扭转练习题答案.doc.

合集下载

材料力学 扭转2 习题及参考答案

材料力学  扭转2 习题及参考答案

扭转 第二次 作业1. 已知图示实心圆轴的直径d = 100mm 。

材料的剪切弹性模量G = 80GPa 。

(1)求1-1横截面上A 、B 、C 三点的切应力;(2)求1-1横截面上A 点的切应变;(3)整个圆轴上最大的切应力。

2kN·m6kN·m10kN·m2kN·m1-1截面2kN·m4kN·m10kN·m解:由圆轴的扭矩图可知,1-1截面的扭矩T 1 = 4kN·m ,最大扭矩T max = 10kN·m圆截面的极惯性矩 4464π 3.140.19.8110m 3232P d I -⨯===⨯扭矩截面系数 3343π 3.140.1 1.9610m 1616P d W -⨯===⨯(1) 3714410 2.0410Pa 20.4MPa 1.9610A B P T W ττ-⨯====⨯=⨯ 1110.2MPa 2C A P T I ρττ=== (2)由剪切胡克定律 Gτγ=得63920.4100.255108010AA G τγ-⨯===⨯⨯ (3)对于等截面圆轴,最大切应力出现在扭矩最大截面的最外缘37max max41010 5.1010Pa 51.0MPa 1.9610P T W τ-⨯===⨯=⨯ 2. 阶梯状圆轴如图所示,AE 段为空心,外直径D = 140mm ,内直径d = 100mm ;BC 段为实心,直径d = 100mm 。

外力偶矩M A = 18kN·m ,M B = 32kN·m ,M C = 14kN·m 。

已知许用切应力[τ ] = 80MPa 。

试校核该轴的强度。

18kN·m14kN·m解:由扭矩图可知T AB = 18kN·m , |T BC | =14kN·mAE 段()4334431π 3.140.1410011 3.9810m 1616140P D W α-⎛⎫⨯⎛⎫=-=-=⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭[]36max41181045.210Pa 45.2MPa<3.9810AB P T W ττ-⨯===⨯=⨯ BC 段33432π 3.140.1 1.9610m 1616P d W -⨯===⨯ []36max 42141071.410Pa 71.4MPa<1.9610BC P T W ττ-⨯===⨯=⨯ 故,该轴安全。

材料力学扭转练习题

材料力学扭转练习题

材料力学扭转练习题基本概念题一、选择题1. 图示传动轴,主动轮A的输入功率为PA =0 kW,从动轮B,C,D,E的输出功率分别为PB =0 kW,PC = kW,PD = 10 kW,PE = 1kW。

则轴上最大扭矩T。

A.BA段 B.AC段 C.CD段 D.DE段max出现在题1图2. 图示单元体的应力状态中属正确的纯剪切状态的是。

题2图3. 上题图示单元体的应力状态中属正确的是。

4. 下列关于剪应力互等定理的论述中正确的是。

A.剪应力互等定理是由平衡B.剪应力互等定理仅适用于纯剪切的情况C.剪应力互等定理适用于各种受力杆件D.剪应力互等定理仅适用于弹性范围E.剪应力互等定理与材料的性能无关5. 图示受扭圆轴,其横截面上的剪应力分布图正确的是。

-12-题5图6. 实心圆轴,两端受扭转外力偶作用。

直径为D时,设轴内的最大剪应力为?,若轴的直径改为D2,其它条件不变,则轴内的最大剪应力变为。

A.8? B.?C.16? D.?7. 受扭空心圆轴,在横截面积相等的条件下,下列承载能力最大的轴是。

A.??0 B.??0.5C.??0. D.??0.88. 扭转应力公式T?的适用范围是。

IpA.各种等截面直杆 B.实心或空心圆截面直杆C.矩形截面直杆 D.弹性变形 E.弹性非弹性范围 9. 直径为D的实心圆轴,最大的容许扭矩为T,若将轴的横截面积增加一倍,则其最大容许扭矩为。

