08第八章:附有限制条件的间接平差

合集下载

第八章 附有限制条件的间接平差

第八章 附有限制条件的间接平差

⎡ w1 ⎤
⎢⎢v
2
⎥ ⎥
⎢ ⎢
0
0
1
⎢⎢⎢vv43
⎥ ⎥ ⎥
=
⎢−1 ⎢⎢− 1
1 0
0 1
⎢ ⎢
v5
⎥ ⎥
⎢ 0 −1 1 ⎢
⎢v6 ⎥ ⎢ 0 −1 0
0 0 0 0 1

⎥ ⎥ ⎥ ⎥ ⎥ ⎥
⎡ ⎢ ⎢ ⎢ ⎢ ⎣
xˆ1 xˆ 2 xˆ3 xˆ 4
⎤ ⎥ ⎥ ⎥ ⎥ ⎦


⎢ ⎢
w2
⎢ ⎢ ⎢
⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥⎦

σ0 = ±
V T PV = ± r
19.75 = 2.2mm 4
⎢⎢⎢⎡σσXX∧∧12
⎤ ⎥ ⎥ ⎥
=
⎡ ⎢ ⎢ ⎢

σ0

σ0

0.5320= ±1.6mm⎥⎤ 0.7739= ±1.9m⎥ ⎦
⎢⎢⎣σ0 1.1432= ±2.35mm⎥⎥⎦
+ W
CT x=
K 0
s

BT
Pl
=0
矩阵表示:
⎡ ⎢ ⎣
N bb C
CT 0
⎤ ⎡ xˆ ⎤
⎥ ⎦
⎢ ⎣
K
s
⎥ ⎦

⎡ B T Pl
⎢ ⎣
Wx
⎤ ⎥ ⎦
=
0
⎡ ⎢

x
⎢⎣ K s
⎤ ⎥ ⎥⎦
=
⎡ ⎢ ⎣
N bb C
C T ⎤ − 1 ⎡ B T Pl ⎤
0
⎥ ⎦


⎣ Wx ⎦
N cc

第八章 附有限制条件的间接平差

第八章 附有限制条件的间接平差

第八章 附有限制条件的间接平差知识点1、附有限制条件的间接平差法的概念依据几何模型,针对具体的平差问题,确定观测值个数n ,必要观测数t ,则多余观测数r=n-t 。

如果又选了u 个量为参数(而u>t 且包含t 个独立量)参加平差计算,则u 中存在s 个限制条件式,则根据几何模型中的几何关系,将n 个观测值的平差值利用所选u 个参数表示出来,列出s 个函数式,共可列出n+s 个函数式,即为附有参数的条件平差的函数模型。

然后转换为误差方程的形式⎭⎬⎫=+-=0ˆˆx W x C l xB V ,然后按求自由极值的方法,解出使V T PV=min 的V 、xˆ,最后计算出X ˆ,L ˆ; 2、公式汇编函数模型和随机模型⎪⎭⎪⎬⎫=Φ+=0)ˆ(ˆˆX d X B L ,转化后⎭⎬⎫=+-=0ˆˆx W xC l x B V ,12020-==P Q D σσ其中 )(0X F L l -=,)(0X W x Φ= 。

法方程⎭⎬⎫=+=-+0ˆ0ˆx s T BB W x C W K C xN式中PB B N T BB =,Pl B W T= 。

其解x CC T BB X X x CC T BB BB CC T BB BB W N C N W Q W N C N W CN N C N N x 11ˆˆ111111)(ˆ---------=--=)(11x BB CC s W W CN N K +=--式中TBB CC C CN N 1-= 。

