透视投影详解

合集下载

第十五章 透视投影

第十五章 透视投影

H
(3)直线的全长透视 空间直线从迹点到无穷远点是无限长度的,其透视图则是从迹点到
灭点的有限长度的线段。所以这条有限长度的线段称为空间直线∞的全长 透视。
直线段AB的透视必定位于其全
长透视上的其中一段。
V
同一个方向的一组平行线,共
F
同拥有一个灭点。
h
画面平行线如GE,没有迹点,
f
也没有灭点,其透视与直线本身 x
a0
ha
a0 x ax o
H
为了方便作图,一般将画面与基面分离,并平放在同一平面上,基 面与画面的边框不必画出
4. 点的透视作图
如图所示,已知视点S和A点在基面和画面上的正投影,求作A点的透视和
基透视。 作图过程: (1)连接sa交ox于aox.
Ao
a′
s′
h
h
ao
(2)连接s ′a'.
x′
ax o′
(1) 连接sa交ox于aox;
(6)视平线(h-h)——过视点与基面平行的平面与画面的交线,与基线平行, 用符号h-h表示。
(7)视线——即投射线,是视点与形体上的点的连线。
K V
h
s′
x
h
S o
s
视高
H
§15.2 点、直线和平面的透视投影
一、点的透视投影
1.点的透视特性
点的透视为通过该点的视线与画面的交点。一点在画面上,则其透视 即为该点本身。
平行,但长度会有变化。
fx S
B
A B0
F
A0 T
b
b0
T1
h
a0
a
T2 t o s
H
5、直线的透视作图
(1)画面平行线

说明透视投影的含义和种类

说明透视投影的含义和种类

说明透视投影的含义和种类
透视投影是一种创造3D效果的技术,它使得观众能够看到一幅
画面中存在的空间深度和关系。

它是一种绘画技术,在特定的角度内渲染3D空间,使物体有立体的效果。

它也是计算机图形学的基础技术,用于模拟三维空间。

透视投影的历史
透视投影的历史可以追溯到古希腊时期,当时的哲学家们使用一种名为“原子”的理论来解释世界的结构,其中,一种理论提出了一种空间,即贴近物体表面的点投影,通过这种投影可以将物体在空间中缩小,在这种情况下,被投影的物体将变得更加真实,那么就是所谓的透视投影。

透视投影的类型
根据不同的使用目的,透视投影分为直接投影和点投影两种类型。

直接透视投影是指在透视投影中,不使用任何立体变换,是在投影物体表面的点形成的线投影到画布上的技术。

它的优势在于使用简单,容易掌握,而且可以画出真实的图形,而需要强调的是,直接透视投影需要有正确的角度和投影面,因此需要计算准确的距离。

点投影是指在投影物体表面的点形成的投影,它将物体从某个视角变换到投影物体上,这一变换是由该视角中的多个点投影到投影面上,从而形成物体投影的终极形式。

总之,透视投影是一种绘画技术,它通过在特定的视角内渲染三维空间,使物体有立体的效果,而它的类型则分为直接投影和点投影
两种。

19第十九章 透视投影的基本知识解析

19第十九章 透视投影的基本知识解析

( a ) 二点透视
( b ) 长方体的二点透视图
3、三点透视 当画面倾斜于基面,物体上三主向直线都与画面相交,有三个灭点F1、F2、F3, 所得的透视就称为三点透视,也称斜透视。
高 宽 长
( a ) 三点透视
( b ) 长方体的三点透视图
五、透视图的基本作图方法
1、迹点灭点法(利用直线的迹点和灭点来作出形体透视的方法,称为迹点灭点法。) 在图(a)中,为便于作图,使画面经过长方体的一条侧棱AB,并使其正面和侧面与画面 的夹角为30º和60º。过站点作长方体两主向直线的平行线,得灭点投影f1、f2。将长方体 底面边线dc和de延长至画面上,得到两个迹点1和2。 在图(b)中,先根据视高H确定基线gg和视平 线hh,再根据图(a)中gg线上各点的相对位 置,确定灭点F1、F2和三个迹点的位置1、Aº、 2。由这三个迹点与相应灭点相连,就得到长 方体的基透视AºCºDºEº。过迹点Aº作高为L的 真高线AºBº,连BºF1、BºF2,分别与过1、2的 竖直线相交,即得长方体的透视。
三、透视投影中的常用术语
中心视线(主视线) 画面 视平线 视平面 视距Ss ' 视点 视高
心点(主点) 点 的透视
视线 空间点
点 的基点
点 的基透视 (点 的次透视) 站点 基面 透视投影中的常用术语 基线
四、透视图的分类
建筑物具有长、宽、高三组主方向的棱线。与主方向棱线平行的视线和画 面的交点,称为主向灭点。随着建筑物与画面相对位置不同,主向灭点的 数量也有所不同。建筑透视图由主向灭点的多少来分类。分为一点透视、 两点透视和三点透视三种。
直线