A.2TB.2T C.22TD.4T10. 材料相同的两根圆轴,一根为实心,直径为D1;另一根为空心,内径为d2,外径为D2d2D??。

若两轴横截面上的扭矩T,和最大剪应力?max均相同,则两轴外径之比1 D2D2为。

A.1??B.1?? C.343D.411. 阶梯圆轴及其受力如图所示,其中AB段的最大剪应力?max1与BC段的最大剪应力?max2的关系是。

A.?max1??max2B.?max1?313?max2C.?max1??max2D.?ma x1??max248-13-题12图题13图12. 在图示的圆轴中,AB段的相对扭转角?1和BC段的相对扭转角?2的关系是。

扭转习题

扭转习题

第三章 扭转习题一、单项选择题1、横截面都为圆的两个杆,直径分别为d 和D ,并且d=。

两杆横截面上扭矩相等两杆横截面上的最大切应力之比maxDmaxdττ为A 、2倍,B 、4倍,C 、8倍,D 、16倍。

二、1、扭转变形时,公式pTlGI τ=中的 表示单位长度的扭转角,公式中的T 表示横截面上的 ;G 表示杆材料的 弹性模量;I P 表示杆横截面对形心的 ;GI P 表示杆的抗扭 。

2、截面为圆的杆扭转变形时,所受外力偶的作用面与杆的轴线 .3、实心圆轴扭转时,横截面上的切应力分布是否均匀,横截面上离圆心愈远的点处切应力 ,圆心处的切应力为 ,圆周上切应力4、两根实心圆轴的直径d 和长度L 都相同,而材料不同,在相同扭矩作用下,它们横截面上的最大切应力是否相同 ,单位长度的扭转角是否相同 。

5、剪切虎克定律的表达式 G τγ=,式中的G 表示材料的 模量,式中的γ称为 。

6、根据切应力互等定理,单元体两互相垂直截面上在其相交处的切应力成对存在, 且 相等,而 现反。

三、 1、如图所示圆轴,一端固定。

圆轴横截面的直径D=100mm ,所受的外力偶矩M 1=6kN•m,M 2=4kN•m。

试求圆轴横截面上的最大扭矩和最大切应力。

答:圆轴横截面上的最大扭矩为 kN•m;圆轴横截面上的最大切应力为 Mpa 。

2、如图所示阶梯形圆轴,一端固定。

圆轴横截面的直径分别为外力偶矩M C =1200 N•m,M B =1800 N•m。

试求BC 段横截面上的扭矩和该阶梯轴的最 大切应力。

答:BC 段横截面上的扭矩为 N•m;该阶梯轴的最大切应力为 Mpa 。

3、如图所示圆轴,一端固定。

圆轴横截面的直径d=100mm ,所受的外力偶矩M 1=7000 N•mM 2=5000 N•m。

试求圆轴横截面上的最大扭矩和最大切应力。

答:最大扭矩为 N •m 。

最大切应力为 Mpa 。

4、某传动轴为实心圆轴,轴内的最大扭矩=1.5kN m T g,许用切应力[]=50MPa τ,试确定该轴的横截面直径。

3扭转 答案

3扭转 答案

第三章 圆轴的扭转一、填空题:1、扭矩,T2、G τγ=3、弹性范围内的等直圆杆4、33.33Mpa 。

5、2G d lϕ 二、选择题:B三、作图题1.分别画出图示三种截面上剪应力沿半径各点的分布规律。

(a )圆截面 (b )空心圆截面 (c )薄壁圆截面2.将下列杆件的扭矩图画出。

m 122kN m 1kN m T T =-⋅=⋅四、计算题:1.一钻探机的功率为10kW ,转速n=180r/min 。

钻杆钻入土层的深度L=40m 。

如土壤对m,并作钻杆的扭矩图。

530.5N m =⋅ 530.5N m13.26N m /m 40m eM m l ⋅===⋅2、实心圆轴的直径d =100mm ,长l =1m ,其两端所受外力偶矩14kN m M =⋅作用,试求:图示截面上A ,B ,C 三点处剪应力的数值及方向。