观测值和参数的平差值x X Xˆˆ0+=,V L L +=ˆ单位权方差的估值su n PVV T +-=20ˆσPV V T 的计算:(1)PV l PV B x PV V T T T -=ˆ;(2)x PB l Pl l PV V TT T ˆ-=;参数平差值函数)ˆ(ˆX Φ=ϕ平差值函数的权函数式 x F X d F d T T ˆˆˆ==ϕ协因数: F Q F Q X XT ˆˆˆˆ=ϕϕ;方差:ϕϕϕϕσˆˆ20ˆˆQ D =; 3、按附有限制条件按的间接平差求平差值的计算步骤:(1)确定n 、t ,选u (u>t 且包含t 个独立量)个量为参数参与平差;得出s 个参数是相关的(2)列出n+s 个方程,即先将n 个观测值的平差值利用所选参数表示出来,再列出s 个函数式:即先列出平差值形式,再转化为误差方程形式,最后矩阵形式⎭⎬⎫=+-=0ˆˆx W xC l xB V ;(3)确定权阵P ;(4)依据以下公式计算,PB B N T BB =,Pl B W T=,TBB CC C CN N 1-=,x CC T BB BB CC T BB BB W N C N W CN N C N N x 111111)(ˆ--------=,x X Xˆˆ0+=,V L L +=ˆ;(5)检核;(6)精度评定。

测量平差第八章

测量平差第八章

• 令:
V T PV 2K T ( AV Bx转 W置) 后2K得ST (Cx WX )
x
2K
T
B
2K
T S
C
0
V QAT K
2V T P 2K T A 0 V
BT K CT KS 0
§8.2 基础方程和它的解
• 于是统一平差模型的基础方程为
(1) A V B xW 0
• 令:
V T
PV
2K T
( AV
B转x置 W后) 得2K
T S
(Cx
WX
)
x
2K
T
B
2K
T S
C
0
V QAT K
2V T P 2K T A 0 V
BT K CT KS 0
§8.2 基础方程和它的解
• 或者
N aa
cc
BT
uc
0
sc
B
cu
0
uu
C
su
0
cs
CT
us
0
ss
K
cn n1 cu u1 c1 c1
(2)
C
su
x
u1
WX
s1
0 s1
(3) V Q AT K n,1 n,n n,c c,1
(4) BT u,c
K CT
c,1 u,s
Ks
s1
0
u ,1
§8.2 基础方程和它的解
• (3)、若选u<t,且未知数参数独立,条件方程中含
未知参数x ,线性形式为A V B x。W 这0时基础方程(2)
多只能列出t个函数独立的参数。在不选择参数时,
一般条件方程数c等于多余观测数 ,r 若n又t选用了

08第八章 概括平差函数模型

08第八章 概括平差函数模型

第八章 概括平差函数模型§8.1概述在已经介绍过的条件平差,间接平差,附有参数的条件平差以及附有限制条件的间接平差等四种基本平差方法,其差别就在于函数模型不同。

若将误差方程也视为参数形式的条件方程,以未知参数为纽带,可以对4种平差方法概括如下:(1)、条件平差:0)ˆ(=L F ,不选择未知参数,方程数等于多余观测数:c=t n r -= (2)、间接平差:)ˆ(ˆX F L=,选函数独立未知数t u =,方程数n t r u r c =+=+= (3)、附有参数的条件平差:0)ˆ,ˆ(=X LF ,选择t u <个函数独立参数,除应列出r 个条件方程外,还要附加u 个对未知参数的约束条件方程,所以必须列出u r c +=个条件方程。

