足或不满足;(2)运行循环结构,一直到运行结果与题目要求的输出结果相同为止;(3)根据此时各个变量的值,补全程序框图. 5.程序框图的应用技巧(1)条件结构的应用:利用条件结构解决算法问题时,要引入判断框,根据题目的要求引入一个或多个判断框,而判断框内的条件不同,对应的下一个程序框中的内容和操作要相应地进行变化,故要逐个分析判断框内的条件.(2)在解决一些有规律的科学计算问题,尤其是累加、累乘等问题时,往往可以利用循环结构来解决.在循环结构中,需要恰当设置累加、累乘变量和计数变量;执行循环结构首先要分清是先执行循环体,再判断条件,还是先判断条件,再执行循环体.其次注意控制循环的变量是什么,何时退出循环.最后要清楚循环体内的程序是什么,是如何变化的.6.注意三种统计案例 (1)更相减损术和辗转相除法. (2)秦九韶算法. (3)进位制(除k 取余法).■自测自评——————————————1.[2019·全国卷Ⅰ]如图是求12+12+12的程序框图,图中空白框中应填入( )A .A =12+AB .A =2+1AC.A=11+2AD.A=1+12A解析:A=12,k=1,1≤2成立,执行循环体;A=12+12,k=2,2≤2成立,执行循环体;A=12+12+12,k=3,3≤2不成立,结束循环,输出A.故空白框中应填入A=12+A.故选A.答案:A2.[2019·全国卷Ⅲ]执行如图的程序框图,如果输入的ε为0.01,则输出s的值等于()A.2-124B.2-125C.2-126D.2-127解析:执行程序框图,x =1,s =0,s =0+1=1,x =12, 不满足x <ε=1100,所以s =1+12=2-121,x =14,不满足x <ε=1100, 所以s =1+12+14=2-122,x =18,不满足x <ε=1100, 所以s =1+12+14+18=2-123,x =116,不满足x <ε=1100, 所以s =1+12+14+18+116=2-124,x =132,不满足x <ε=1100, 所以s =1+12+14+18+116+132=2-125,x =164,不满足x <ε=1100, 所以s =1+12+14+18+…+164=2-126,x =1128,满足x <ε=1100, 输出s =2-126,选C. 答案:C3.[2019·惠州调研]对一个做直线运动的质点的运动过程观测了8次,得到如下表所示的数据.(其中a 是这8个数据的平均数),则输出的S 的值是( )A .6B .7C .8D .9解析:∵a =18×(40+41+43+43+44+46+47+48)=44, ∴S =18×[(-4)2+(-3)2+(-1)2+(-1)2+02+22+32+42]=7.故选B.答案:B3题图4.[2019·合肥调研]执行如图所示的程序框图,若输出的结果为15,则判断框中的条件是( )A .i <4?B .i <5?C .i <6?D .i <7?解析:由程序框图可知,该程序框图的功能是计算S =1+2+3+…+i =i (i +1)2的值,又S =15,所以i =5,当i +1=6时退出循环,结合选项可知,应填i <6?.故选C.答案:C5.[2019·开封定位考试]执行如图所示的程序框图,若输出的结果为3,则输入的x 为( )A .-1B .0C .-1或1D .-1或0解析:由⎩⎪⎨⎪⎧ x <0,-x 2+4=3得x =-1;由⎩⎪⎨⎪⎧x ≥0,3x +2=3得x =0.故选D.答案:D6.[2019·福州质量抽测]秦九韶是我国南宋时期的数学家,普州安岳(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求多项式值的一个实例,若输入n ,x 的值分别为3,3,则输出v 的值为( )A.143 B.48C.16 D.5解析:开始,n=3,x=3,v=1,i=2,第一次循环,v=v x+i =1×3+2=5,i=1;第二次循环,v=v x+i=5×3+1=16,i=0;第三次循环,v=v x+i=16×3+0=48,i=-1,不满足条件,退出循环.输出v=48,故选B.答案:B。