解:6331410N m m 71.30M P a 100m m 16A B P T W ττπ⨯⋅====⨯ 136.65M P a 2C A ττ==3、图示等直圆杆,已知外力偶矩M A =2.99kN·m, M B =7.20kN·m, M C =4.21kN·m,许用剪应力[τ]=70MPa,许可单位长度扭转角[ϕ’]=1°/m,切变模量G =80GPa 。

试确定该轴的直径d 。

解: 2.99kN m AB A T M =-=-⋅4.21kN m BC C T M ==⋅max 4.21kN m BC T T ==⋅对于BC 段按强度条件设计直径m ax m ax m ax 3p []π16T T dW ττ==≤67mm d ≥===按刚度条件设计直径max max max 4p 180180[]πππ32T T d GI G ϕϕ''=⨯=⨯≤ D ⇒≥74m m ==。

材料力学_陈振中_习题第三章扭转

材料力学_陈振中_习题第三章扭转

第三章 扭转3.1 作图示各杆的扭矩图。

(a )解:1)求 1-1截面上的扭矩假设T 1为正,方向如上图所示。

由 ∑m=0 T 1+m+m=0得T 1= -2m , 所以其实际为负。

2)求 2-2截面上的扭矩假设T 2为正,方向如上图所示。

由 ∑m=0 T 2 +m=0得T 2= -m , 所以其实际为负。

(b )解:1)求 1-1截面上的扭矩假设T 1为正,方向如上图所示。

由 ∑m=0 T 1+m =0得T 1= -m , 所以其实际为负。

2)求 2-2截面上的扭矩假设T 2为正,方向如上图所示。

由 ∑m=0 T 2+m-3m=0 得T 2= 2m , 所以其实际为正 (c )解:1)求 1-1截面上的扭矩假设T 1为正,方向如上图所示。

由 ∑m=0 T 1-10-15-20+30=0得T 1= 15KN.m , 所以其实际为正。

T 1T 2(a2(b )mTT 12)求 2-2截面上的扭矩假设T 2为正,方向如上图所示。

由 ∑m=0 T 2-15-20+30=0得T 2= 5KN.m , 所以其实际为正。

3)求 3-3截面上的扭矩 假设T 3为正,方向如上图所示。

由 ∑m=0 T 3-20+30=0得T 3= -10KN.m , 所以其实际为负。

4)求 4-4截面上的扭矩假设T 4为正,方向如上图所示。

由 ∑m=0 T 4 +30=0得T 4= -30KN.m , 所以其实际为负。

3.2 T 为圆杆横截面上的扭矩,试画出截面上与T 对应的剪应力分布图。

解:3.5 D=50mm 直径的圆轴,受到扭矩T=2.15KN .m 的作用。

试求在距离轴心10mm 处的剪应力,并求轴横截面上的最大剪应力。

T 230kN.m T 3T 4(题3.2图(a ) (b )解:求距离轴心10mm 处的剪应力, 由 I P =πD 4/32=π×0.054/32=6.13×10-7 m 4 W t = I P /R=6.13×10-7/0.025=2.454×10-5 m 3τρ=Tρ/ I P =2.15×103×10×10-3/(6.13 ×10-7 ) =35MPa求轴横截面上的最大剪应力τmax =T/ W t =2.15×103/(2.454 ×10-5 ) =87.6MPa3.8 阶梯形圆轴直径分别为d 1=40mm ,d 2=70mm ,轴上装有三个皮带轮,如图所示。

材料力学习题册答案-第3章 扭转

材料力学习题册答案-第3章 扭转

第三章扭转一、是非判断题1.圆杆受扭时,杆内各点处于纯剪切状态。

(×)2.杆件受扭时,横截面上的最大切应力发生在距截面形心最远处。

(×)3.薄壁圆管和空心圆管的扭转切应力公式完全一样。

(×)For personal use only in study and research; not for commercial use4.圆杆扭转变形实质上是剪切变形。