的灭点
直线 视点 直线
的迹点 的迹点
直线的迹点和灭点

透视投影详解

透视投影详解

透视投影详解概述投影变换完成的是如何将三维模型显示到二维视口上,这是一个三维到二维的过程。

你可以将投影变换看作是调整照相机的焦距,它模拟了为照相机选择镜头的过程。

投影变换是所有变换中最复杂的一个。

视锥体视锥体是一个三维体,他的位置和摄像机相关,视锥体的形状决定了模型如何从camera space投影到屏幕上。

最常见的投影类型-透视投影,使得离摄像机近的物体投影后较大,而离摄像机较远的物体投影后较小。

透视投影使用棱锥作为视锥体,摄像机位于棱锥的椎顶。

该棱锥被前后两个平面截断,形成一个棱台,叫做View Frustum,只有位于Frustum内部的模型才是可见的。

透视投影的目的透视投影的目的就是将上面的棱台转换为一个立方体(cuboid),转换后,棱台的前剪裁平面的右上角点变为立方体的前平面的中心(下图中弧线所示)。

由图可知,这个变换的过程是将棱台较小的部分放大,较大的部分缩小,以形成最终的立方体。

这就是投影变换会产生近大远小的效果的原因。

变换后的x坐标范围是[-1, 1],y坐标范围是[-1, 1],z坐标范围是[0, 1](OpenGL略有不同,z值范围是[-1, 1])。

透视投影矩阵推导下面来推导一下透视投影矩阵,这样我们就可以自己设置投影矩阵了,就可以模拟神奇的D3DXMatrixPerspectiveLH函数的功能了。

那么透视投影到底做了什么工作呢?这一部分算是个难点,无论是DX SDK的帮助文档,还是大多数图形学书籍,对此都是一带而过,很少有详细讨论的,早期的DX SDK文档还讨论的稍微多一些,而新近的文档则完全取消了投影矩阵的推导过程。

我们可以将整个投影过程分为两个部分,第一部分是从Frustum 内一点投影到近剪裁平面的过程,第二部分是由近剪裁平面缩放的过程。

假设Frustum内一点P(x,y,z)在近剪裁平面上的投影是P'(x',y',z'),而P'经过缩放后的最终坐标设为P''(x",y",z")。

透视投影的基本原理

透视投影的基本原理
4.消失点:在透视投影中,平行的线在远处会似乎汇聚于一点,这被称为消失点。消失点在投影平面上的位置决定了远近物体的投影形状和方向。
5.视角:透视投影的效果与视角的选择有关。视角是指观察者或相机的视线方向相对于投影平面的角度。不同的视角会导致不同的透视效果,从而影响投影物体的形状和比例。
6.透视网格:为了更好地理解透视投影原理和实践练习,可以使用透视网格。透视网格是由一系列平行线和消失点构成的网格,用于指导绘制远近物体的形状和位置。
7.透视变形:透视投影会导致物体在远近处出现透视变形现象。这意味着远离视点的物体在投影平面上的形状会发生畸变,例如长方形在远处会变成梯形。了解透视变形有助于准确表达远近物体的真实形态。
8.多点透视:除了常见的一点透视(单个消失点)外,还存在多点透视。多点透视是指在投影平面上存在多个消失点,适用于绘制特殊视角或复杂场景的透视效果。
9.透视修正:在绘画或计算机图形中,为了准确表达透视效果,常常需要进行透视修正。透视修正是指对透视投影的结果进行调整和修饰,以达到艺术家或设计师的意图。
通过合理运用透视投影的原理,艺术家、设计师和计算机图形学的相关领域可以创造出具有立体感和逼真感的画面和图像,使观者获得更真实的视觉体验。
。透视投影是一个广泛应用于绘画、建筑设计、计算机图形学等领域的重要概念,它为我们呈现出逼真的视觉效果和立体感。
透视投影是一种常用于绘画、建筑设计和计算机图形学中的技术,通过模拟人眼在观察远近物体时产生的视觉效果,使得画面或图像在视觉上更加逼真和立体感。其基本原理如下:
1.视点与投影平面:透视投影的基本原理是基于一个视点和一个投影平面。视点是观察者或相机的位置,而投影平面则是物体投射影像的平面,通常是一个垂直于视线的平面。
2.平行投影线:透视投影使用了平行投影线的概念。平行投影线是指自视点出发与物体上的相应点相连的直线,这些直线在无限远处相交于视点。平行投影线的长度在投影平面上形成了投影的大小和形状。