(4)、附有限制条件的间接平差:)ˆ(ˆX F L =,0)ˆ(=ΦX 。

选择t u >个参数,参数间存在t u s -=个函数关系。

所以除列出n 个误差方程)ˆ(ˆX F L=(也可视为特殊形式的条件方程-参数方程形式的条件方程),还要列出s 个限制条件方程0)ˆ(=ΦX。

方程数c=n +s 。

由此可见,是否选择参数及如何选择参数决定着平差方法,即参数是联系各种平差方法的纽带。

另外可以看到,前三种函数模型中都含有观测量,或者同时包含观测量和未知参数,而后一种只含有未知参数而无观测量。

为了便于区别,将前三种统称为一般条件方程,而后者称为限制条件方程,并统称为条件方程。

在任何几何模型中,函数独立参数个数总是介于下列范围之内: t u ≤≤0。

也就是说,在任一平差问题中,最多只能列出t u =个函数独立的参数。

在不选择参数时,一般条件方程数c 等于多余观测数t n r -=,若又选用了u 个函数独立参数,则总共应当列出u r c +=个一般条件方程。

由于t u ≤,因此一般条件方程的个数总是介于n c r ≤≤范围,即一般条件方程总数不超过n 个。

附有条件的间接平差)ppt课件

附有条件的间接平差)ppt课件

平差对象
地理数据,如经纬度、高程等
案例描述
在GIS中,为了确保地图的准确性,需要使用附有 条件的间接平差对地理数据进行处理,如对全球定 位系统(GPS)数据进行平差处理,以提高其定位 精度。
案例二:气象数据平差
• 应用领域:气象预报
• 平差对象:气象观测数据,如温度、湿度、风速、气压等 • 平差方法:利用已知的气象数据和气象站的位置信息,通过平差计算,对未知的气象数据进行修正,提高其准确性 • 案例描述:在气象预报中,需要对大量的气象观测数据进行平差处理,以获取更准确的气象信息。例如,通过附有条件的间接平差方法,可以修正气象观测数据的误差,提高气象预报的准确率。
附有条件的间接平差的应用场景
附有条件的间接平差广泛应用于大地 测量、工程测量、航空摄影测量等领 域。
在工程测量中,附有条件的间接平差 可以用于桥梁、隧道、建筑物等工程 的施工测量和监测,提高工程质量和 安全性。
在大地测量中,附有条件的间接平差 可以用于处理地球重力场模型的数据, 提高模型精度和可靠性。
解算参数
通过计算或软件解算,得 出未知点的坐标和其它相 关参数的估计值。
参数精度评估
对解算出的参数进行精度 评估,了解其可靠性和误 差范围。
结果检验
残差分析
对解算出的结果进行残差 分析,检查是否符合预期 的误差分布。
精度验证
通过实地测量或其它方式, 验证解算结果的精度和可 靠性。
模型适用性评估
评估所建立的数学模型是 否适用于实际测量情况, 并根据评估结果进行必要 的调整或改进。
常用的计算方法包括最小二乘法、梯度下降法等,选择合 适的计算方法可以提高求解效率和结果的准确性。
03
附有条件的间接平差的 实现步骤

误差理论与测量平差基础习题集4

误差理论与测量平差基础习题集4
1 1 2 2
若设参

X=[X1X2X3 ]T=[HBh3h4]T,定权时 C=2km。试列出 (1)误差方程式及限制条件; (2)法方程式。 8.1.09 在图 8-6 中,A、B 为已知三角点,C、D 为待定点,观测了 9 个内
角 L1~L9。现选取参数X=[X1X2X3X4X5 ]T =[L1L2L3L4L5 ]T,试列出误差方程 式和限制条件。 8.1.10 在图 8-7 所示的测边网中,A、B 为已知点,1,2 为待定点,观
角度观测精度均为������
= 1″。
������
观测了边长 S1、S2,观测精度均为������ ������
2
= 10mm,
0 ������
������
1
= 148.283m,
= 107.967m。 设 P 点的坐标为未知参数,其近似坐标为������ = 882.270m,
������
0 ������
9.2.04 附有限制条件的条件平差模型在解决实际平差问题中有什么意 义? 9.2.05 某平差问题有 15 个同精度观测值,必要观测数等于 8,现选取 8 个参数,且参数之间有 2 个限制条件。若按附有限制条件的条件平差法进行 平差,应列出多少个条件方程和限制条件方程?由其组成的法方程有几个? 9.2.06 在测站 O 上观测 A、B、C、D 四个方向(如图 9-1 所示) ,得等精 度观测值为: L1=44°03′14.5″, L2=43°14′20.0″, L3=53°33′32.0″, L4=87°17′31.5″,
(a)已知值:矩形的对角边 S 观测值:L1~L4 参数:������1、������2、������3
图 8-4
8.1.08