(×)5.非圆截面杆不能应用圆截面杆扭转切应力公式,是因为非圆截面杆扭转时“平截面假设”不能成立。

(√)6.材料相同的圆杆,他们的剪切强度条件和扭转强度条件中,许用应力的意义相同,数值相等。

(×)7.切应力互等定理仅适用于纯剪切情况。

(×)8.受扭杆件的扭矩,仅与杆件受到的转矩(外力偶矩)有关,而与杆件的材料及其横截面的大小、形状无关。

(√)9.受扭圆轴在横截面上和包含轴的纵向截面上均无正应力。

(√)10.受扭圆轴的最大切应力只出现在横截面上。

(×)11.受扭圆轴内最大拉应力的值和最大切应力的值相等。

(√)12.因木材沿纤维方向的抗剪能力差,故若受扭木质圆杆的轴线与木材纤维方向平行,当扭距达到某一极限值时,圆杆将沿轴线方向出现裂纹。

( × )二、选择题1.内、外径之比为α的空心圆轴,扭转时轴内的最大切应力为τ,这时横截面上内边缘的切应力为 ( B )A τ;B ατ;C 零;D (1- 4α)τ 2.实心圆轴扭转时,不发生屈服的极限扭矩为T ,若将其横截面面积增加一倍,则极限扭矩为( C )0 B 20T 0 D 40T 3.两根受扭圆轴的直径和长度均相同,但材料C 不同,在扭矩相同的情况下,它们的最大切应力τ、τ和扭转角ψ、ψ之间的关系为( B )A 1τ=τ2, φ1=φ2B 1τ=τ2, φ1≠φ2C 1τ≠τ2, φ1=φ2D 1τ≠τ2, φ1≠φ2 4.阶梯圆轴的最大切应力发生在( D ) A 扭矩最大的截面; B 直径最小的截面; C 单位长度扭转角最大的截面; D 不能确定。

《材料力学》扭转习题解

《材料力学》扭转习题解

第三章扭转习题解[习题3-1] 一传动轴作匀速转动, 转速n = 200r/min ,轴上装有五个轮子,主动轮 II 输入 的功率为60 kW ,从动轮,I ,山,IV ,V 依次输出18 kW ,12 kW ,22 kW 和8kW 。

试 作轴的扭图。

解:(1)计算各轮的力偶矩(外力偶矩)T e = 9.55 血n外力偶矩计算(kW 换算成kN.m )题目编号 轮子编号轮子作用功率(kW )转速r/mi nTe (kN.m ) 习题3-1I 从动轮 18 200 0.859II主动轮 60 200 2.865III从动轮 12 200 0.573IV从动轮 22 200 1.051V从动轮82000.382(2)作扭矩图。

用 595[习题3-2] —钻探机的功率为l0kW ,转速n = 180r/min 。

钻杆钻入土层的深度I = 40m 。

如土壤对钻杆的阻力可看作是均匀分布的力偶,试求分布力偶的集度 图。

资料个人收集整理,勿做商业用途 解:(1)求分布力偶的集度= 9.549x® =0.5305(kN m)180M e 0.5305 m = --- = ------l 40= 0.0133(kN /m)设钻杆轴为x 轴, 则:Z M x =0ml =Me1 4325A1 2 0055 1m 3.5 mLSC.3SZm ,并作钻杆的扭矩M e =9.549 丛n L7S mT 图(kN.m)(2)作钻杆的扭矩图T(x) = —mx =—牛X =-0.0133x 。

x<^[0,40] T(0) =0 ;T(40) = M e = —0.5 305kN m) 扭矩图如图所示。

[习题3-3]圆轴的直径d =50mm ,转速为120r/min 。

若该轴横截面上的最大切应力等于 60 MPa ,试问所传递的功率为多大? 资料个人收集整理,勿做商业用途 解:(1)计算圆形截面的抗扭截面模量: 1 3 W p =—血3 P16(2 )计算扭矩1 3 3 = 16®4159 倔=24544(mm ) 2= 60N / mm23T =60N/mm x 24544mm =1472640N ・mm = 1.473(kN ・m)(3)计算所传递的功率T = M e =9.549山=1.473(kN -m)n N k =1.473x120/9.549 =18.5(kW)[习题3-4]空心钢轴的外径 D = 100mm ,内径d =50mm 。