2020高考数学二轮总复习 集合逻辑2学案(特长班)

高三特长班数学总复习——集合、简易逻辑及不等式(2)1、不等式32x x -+<0的解集为 (A ){}23x x -<< (B ){}2x x <- (C ){}23x x x <->或 (D ){}3x x >2、若A={}|10x x +>,B={}|30x x -<,则A B I =(A)(-1,+∞) (B)(-∞,3) (C)(-1,3) (D)(1,3)3、设2{|1},{|4},P x x Q x x =<=<则P Q =I(A){|12}x x -<< (B){|31}x x -<<-(C){|14}x x <<- (D){|21}x x -<<4、设U =R ,{|0}A x x =>,{|1}B x x =>,则U A B =I ð( )A .{|01}x x ≤<B .{|01}x x <≤C .{|0}x x <D .{|1}x x > 5、{}{}A x||x-a|<1,x R ,|15,.A B B x x x R =∈=<<∈⋂=∅若,则实数a 的取值范围是 (A){}a |0a 6≤≤ (B){}|2,a a ≤≥或a 4(C){}|0,6a a ≤≥或a (D){}|24a a ≤≤6、若集合,则是 A .{1,2,3} B. {1,2} C. {4,5} D. {1,2,3,4,5}7、设集合S ={x |5<x },T ={x |0)3)(7(<-+x x }.则T S ⋂=A.{x |-7<x <-5 }B. {x | 3<x <5 }C.{x | -5 <x <3}D. {x | -7<x <5 }.8、设不等式20x x -≤的解集为M ,函数()ln(1||)f x x =-的定义域为N ,则M N ⋂为(A )[0,1) (B )(0,1) (C )[0,1] (D )(-1,0]9、已知全集U R =,则正确表示集合{1,0,1}M =-和{}2|0N x x x =+=关系的韦恩(Venn )图是10、已知全集U R =,集合{212}M x x =-≤-≤和{21,1,2,}N x x k k ==-=L 的关系的韦恩(Venn )图如图1所示,则阴影部分所示的集合的元素共有A. 3个B. 2个C. 1个D. 无穷多个11、函数()()2log 31x f x =+的值域为A. ()0,+∞B. )0,+∞⎡⎣C. ()1,+∞D. )1,+∞⎡⎣ 12、函数164x y =-的值域是(A )[0,)+∞ (B )[0,4](C )[0,4) (D )(0,4)13、设123log 2,ln 2,5a b c -===则(A )a b c <<(B )b c a << (C) c a b << (D) c b a <<14、下列命题中的假命题...是 A. ,lg 0x R x ∃∈= B. ,tan 1x R x ∃∈=C. 3,0x R x ∀∈>D. ,20x x R ∀∈>15、“()24x k k Z ππ=+∈”是“tan 1x =”成立的(A )充分不必要条件. (B )必要不充分条件.(C )充分条件. (D )既不充分也不必要条件.16、“a >0”是“a >0”的(A)充分不必要条件(B )必要不充分条件 (C )充要条件 (D )既不充分也不必要条件17、设{}n a 是首项大于零的等比数列,则“12a a <”是“数列{}n a 是递增数列”的(A )充分而不必要条件 (B)必要而不充分条件(C)充分必要条件 (D)既不充分也不必要条件18、函数2()1f x x mx =++的图像关于直线1x =对称的充要条件是(A )2m =- (B )2m = (C )1m =- (D )1m =19、下列命题是真命题的为A .若11x y =,则x y =B .若21x =,则1x =C .若x y =,则x y =D .若x y <,则 22x y <20、已知,a b 是实数,则“0a >且0b >”是“0a b +>且0ab >”的A .