栈的类型定义与基本操作

合集下载

(完整版)《栈》知识点总结

(完整版)《栈》知识点总结

完整版)《栈》知识点总结1.栈的定义与特点栈是一种具有特定限制的数据结构,遵循“后进先出”(Last-In-First-Out,简称LIFO)的原则。

栈的特点包括:只允许在栈顶进行插入和删除操作;对栈进行插入操作称为入栈或压栈(Push);对栈进行删除操作称为出栈或弹栈(Pop);栈底是栈的最后一个入栈的元素,栈顶是栈的第一个入栈的元素;2.栈的应用领域栈在计算机科学和软件工程中有广泛的应用,常见的应用领域包括:编程语言的解析和编译;递归算法的实现;表达式求值;括号匹配;浏览器的后退和前进功能;操作系统中的函数调用栈等。

3.栈的基本操作栈的基本操作主要包括以下几个方面:初始化栈:创建一个空的栈对象,并指定栈的初始容量;判断栈是否为空:检查栈是否为空,如果栈为空则返回真,否则返回假;入栈操作:将一个元素压入栈顶;出栈操作:从栈顶弹出一个元素,并返回弹出的元素;取栈顶元素:返回栈顶的元素,但不对栈进行修改;___:删除栈中的所有元素。

4.栈的实现方式栈可以通过数组或链表来实现。

使用数组实现的栈称为顺序栈,使用链表实现的栈称为链式栈。

顺序栈通过数组的下标实现栈的操作,其特点是插入和删除操作的时间复杂度为O(1),但需要预先分配一定的内存空间。

链式栈使用链表来存储栈中的数据,插入和删除操作的时间复杂度同样为O(1),不需要预先分配固定大小的空间,但需要额外的空间存储链表节点。

5.栈的复杂度分析栈的复杂度分析主要涉及到栈的各种操作的时间复杂度和空间复杂度。

以下是一些常见操作的复杂度分析:入栈操作的时间复杂度为O(1),空间复杂度为O(1);出栈操作的时间复杂度为O(1),空间复杂度为O(1);取栈顶元素操作的时间复杂度为O(1),空间复杂度为O(1);判断栈是否为空的操作的时间复杂度为O(1),空间复杂度为O(1);清空栈的操作的时间复杂度为O(1),空间复杂度为O(1);初始化栈的操作的时间复杂度为O(1),空间复杂度为O(1);6.总结栈作为一种重要的数据结构,在计算机科学和软件工程中有着广泛的应用。

数据结构实验报告 栈进制转换

数据结构实验报告 栈进制转换

数据结构实验报告栈进制转换数据结构实验报告栈进制转换一、实验目的栈是一种常见的数据结构,本实验的目的在于通过实现栈的基本操作,设计并实现一个进制转换的程序,并通过实验验证程序的正确性和效率。

二、实验原理1.栈的定义和基本操作栈是一种后进先出(Last In First Out,简称LIFO)的数据结构。

它可以通过一个指针来标识当前栈顶元素,栈顶指针top的起始值为-1,空栈时top=-1.2.栈的进制转换将一个十进制数转换为其他进制(如二进制、八进制、十六进制)的过程中,可以通过栈来实现。

具体步骤如下:- 初始化一个空栈;- 将十进制数依次除以目标进制的基数,将余数依次入栈,直到商为0;- 依次出栈,将出栈的余数组合起来,得到转换后的目标进制数。

三、实验内容1.实现栈的基本操作(1)定义栈结构,包括元素数组和栈顶指针;(2)实现入栈操作push(),将元素插入到栈顶;(3)实现出栈操作pop(),从栈顶删除一个元素并返回其值;(4)实现获取栈顶元素的操作getTop(),返回栈顶元素的值;(5)实现判断栈是否为空的操作isEmpty(),返回布尔值;(6)实现判断栈是否已满的操作isFull(),返回布尔值。

2.设计并实现进制转换的程序(1)初始化一个空栈用于存放转换后的数字;(2)输入十进制数num和目标进制target;(3)通过栈的操作将num转换为target进制数;(4)输出转换后的结果。