透视投影

透视投影

第十二章 影
透视投
木材科学与工程
16
作SF0=S2F1,则F2即为直线AB的 灭点,因为有上升角,也叫天点
S2 h S′
第十二章 影
透视投
F2 b h F1
O a F0
X
s
木材科学与工程
17
第十二章 影
透视投
木材科学与工程
18
作SF0=S2F1,则F3即为直线BC的灭点,因 为有下降角,也叫地点
木材科学与工程Leabharlann 31第十二章 影透视投
2、成角透视(二点透视) 画面平行于投影对象的一根坐标轴而与其 余坐标面成一定角度。
木材科学与工程
32
第十二章 影
透视投
木材科学与工程
33
第十二章 影
透视投
3、斜透视(三点透视) 画面与投影对象三根坐标轴都不平行,因 而具有三个灭点。一般用来画大型物体,如建 筑物等。
木材科学与工程
10
第十二章 影
透视投
线段AB向画面延长,与画面相交与N点,就是迹点,其 透视即为本身,其水平投影n是AB的水平投影ab与OX的交点, n也就是迹点N的次透视。
木材科学与工程
11
第十二章 影
透视投
2)、灭点:直线上无穷远点的透视称为该直 线的灭点。 从几何学可知,两平行直线相交于无限远 点,因而,通过一直线上无限远点的视线,必 与该直线平行。
视点位置:对于产品,视点的位置应能使产 品正面和侧面的比例符合实际的长度比,且能 最大限度的反映产品造型特征;对于室内整体 透视,视点的位置宜在透视图形的中部1/3范 围内,特别不应在中央,把图形一分为二。
木材科学与工程
38
第十二章 影

透视投影的含义和种类

透视投影的含义和种类

透视投影的含义和种类
透视投影是将一个物体的三维投射到平面上,观测者仅能看到物体投影到平面上部分图案,其中会涉及到多个视角的转换,它可以将空间或物体投影到一个特定目标平面上。

而透视投影分为以下几种:
(1)正交透视投影
正交透视投影是由三维物体映射到二维平面做平行投影形成图像,透视线平行并且永远不会交叉,它通常用于展示建筑图纸,比如英式建筑中使用的哥特式墙投影。

(2)异向透视投影
异向透视投影是由三个视点(正面、后面、右侧)视野投影到一个特定视点上,它可以清晰表现出投影的立体感,用的比较多的例子有平行四边形多边形投影并可绘制成主次图案、模型结构图和图标,常用于设计、建筑、商业设计等方面。

(3)投影折射
投影折射是从三维空间上将物体投射到二维平面上,垂直射入平面的
光照会折射,出现完全不同的视角,折射的表现形式多变,有艰深错落、分心群网、微型图案等,使用它可以让观众产生一种神秘的视觉,在视觉设计和广告设计上可以制作出有趣的图案、灯光效果等。

(4)等比例投影
等比例投影即物体内几何形状的比例保持不变,而投影区域发生变化。

此种投影方法用来表示直角坐标系统或空间中的图像,这种投影方式
用于服装设计等应用比较多,它可以明确的展示出投影的细节,如服
装的结构形状特征及位置特征等,使服装设计更具有实用性。

(5)视角投影
视角投影是由三角形的顶点投影到一个投影面上形成的一种投影方式,它可以解决视角不变、可视范围反复变化的问题,可以实现细究视角
景别,使观众以视觉体验物体真实状态,比如用于立体显示物体或地景,有利于更好的展示效果,在可视化技术领域有很重要的意义。

透视投影的详细解释(转载)

透视投影的详细解释(转载)

透视投影的详细解释(转载)本⽂乃<投影矩阵的推导>译⽂,原⽂地址为:译者: 流星上的潴如需转载,请注明出处,感谢!在3D图形程序的基本矩阵变换中,投影矩阵是其中⽐较复杂的。