充分而不必要条件B .必要而不充分条件.C .充分必要条件D .既不充分也不必要条件21、设””是“则“x x x R x ==∈31,的.A 充分不必要条件B 必要不充分条件C 充要条件D 既不充分也不必要条件22、命题“存在0x ∈R ,02x ≤0”的否定是.(A )不存在0x ∈R, 02x >0 (B )存在0x ∈R, 02x ≥0(C )对任意的x ∈R, 2x ≤0 (D )对任意的x ∈R, 2x >023、下列4个命题111:(0,),()()23x x p x ∃∈+∞< 2:(0,1),p x ∃∈log 1/2x>log 1/5x31p :(0,),()2x x ∀∈+∞>㏒1/2x 411:(0,),()32x p x ∀∈<㏒1/3x 其中的真命题是(A )13,p p ( B )14,p p (C )23,p p (D )24,p p24、不等式224122x x +-≤的解集为设x 是实数,则“x >0”是“|x |>0”的 A (A)充分而不必要条件(B)必要而不充分条件(C)充要条件(D)既不充分也不必要条件25、已知p 是r 的充分条件而不是必要条件,q 是r 的充分条件,s 是r 的必要条件,q 是s 的必要条件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年高考第二轮专题复习(教学案):逻辑与推理考纲指要:掌握常用的逻辑用语,包括命题与量词,基本逻辑联结词以及充分条件、必要条件与命题的四种形式,合情推理和演绎推理、直接证明与间接证明、数学归纳法(理科)等内容。
考点扫描:1.常用逻辑用语:(1)命题及其关系;(2)简单的逻辑联结词;(3)全称量词与存在量词2.推理与证明:(1)合情推理与演绎推理;(2)直接证明与间接证明。
考题先知:例1。
已知p |1-31-x |≤2,q :x 2-2x +1-m 2≤0(m >0),若⌐p 是⌐q 的必要而不充分条件,求实数m 的取值范围分析:利用等价命题先进行命题的等价转化,搞清晰命题中条件与结论的关系,再去解不等式,找解集间的包含关系,进而使问题解决解由题意知命题若⌐p 是⌐q 的必要而不充分条件的等价命题即逆否命题为p 是q 的充分不必要条件p :|1-31-x |≤2⇒-2≤31-x -1≤2⇒-1≤31-x ≤3⇒-2≤x ≤10 q :x 2-2x +1-m 2≤0⇒[x -(1-m )][x -(1+m )]≤0 * ∵p 是q 的充分不必要条件,∴不等式|1-31-x |≤2的解集是x 2-2x +1-m 2≤0(m >0)解集的子集又∵m >0∴不等式*的解集为1-m ≤x ≤1+m∴⎩⎨⎧≥≥⇒⎩⎨⎧≥+-≤-9110121m m m m ,∴m ≥9,∴实数m 的取值范围是[9,+∞)点评:对四种命题以及充要条件的定义实质理解不清晰是解此题的难点,对否命题,学生本身存在着语言理解上的困难例2.已知函数()(),023232≠++-=a cx x a x a x g (I )当1=a 时,若函数()x g在区间()1,1-上是增函数,求实数c 的取值范围;(II )当21≥a 时,(1)求证:对任意的[]1,0∈x ,()1/≤x g 的充要条件是43≤c ;(2)若关于x 的实系数方程()0/=x g 有两个实根βα,,求证:,1≤α且1≤β的充要条件是.412a a c -≤≤-解:(1)当1=a 时,cx x x x g ++-=232131)(,c x x x g ++-='2)( )(x g Θ在(—1,1)上为单调递增函数,0)(≥'∴x g 在(—1,1)上恒成立02≥++-∴c x x 在(—1,1)上恒成立2≥∴c(2)设)()(x f x g =',则复习智略:例3.