四、实验步骤1.实现栈的基本操作(1)定义栈的结构和相关操作;(2)编写相应的测试代码,验证栈的基本操作是否正确。

2.设计并实现进制转换的程序(1)根据原理部分的步骤,设计转换程序的具体逻辑;(2)编写相应的测试代码,验证转换程序的正确性和效率。

五、实验结果与分析1.给定一个十进制数num=12345,目标进制为二进制(target=2),经过进制转换后得到的结果为.111.2.给定一个十进制数num=456,目标进制为八进制(target=8),经过进制转换后得到的结果为.710.本实验的结果表明,转换程序能够正确地将十进制数转换为目标进制数,并且具有较高的效率。

大学数据结构课件--第3章 栈和队列

大学数据结构课件--第3章 栈和队列
top top 栈空 F E D C B A
栈满 top-base=stacksize
top
F
E
D C B
top top top top top top base
入栈PUSH(s,x):s[top++]=x; top 出栈 POP(s,x):x=s[--top]; top
base
4
A
3.1 栈
例1:一个栈的输入序列为1,2,3,若在入栈的过程中 允许出栈,则可能得到的出栈序列是什么? 答: 可以通过穷举所有可能性来求解:
3.2 栈的应用举例
二、表达式求值
“算符优先法”
一个表达式由操作数、运算符和界限符组成。 # 例如:3*(7-2*3) (1)要正确求值,首先了解算术四则运算的规则 a.从左算到右 b.先乘除后加减 c.先括号内,后括号外 所以,3*(7-2*3)=3*(7-6)=3*1=3
9
3.2 栈的应用举例
InitStack(S); while (!QueueEmpty(Q))
{DeQueue(Q,d);push(S,d);}
while (!StackEmpty(S)) {pop(S,d);EnQueue(Q,d);} }
第3章 栈和队列
教学要求:
1、掌握栈和队列的定义、特性,并能正确应用它们解决实 际问题;
用一组地址连续的存储单元依次存放从队头到队尾的元素, 设指针front和rear分别指示队头元素和队尾元素的位置。
Q.rear 5 4 Q.rear 3 2 3 2 5 4 Q.rear 3 3 5 4 5 4
F E D C
C B A
Q.front
2 1 0
C B
Q.front 2 1 0

栈

3
数据结构
基本操作
Push Q
Push A Pop Pop
4
数据结构
Push R Push D Push M Pop Push Q
5
数据结构
栈的抽象数据类型 p45
ADT Stack{ D = {ai | ai ElemSet, i = 1,2,…n } R = {<ai-1, ai> | ai-1, ai D, i = 2,…n} 约定a 端为栈顶, 约定 n端为栈顶, a1端为栈底 P: InitStack(&S) ClearStack(&S) StackEmpty(S) StackLength(S) GetTop(S, &e) Push(&S, e) Pop(&S, &e) StackTraverse(S, visit()); }ADT Stack
链栈则没有上溢的限制 链栈则没有上溢的限制,它就象是一条一头固定的
链子,可以在活动的一头自由地增加链环(结点)而不会溢出,
24
数据结构
3.2栈的应用举例
数制转换 括号匹配的检验[ ( [ ] [ ] ) ] 行编辑程序p49 p49
25
3.2.1 数制转换 十进制N和其它进制数的转换是计算机 实现计算的基本问题,其解决方法很多,其中 一个简单算法基于下列原理: N=(n div d)*d+n mod d ( 其中:div为整除运算,mod为求余运算) 例如 (1348)10=(2504)8,其运算过程如下:
16
数据结构
进栈示例
17
数据结构
退栈示例
18
数据结构
两个栈共享一个数组
19
数据结构

数据结构第3章栈

数据结构第3章栈
Elemtype pop(sqstack *s) { /*若栈s不为空,则删除栈顶元素*/ Elemtype x; if(s->top<0) return NULL; /*栈空*/ x=s->stack[s->top]; s->top--; return x; }
13
(4)取栈顶元素操作
Elemtype gettop(sqstack *s) { /*若栈s不为空,则返回栈顶元素*/ If(s->top<0) return NULL; /*栈空*/ return (s->stack[s->top]); }

29
算术表达式求值
在计算机中,任何一个表达式都是由: 操作数(operand)、运算符(operator)和 界限符(delimiter)组成的。 其中操作数可以是常数,也可以是变量或常量的 标识符;运算符可以是算术运算体符、关系运算符和 逻辑符;界限符为左右括号和标识表达式结束的结束 符。
30
6
存储结构
栈是一种特殊的线性表,有两种存储方式: 顺序存储结构存储
链式存储结构存储。