材料力学专项习题练习扭转

材料力学专项习题练习扭转

扭 转1. 一直径为1D 的实心轴,另一内径为d , 外径为D , 内外径之比为22d D α=的空心轴,若两轴横截面上的扭矩和最大切应力均分别相等,则两轴的横截面面积之比12/A A 有四种答案:(A) 21α-; (B)(C); (D)。

2. 圆轴扭转时满足平衡条件,但切应力超过比例极限,有下述四种结论: (A) (B) (C) (D) 切应力互等定理: 成立 不成立 不成立 成立 剪切胡克定律: 成立 不成立 成立 不成立3. 一内外径之比为/d D α=的空心圆轴,当两端承受扭转力偶时,若横截面上的最大切应力为τ,则内圆周处的切应力有四种答案:(A) τ ; (B) ατ; (C) 3(1)ατ-; (D) 4(1)ατ-。

4. 长为l 、半径为r 、扭转刚度为p GI 的实心圆轴如图所示。

扭转时,表面的纵向线倾斜了γ角,在小变形情况下,此轴横截面上的扭矩T 及两端截面的相对扭转角ϕ有四种答案:7. 图示圆轴料的切变模量(A) 43π128d G a ϕ(C) 43π32d G a ϕ8. 一直径为D重量比21W W 9. 想弹塑性材料, 等直圆轴的极限扭矩是刚开始出现塑性变形时扭矩的 倍。

10. 矩形截面杆扭转变形的主要特征是 。

1-10题答案:1. D 2. D 3. B 4. C 5. B 6. C 7. B 8. 0.479. 横截面上的切应力都达到屈服极限时圆轴所能承担的扭矩;4/3 10. 横截面翘曲11. 已知一理想弹塑性材料的圆轴半径为R ,扭转加载到整个截面全部屈服,将扭矩卸掉所产生的残余应力如图所示,试证明图示残余应力所构成的扭矩为零。

证:截面切应力 4103s R R ρρττρ⎛⎫=-≤≤ ⎪⎝⎭截面扭矩 04d 12πd 03Rs s A T A R ρρτρτρρ⎛⎫==-⋅= ⎪⎝⎭⎰⎰ 证毕。

12. 图示直径为d 的实心圆轴,两端受扭转力偶e M 用1/m C τγ=表示,式中C ,m 为由实验测定的已知常数,试证明该轴的扭转切应力计算公式为:1/e (31)/2π()23m 1mm mM m d ρρτ+=+s /3证:几何方面 d d xρϕγρ= 物理方面 1/1/d d mmC C x ρϕτγρ⎛⎫== ⎪⎝⎭静力方面 1//21/e 0d d 2πd d md mAM T A C x ρϕρτρρρρ⎛⎫==⋅⋅=⋅⋅ ⎪⎝⎭⎰⎰1//221/0d 2πd d m d mC x ϕρρ+⎛⎫= ⎪⎝⎭⎰(31)/1/()d 22π(31)d m mmd C m x mϕ+⎛⎫= ⎪+⎝⎭1/e (31)/(31)d d 2π()2mm m M m d x Cm ϕ++⋅⎛⎫=⎪⎝⎭⋅ 所以 1/e (31)/2π()23m 1mm mM m d ρρτ+=+ 证毕。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
由平衡方程
M e 2 2 M e 1 160N m
max
Me1 T 80 [ ] 3 d Wt Wt 16
3
80 N m
16 80 d m 21.7 mm 6 40 10
d 22 mm
0.2F M e 2
80 N m
M e 1 9549
P1 14 (9549 )N m 668N m n 200
P1 30 14 M e 2 9549 (9549 )N m 764 N m n 200
M e 1 668N m M e 2 764N m M e 3 1432 N m
水轮机主轴的强度
15000 T 9549 N m 573kN m 250 横截面上最大切应力为
T T max W p D3 (1 4 ) 16 573000 Pa 19.2 MPa 3 0.55 d 4 [1 ( ) ] 16 D 主轴满足强度要求。