平移和缩放浏览⼀下就能理解,旋转矩阵只要掌握了三⾓函数知识也可以理解,但投影矩阵有点棘⼿。

如果你曾经看过投影矩阵,你会发现你的常识不⾜以告诉你它是怎么来的。

⽽且,我在⽹上还未看到许多关于如何推导投影矩阵的教程资源。

本⽂的话题就是如何推导投影矩阵。

对于刚刚开始接触3D图形的⼈,我应该指出,理解投影矩阵如何推导可能是我们对于数学的好奇⼼,它不是必须的。

你可以只⽤公式,并且如果你⽤像Direct3D那样的图形API,你甚⾄都不需要使⽤公式,图形API会为你构建⼀个投影矩阵。

所以,如果本⽂看起来有点难,不要害怕。

只要你理解了投影矩阵做了什么,你没必要在你不想的情况下关注它是怎么做的。

本⽂是给那些想了解更多的程序员的。

概述: 什么是投影?计算机显⽰器是⼀个⼆维表⾯,所以如果你想显⽰三维图像,你需要⼀种⽅法把3D⼏何体转换成⼀种可作为⼆维图像渲染的形式。

那也正是投影做的。

拿⼀个简单的例⼦来说,⼀种把3D对象投影到2D表⾯的⽅法是简单的把每个坐标点的z坐标丢弃。

对⽴⽅体来说,看上去可能像图1:图1: 通过丢弃Z坐标投影到XY平⾯当然,这过于简单,并且在⼤多数情况下不是特别有⽤。

⾸先,根本不会投影到⼀个平⾯上;相反,投影公式将变换你的⼏何体到⼀个新的空间体中,称为规范视域体(canonical view volume),规范视域体的精确坐标可能在不同的图形API之间互不相同,但作为讨论起见,把它认为是从(-1, -1, 0)延伸⾄(1, 1, 1)的盒⼦,这也是Direct3D中使⽤的。

⼀旦所有顶点被映射到规范视域体,只有它们的x和y坐标被⽤于映射到屏幕上。

这并不代表z坐标是⽆⽤的,它通常被深度缓冲⽤于可见度测试。

这就是为什么变换到⼀个新的空间体中,⽽不是投影到⼀个平⾯上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

透视投影透视投影是用中心投影法将形体投射到投影面上,从而获得的一种较为接近视觉效果的单面投影图。

它具消失感、距离感、相同大小的形体呈现出有规律的变化等一系列的透视特性,能逼真地反映形体的空间形象。

透视投影也称为透视图,简称透视。

在建筑设计过程中,透视图常用来表达设计对象的外貌,帮助设计构思,研究和比较建筑物的空间造型和立面处理,是建筑设计中重要的辅助图样。

透视投影符合人们心理习惯,即离视点近的物体大,离视点远的物体小,远到极点即为消失,成为灭点。

它的视景体类似于一个顶部和底部都被切除掉的棱椎,也就是棱台。

这个投影通常用于动画、视觉仿真以及其它许多具有真实性反映的方面。

在平行投影中,图形沿平行线变换到投影面上;对透视投影,图形沿收敛于某一点的直线变换到投影面上,此点称为投影中心,相当于观察点,也称为视点。

平行投影和透视投影区别在于透视投影的投影中心到投影面之间的距离是有限的,而平行投影的投影中心到投影面之间的距离是无限的。

当投影中心在无限远时,投影线互相平行,所以定义平行投影时,给出投影线的方向就可以了,而定义透视投影时,需要指定投影中心的具体位置平行投影保持物体的有关比例不变,这是三维绘图中产生比例图画的方法。

物体的各个面的精确视图可以由平行投影得到。

另一方面,透视投影不保持相关比例,但能够生成真实感视图。

对同样大小的物体,离投影面较远的物体比离投影面较近物体的投影图象要小,产生近大远小的效果.透视投影的原理和实现by Goncely摘要:透视投影是3D渲染的基本概念,也是3D程序设计的基础。

掌握透视投影的原理对于深入理解其他3D渲染管线具有重要作用。

本文详细介绍了透视投影的原理和算法实现,包括透视投影的标准模型、一般模型和屏幕坐标变换等,并通过VC实现了一个演示程序。

1 概述在计算机三维图像中,投影可以看作是一种将三维坐标变换为二维坐标的方法,常用到的有正交投影和透视投影。

正交投影多用于三维健模,透视投影则由于和人的视觉系统相似,多用于在二维平面中对三维世界的呈现。

透视投影(Perspective Projection)是为了获得接近真实三维物体的视觉效果而在二维的纸或者画布平面上绘图或者渲染的一种方法,也称为透视图[1]。