7
顺序栈的数组表示
与第二章讨论的一般的顺序存储结构的线性表 一样,利用一组地址连续的存储单元依次存放自 栈底到栈顶的数据元素,这种形式的栈也称为顺 序栈。 使用一维数组来作为栈的顺序存储空间。 设指针top指向栈顶元素的当前位置,以数组 小下标的一端作为栈底。 top=0时为空栈,元素进栈时指针top不断地 加1,当top等于数组的最大下标值时则栈满。
5)假如读出的运算符的优先级不大于运算符栈栈顶运算符
的优先级,则从操作数栈连续退出两个操作数,从运算符栈中 退出一个运算符,然后作相应的运算,并将运算结果压入操作 数栈。此时读出的运算符下次重新考虑(即不读入下一个符号 )。

C语言中栈的基本操作

C语言中栈的基本操作

C语言中栈的基本操作栈(Stack)是一种遵循“后进先出”(LIFO)原则的数据结构,具有以下几个基本操作:入栈(Push)、出栈(Pop)、判断栈是否为空(Empty)以及获取栈顶元素(Top)。

下面将详细介绍这些基本操作。

1. 入栈(Push):将一个元素添加到栈的顶部。

入栈操作分为两个步骤:(1)判断栈是否已满,如果已满则无法再添加元素;(2)若栈不满,则将元素添加到栈的顶部,并更新栈顶指针。

具体实现代码如下:```void push(Stack *s, int item)if (is_full(s))printf("Stack is full, cannot push more elements.\n");return;}s->top++;s->data[s->top] = item;}```2. 出栈(Pop):将栈顶元素移除,并返回该元素的值。

出栈操作也有两个步骤:(1)判断栈是否为空,如果为空则无法进行出栈操作;(2)若栈不为空,则将栈顶元素移除,并更新栈顶指针。

具体实现代码如下:```int pop(Stack *s)int item;if (is_empty(s))printf("Stack is empty, cannot pop any elements.\n");return -1; // 指定一个特定的返回值来表示错误}item = s->data[s->top];s->top--;return item;}```3. 判断栈是否为空(Empty):判断栈是否为空分为两种情况,一种是根据栈顶指针进行判断,另一种是根据数据数量进行判断。

(1)判断栈顶指针是否为-1,若为-1则说明栈为空;(2)若栈内数据数量为0,则栈为空。

具体实现代码如下:```int is_empty(Stack *s)return s->top == -1; // 栈顶指针为-1表示栈为空}```4. 获取栈顶元素(Top):返回栈顶元素的值,但不对栈做任何修改。

栈的面试题目(3篇)

栈的面试题目(3篇)