误差理论与测量平差基础第八章 附有限制条件的间接平差

误差理论与测量平差基础第八章  附有限制条件的间接平差


Q XX Q XL B T ˆˆ ˆ QLL BQXX B T ( B E ) ˆˆ Q ˆ Q E LX LL
(1)根据具体问题,按(1)式列出误差方程和条件方 程。
(2)由误差方程和条件方程列出法方程(3)式。
(3)按(4)式计算参数的改正数 x 。 ˆ
(4)按(5)式计算观测值的平差值和参数的平差值。
教材:8-1
第八章——附有限制条件的间接平差
4、举例
水准网如图所示,同 精度观测值为: L1 0.008m
观测值的平差值(略)
习题:8.1.10,8.1.11
第八章——附有限制条件的间接平差 §8-2 精度评定
(1)、单位权中误差 在附有条件的间接平差中,单位权中误差的估值仍为
V T PV ˆ2 0 r
(2)、基本向量的协因数矩阵 在附有条件的间接平差中,基本向量为:
ˆ ˆ L, W , X , K s , V , L
求解法方程,得
ˆ xC 1.8505 , yC 0.6653 cm ˆ cm ˆ x D 0.1399 , y D 2.4593 cm ˆ cm k S 28.9655
第八章——附有限制条件的间接平差
改正数为:
V 2.4 5.7 5.7 8.0 0.0 0.0
第八章——附有限制条件的间接平差
误差方程和条件方程如下:
1.786 1.031 1.786 1.031 2.24 ˆ 0 2.063 xC 4.62 1.786 1.032 0 y 6.62 2.063 1.786 1.032 ˆ C V x 0.38 0 2.063 ˆ D 1.786 1.032 0 y 1.38 2.063 1.786 1.032 ˆ D 1.786 1.032 1.786 1.032 6.24 ˆ ˆ 0.500x D 0.866y D 2.20 0

误差理论与测量平差(山东联盟)智慧树知到答案章节测试2023年山东建筑大学

误差理论与测量平差(山东联盟)智慧树知到答案章节测试2023年山东建筑大学

第一章测试1.误差是不可避免的。

A:对B:错答案:A2.构成观测条件的要素有哪些A:外界条件B:计算工具C:观测者D:测量仪器答案:ACD3.对中误差属于那种误差A:系统误差B:偶然误差C:不是误差D:粗差答案:B第二章测试1.两随机变量的协方差等于0时,说明这两个随机变量A:相关B:互不相关C:相互独立答案:B2.观测量的数学期望就是它的真值A:错B:对答案:A3.衡量系统误差大小的指标为A:精确度B:准确度C:不确定度D:精度答案:B4.精度是指误差分布的密集或离散程度,即离散度的大小。

A:错B:对答案:B5.若两观测值的中误差相同,则它们的A:测量仪器相同B:真误差相同C:观测值相同D:精度相同答案:D第三章测试1.设L的权为1,则乘积4L的权P=()。

A:1/4B:4C:1/16D:16答案:C2.有一角度测20测回,得中误差±0.42秒,如果要使其中误差为±0.28秒,则还需增加的测回数N=()。

A:25B:45C:20D:5答案:A3.在水准测量中,设每站观测高差的中误差均为1cm,今要求从已知点推算待定点的高程中误差不大于5cm,问可以设25站。

A:对B:错答案:A4.已知距离AB=100m,丈量一次的权为2,丈量4次平均值的中误差为2cm,若以同样的精度丈量CD的距离16次,CD=400m,则两距离丈量结果的相对中误差分别为( 1/5000 )、(1/20000 )。

A:错B:对答案:B5.A:29B:35C:5D:25答案:D第四章测试1.当观测值为正态随机变量时,最小二乘估计可由最大似然估计导出。

A:对B:错答案:A2.多余观测产生的平差数学模型,都不可能直接获得唯一解。

A:对B:错答案:A3.在平差函数模型中,n、t、r、u、s、c等字母各代表什么量?它们之间有何关系?( n观测值的个数 )(t必要观测数 )(r多余观测数,r=n-t )(u所选参数的个数 )( s非独立参数的个数,s=u-t )( c所列方程的个数,c=r+u )A:对B:错答案:A4.A:对B:错答案:A5.A:错B:对答案:B第五章测试1.关于条件平差中条件方程的说法正确的是:A: 这r个条件方程应彼此线性无关B: 应列出r个条件方程C: r个线性无关的条件方程必定是唯一确定的,不可能有其它组合。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档