T 2.15 10 0.02 32 70( MPa) 4 IP 0.05
T 2.15 10 3 16 87.6( MPa) 3 Wt 0.05
3.3 发电量为15000kW的水轮机轴如图所示。 D=560mm, d=300mm,正常转速n=250 r/min。 材料的许用应力[τ]=50MPa。试校核该轴的强度。 解:
各段均满足强度、刚m
3.6 图示绞车同时由两人操作,若每人加在手柄上 的力都是F=200N,已知轴的许用切应力 [τ]=40MPa,试按扭转条件初步估算AB轴的直径, 并确定最大起重量W。 解:
M e 1 0.4F (0.4 200)N m 80 N m
3.4 图示AB轴的转速n=120r/min,从B轮输入功 率P=44.13 kW,功率的一半通过锥形齿轮传给垂 直轴II,另一半有水平轴I输出。已知D1=600mm, D2=240mm, d1=100mm, d2=80mm , d3=60mm, [τ]=20MPa。试对各轴进行强度校核。 解:
第三章 扭转
CHAPTER 3 TORSION Tuesday, September 04, 2018
3.1 作图示各杆的扭矩图。
T
x
2M M
O
2M
O
x
M
15 kN m 5 kN m
T
O
x
10 kN m
30 kN m
3.2 直径D=50 mm的圆轴,某横截面上的扭矩 T=2.15 kN·m。试求该横截面上距轴心20mm 处 的切应力及最大切应力。 解: 3
P 5.5 T 9549 (9549 )N m n 200 263 N m
max
16T d 3 [ ]
T 16T [ ] 3 Wt d
d 33mm
3
16 263 m 32.2mm 6 40 10
3.8 图示实心轴和空心轴通过牙嵌离合器连接在一 起。已知轴的转速n=100 r/min,传递的功率为 P=7.5kW,材料的许用切应力为[τ]=40 Mpa。试 选择实心圆轴的直径D1和内外径比值为0.5的空心 轴外径D2。 解:
各轴均满足强度要求
3.5 阶梯形圆轴的直径分别为d1=40mm, d2=70mm,轴上装有三个带轮,如图所示。已知 由轮3输入的功率为P3=30kW,轮1输出的功率为 P1=14kW。轴作匀速转动,转速n=200r/min。材 料的剪切许用应力[τ]=60MPa,G=80GPa,许用 扭转角[φ’]=2(0)/m 。试校核轴的强度和刚度。 解:
刚度条件
AC
TAC GI PAC
TDB GI PDB
668 80 10 9
0.04 4
32

180

1.9( 0 ) / m [ '] 2( 0 ) / m
DB

1432 0.07 4 9 80 10 32
180

0.435( 0 ) / m [ '] 2( 0 ) / m
II轴
nB D2 240 120 nII D1 600 nC
nII 300r /min
P2 22.1 TII 9549 (9549 )N m nII 300 703 kN m
TII 703 16 II Pa 16.6 MPa [ ] 20 MPa 3 Wt 0.06
强度条件
TAC 668 16 AC Pa 3 WtAC 0.04 53.2 MPa [ ] 60 MPa
DB
TDB 1433 16 Pa 3 WtDB 0.07 21.3 MPa [ ] 60 MPa
668N m 1432 N m
TAB 9549 P 44.13 (9549 )N m n 120 3512 kN m
AB max
TAB 3512 16 Pa 17.9 MPa [ ] 20 MPa 3 Wt 0.1
I轴
I max
TAB 2 1756 16 Pa 17.5 MPa [ ] 20 MPa 3 Wt 0.08
设齿轮间的切向力为F,则由平衡条件
0.25W 0.35F
F 800 N
Wmax 1120N
3.7 机床变速箱第II轴如图所示,轴所传递的功率 为P=5.5kW,转速n=200r/min,材料为45钢, [τ]=40MPa。试按扭转的强度条件初步设计轴的 直径。 解:
II轴所传递的扭矩
相关文档
最新文档