第1篇第一部分:基本概念与操作1. 什么是栈?- 栈是一种线性数据结构,遵循后进先出(LIFO)的原则。

它只允许在栈顶进行插入(push)和删除(pop)操作。

2. 栈的基本操作有哪些?- 入栈(push):在栈顶添加一个新元素。

- 出栈(pop):移除栈顶元素。

- 查看栈顶元素(peek 或 top):获取栈顶元素但不移除它。

- 判断栈是否为空(isEmpty):检查栈中是否没有元素。

- 获取栈的大小(size):返回栈中元素的数量。

3. 请用Python实现一个栈的数据结构。

```pythonclass Stack:def __init__(self):self.items = []def is_empty(self):return len(self.items) == 0def push(self, item):self.items.append(item)def pop(self):if not self.is_empty():return self.items.pop()return Nonedef peek(self):if not self.is_empty():return self.items[-1]return Nonedef size(self):return len(self.items)```4. 如何实现一个固定大小的栈?- 在栈类中添加一个计数器来跟踪栈的大小,并在push操作中检查是否已达到最大容量。

5. 请解释栈的两种遍历方法。

- 递归遍历:使用递归方法遍历栈的所有元素。

- 迭代遍历:使用栈的辅助结构(如队列)来实现迭代遍历。

第二部分:栈的应用6. 栈在计算机科学中的应用有哪些?- 函数调用:局部变量和返回地址存储在栈中。

- 表达式求值:逆波兰表达式(RPN)计算。

- 字符串匹配:括号匹配验证。

- 汉诺塔问题:移动塔的步骤可以通过栈来模拟。

7. 请解释如何使用栈实现括号匹配验证。

栈的应用

栈的应用

栈及其应用第一节栈的基本知识一、栈的基本概念栈(stack,又称为堆栈)是一种特殊的线性表。

作为一个简单的例子,可以把食堂里冼净的一摞碗看作一个栈。

在通常情况下,最先冼净的碗总是放在最底下,后冼净的碗总是摞在最顶上。

而在使用时,却是从顶上拿取,也就是说,后冼的先取用,后摞上的先取用。

如果我们把冼净的碗“摞上”称为进栈(压栈),把“取用碗”称为出栈(弹出),那么上例的特点是:后进栈的先出栈。

然而,摞起来的碗实际上仍然是一个线性表,只不过“进栈”和“出栈”都在最顶上进行,或者说,元素的插入和删除操作都是在线性表的一端进行而已。

一般而言,栈是一个线性表,其所有的插入和删除操作均是限定在线性表的一端进行,允许插入和删除的一端称栈顶(Top),不允许插入和删除的一端称栈底(Bottom)。

若给定一个栈S=(a1, a2,a3,……,a n),则称a1为栈底元素,a n为栈顶元素,元素a i位于元素a i-1之上。

栈中元素按a1, a2,a3,……,a n的次序进栈,如果从这个栈中取出所有的元素,则出栈次序为a n, a n-1,……,a1。

也就是说,栈中元素的进出是按“后进先出”的原则进行,这是栈的重要特征。

因此栈又称为后进先出表(LIFO表—Last In First Out)。

我们常用下图来形象地表示栈:二、栈的存储结构(1)顺序栈栈是一种线性表,在计算机中用一维数组作为栈的存储结构最为简单,操作也最为方便,也是最为常用的。

例如,设一维数组STACK[1..n] 表示一个栈,其中n为栈的容量,即可存放元素的最大个数。

栈的第一个元素,或称栈底元素,是存放在STACK[1]处,第二个元素存放在STACK[2]处,第i个元素存放在STACK[i]处。

另外,由于栈顶元素经常变动,需要设置一个指针变量top,用来指示栈顶当前位置,栈中没有元素即栈空时,令top=0;当top=n时,表示栈满。

如果一个栈已经为空,但用户还继续做出栈(读栈)操作,则会出现栈的“下溢”;如果一个栈已经满了,用户还继续做进栈操作,则会出现栈的“上溢”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

栈的类型定义与基本操

Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】
循环队链的出队
bool Dequeue( CSQueue &q, QElemType &e ) {
int front;
if( == 0 )
return false;
front = ( + 1 - + MAXQSIZE ) % MAXQSIZE;
e = [ front ];
--;
return true;
}
循环队链的入队
bool Enqueue( CSQueue &q, QElemType e )
{
if( == MAXQSIZE )
return false;
= ( + 1 ) % MAXQSIZE;
[ ] = e;
++;
return true;
}
链队的入队
void Enqueue( LQueue &q, QElemType e )
{
LQueuePtr p;
p = new QNode;
p->data = e;
p->next = >next;
>next = p;
= p;
}
链队的出队
bool Dequeue( LQueue &q, QElemType &e )
{
LQueuePtr p;
if( >next == )
return false;
p = >next;
e = p->next->data;
>next = p->next;
delete p;
return true;
}
顺序栈的类型定义与基本操作:
const StackInitSize=100;
const StackInc=10;
struct SStack {
SElemType *base,*top; isited=false;
for(i=1;i<=;i++)
if(![i].visited)
{
visit[i].data);
[i].visited=true;
Enqueue(q,i);
while(Dequeue(q,j))
for(p=[j].firstarc;p;p=p->nextarc)
{
k=p->adjvex;
if(![k].visited)
{
visit(G>Vexs[k].data);
[k].visited=true;
Enqueue;
}
}
}
}
深度优先搜索遍历
void DFS(ALGraph &G, int i, void visit(VexType)) { int j;
Arcptr p;
visit[i].data);
[i].visited=true;
for(p=[i].firstarc ;p; p=p->nextarc)
{
J=p->adjvex;
if(![j].visited)
DFS(G,j,visit);
}
}。

相关文档
最新文档