如图,F 是定直线l 外的一个定点,C 是l 上的动点,有下列结论:若以C 为圆心,CF 为半径的圆与l 交于A 、B 两点,过A 、B 分别作l 的垂线与圆C 过F 的切线交于点P 和点Q ,则P 、Q 必在以F 为焦点,l 为准线的同一条抛物线上. (Ⅰ)建立适当的坐标系,求出该抛物线的方程; (Ⅱ)对以上结论的反向思考可以得到另一个命题: “若过抛物线焦点F 的直线与抛物线交于P 、Q 两点, 则以PQ 为直径的圆一定与抛物线的准线l 相切”请问:此命题是否正确?试证明你的判断;(Ⅲ)请选择椭圆或双曲线之一类比(Ⅱ)写出相应的命题并证明其真假. 解:(Ⅰ)过F 作l 的垂线交l 于K ,以KF 的中点为原点,KF 所在的直线为x 轴建立平面直角坐标系如图1,并设|KF|=p ,则可得该该抛物线的方程为 )0(22>=p px y .(Ⅱ)该命题为真命题,证明如下:如图2,设PQ 中点为M ,P 、Q 、M 在抛物线准线l 上的射影分别为A 、B 、D ,∵PQ 是抛物线过焦点F 的弦,∴ |PF|=|PA|,|QF|=|QB|,又|MD|是梯形APQB 的中位线, ∴2||)||||(21)||||(21||PQ QF PF QB PA MD =+=+=. ∵M 是以PQ 为直径的圆的圆心,∴圆M 与l 相切. (注:也可利用方程及坐标证明).(Ⅲ)选择椭圆类比(Ⅱ)所写出的命题为: “过椭圆一焦点F 的直线与椭圆交于P 、Q 两点,则以PQ 为直径的圆一定与椭圆相应的准线l 相离”. 此命题为真命题,证明如下:证明:设PQ 中点为M ,椭圆的离心率为e ,则0<e <1,P 、Q 、M 在相应准线l 上的射影分别为A 、B 、D ,∵e PA PF =||||,∴e PF PA ||||=; 同理得 eQF QB ||||=. ∵|MD|是梯形APQB 的中位线, ∴2||2||)||||(212||||||PQ e PQ e QF e PF QB PA MD >=+=+=.∴圆M 与准线l 相离.选择双曲线类比(Ⅱ)所写出的命题为:“过双曲线一焦点F 的直线与双曲线交于P 、Q 两点,则以PQ 为直径的圆一定与双曲线相应的准线l 相交”. 此命题为真命题,证明如下:证明:设PQ 中点为M ,双曲线的离心率为e ,则e >1,P 、Q 、M 在相应准线l 上的 射影分别为A 、B 、D ,∵e PA PF =||||,∴e PF PA ||||=; 同理得 eQF QB ||||=. ∵|MD|是梯形APQB 的中位线, ∴2||2||)||||(212||||||PQ e PQ e QF e PF QB PA MD <=+=+=. ∴圆M 与准线l 相交.检测评估:1函数f (x )=x |x +a |+b 是奇函数的充要条件是( )A ab =0B a +b =0C a =bD a 2+b 2=02 “a =1”是函数y =cos 2ax -sin 2ax 的最小正周期为“π”的( )A 充分不必要条件B 必要不充分条件C 充要条件D 既非充分条件也不是必要条件3. 现代社会对破译密码的难度要求越来越高.有一种密码把英文的明文(真实文)按字母分解,其中英文的z c b a ,,,,Λ的26个字母(不论大小写)依次对应1,2,3,…,26这26个自然数(见下表):现给出一个变换公式:⎪⎪⎩⎪⎪⎨⎧≤∈+≤∈+=整除能被整除不能被2,26,(132)2,26,(21**'x x N x x x x N x x x 将明文转换成密文,如1713288=+→,即h 变成q ; 32155=+→,即e 变成c .按上述规定,若将明文译成的密文是shxc ,那么原来的明文是A . lhhoB .loveC .ohhlD .eovl4.命题p :“有些三角形是等腰三角形”,则┐p 是( ) A .有些三角形不是等腰三角形 B .所有三角形是等腰三角形 C .所有三角形不是等腰三角形 D .所有三角形是等腰三角形 5、给出如下两个命题:命题A :函数(1)y a x =-为增函数。
命题B :不等式2(1)40()x a x a R +++≤∈的解集为∅。
若命题“A 或B ”为真命题,而命题“A 且B ”为假命题,则实数a 的取值范围是( )1A 、(5,1][3,)-+∞U B 、[5,1](3,)-+∞U C 、(5,1)[3,)-+∞U D 、(5,1)(3,)-+∞U6。
把下面在平面内成立的结论类比推广到空间,并判断类比的结论是否成立:1) 如果一条直线与两条平行直线中的一条相交,则必于另一条相交。
2)如果两条直线同时垂直与第三条直线,则这两条直线平行。
7。
有A 、B 、C 三个盒子,其中一个内放有一个苹果,在三个盒子上各有一张纸条. A 盒子上的纸条写的是“苹果在此盒内”, B 盒子上的纸条写的是“苹果不在此盒内”, C 盒子上的纸条写的是“苹果不在A 盒内”.如果三张纸条中只有一张写的是真的,请问苹果究竟在哪个盒子里 8.有一个游戏:将分别写有数字1,2,3,4的四张卡片随机发给甲、乙、丙、丁4个人,每人一张,并请4个人进行预测:甲说:乙或丙拿到标有3的卡片; 乙说:甲或丙拿到标有2的卡片;丙说:标有1的卡片在甲手中;丁说:甲拿到标有3的卡片. 结果显示:甲、乙、丙、丁4个人预测的都不正确.那么甲、乙、丙、丁4个人拿到的卡片依次为9.有限集合S 中元素的个数记做()card S ,设,A B 都为有限集合,给出下列命题:①A B =∅I 的充要条件是()()()card A B card A card B =+U ;②A B ⊆的必要条件是()()card A card B ≤;③B B A =⋃的充要条件是()()card A card B ≤;④A B =的充要条件是()()card A card B =.其中真命题的序号是10.给出如下4个命题:①若α、β是两个不重合的平面,l 、m 是两条不重合的直线,则α∥β的一个充分而不必要条件是l ⊥α,m⊥β,且l ∥m ;②对于任意一条直线a ,平面α内必有无数条直线与a 垂直;③已知命题P :若四点不共面,那么这四点中任何三点都不共线.而命题P 的逆否命题是假命题;④已知a 、b 、c 、d 是四条不重合的直线,如果a ⊥c ,a ⊥d ,b ⊥c ,b ⊥d ,则“a ∥b ”与“c ∥d ”不可能都不成立.在以上4个命题中,正确命题的序号是_____. (要求将所有你认为正确的命题序号都填上)11.角铁是一种工业用钢料(如图), 它成直二面角PQ −MN −RS (PQMN 、RSMN 是全等的长方形).取MN 的中点O,在QP 上取点B 、B 1,在SR 上取点A 、A 1,使∠MOB=∠MOA=∠B 1ON=∠A 1ON.为给一物体棱的转角处包上角铁,可沿OA,OA 1,OB,OB 1切割出∆OAA 1,∆OBB 1,然后将角铁绕内部折叠,将OA 与OA 1,OB 与OB 1焊合,并使∠MON=900.(1)设AB 的中点为D, A 1B 1的中点为D 1,证明焊接前M 、D 、D 1、N 四点共面; (2)求切割线OA 与棱OM 所成的角.12.已知函数f (x )=x 4+ax 3+bx 2+c ,在y 轴上的截距为-5,在区间[0,1]上单调递增,在[1,2]上单调递减,又当x =0,x =2时取得极小值. (Ⅰ)求函数f (x )的解析式;(Ⅱ)能否找到函数f (x )垂直于x 轴的对称轴,并证明你的结论;(Ⅲ)设使关于x 的方程f (x )=λ2x 2-5恰有三个不同实根的实数λ的取值范围为集合A ,且两个非零实根为x 1、x 2.试问:是否存在实数m ,使得不等式m 2+tm +2≤|x 1-x 2|对任意t ∈[-3,3], λ∈A 恒成立?若存在,求m 的取值范围;若不存在,请说明理由.点拨与全解:1解析若a 2+b 2=0,即a =b =0,此时f (-x )=(-x )|x +0|+0=-x ·|x |=-(x |x +0|+b )=-(x |x +a |+b )=-f (x )∴a 2+b 2=0是f (x )为奇函数的充分条件,又若f (x )=x |x +a |+b 是奇函数,即f (-x )=(-x )|(-x )+a |+b =-f (x ),则必有a =b =0,即a 2+b 2=0∴a 2+b 2=0是f (x )为奇函数的必要条件故选D 。