它具有消失感、距离感、相同大小的形体呈现出有规律的变化等一系列的透视特性,能逼真地反映形体的空间形象。

透视投影通常用于动画、视觉仿真以及其它许多具有真实性反映的方面。

2 透视投影的原理基本的透视投影模型由视点E和视平面P两部分构成(要求E不在平面P上)。

视点可以认为是观察者的位置,也是观察三维世界的角度。

视平面就是渲染三维对象透视图的二维平面。

如图1所示。

对于世界中的任一点X,构造一条起点为E并经过X点的射线R,R与平面P的交点Xp即是X点的透视投影结果。

三维世界的物体可以看作是由点集合 { Xi} 构成的,这样依次构造起点为E,并经过点Xi的射线Ri,这些射线与视平面P的交点集合便是三维世界在当前视点的透视图,如图2所示。

图1 透视投影的基本模型[2]_图2 透视图成像原理[6]基本透视投影模型对视点E的位置和视平面P的大小都没有限制,只要视点不在视平面上即可。

P无限大只适用于理论分析,实际情况总是限定P为一定大小的矩形平面,透视结果位于P之外的透视结果将被裁减。

可以想象视平面为透明的玻璃窗,视点为玻璃窗前的观察者,观察者透过玻璃窗看到的外部世界,便等同于外部世界在玻璃窗上的透视投影(总感觉不是很恰当,但想不出更好的比喻了)。

当限定P的大小后,视点E的可视区间(或叫视景体)退化为一棱椎体,如图3所示。

该棱椎体仍然是一个无限区域,其中视点E为棱椎体的顶点,视平面P为棱椎体的横截面。

实际应用中,往往取位于两个横截面中间的棱台为可视区域(如图4所示),完全位于棱台之外的物体将被剔除,位于棱台边界的物体将被裁减。

该棱台也被称为视椎体,它是计算机图形学中经常用到的一个投影模型。

图3 有限视平面的可视区间[3]图4 透视投影的视椎体模型[3]3 透视投影的标准模型设视点E位于原点,视平面P垂直于Z轴,且四边分别平行于x轴和y轴,如图5所示,我们将该模型称为透视投影的标准模型,其中视椎体的近截面离视点的距离为n,远截面离视点的距离为f,且一般取近截面为视平面。

下面推导透视投影标准模型的变换方程。

图5 透视投影的标准模型[4]设位于视椎体内的任意一点X (x, y, z) 在视平面的透视投影为Xp (xp, yp, zp),从点X和Xp做z轴的垂线,并分别在X-Z平面和Y-Z平面投影,图6是在X-Z平面上的投影结果。

图6 透视投影的相似三角形[6]根据三角形相似原理,可得:xp/n = x/z, yp/n = y/z解上式得:xp = x*n/z, yp = y*n/z, zp = n.上式便是透视投影的变换公式,非常简单,不是吗?需要说明的是,由于透视点始终位于视平面,所以zp恒等于n,实际计算的时候可以不考虑zp。

另外还可以从照相机模型来考虑透视投影。

将视点E想象为一个虚拟的照相机,视平面想象为胶片,那么图5 也是一个标准的照相机模型。

PS:上述讨论都是基于矩形视平面来考虑的,其实我们可以取视平面为任意形状,比如圆形,此时视景体变为一个圆锥体,当然现在好像还没有圆形的显示装置。

另外,我还曾考虑将视平面取为凹面或凸面,此时的投影结果应该是哈哈镜效果吧(纯属想象,没有验证)。

还可以想象将视平面放在E的另外一面,这时的投影图像是倒置的,但是不是更接近人的视觉成像模型?另外还可以考虑有两个甚至更多视点的透视投影,总之充分发挥你的相像,或许能得到意想不到的结果。

4 透视投影的一般模型令世界坐标系的x轴指向屏幕的右方,y轴指向屏幕的上方,z轴指向屏幕外(右手坐标系)。

我们在讨论标准模型的时候,曾假设E的坐标为原点,其实视点E除了有位置属性外,还有姿态属性,通常用[L U D]表示(D3D中用的是[R U D]表示),其中L表示视点的左向(Left),U表示上方(Up),D表示朝向(Direction)。

在标准模型中,有L=[-1,0,0]T , U=[0,1,0]T , D=[0,0,-1]T。

透视投影的一般模型研究视点E在任意位置,任意姿态下透视图的生成算法。

思路很简单,先将一般模型变换为标准模型,然后使用标准模型的透视投影公式便能计算透视结果。

下面研究一般模型变换为标准模型的数学公式。

设一般模型中的点X,其对应在标准模型中的点为Y,那么当视点位于E,姿态为R时,X和Y有如下关系:X = E+RY反过来有:Y = R-1 (X-E)通常取R为正交阵,即R-1 =R T,故有Y = R T (X-E)把上式改写成齐次矩阵(Homogeneous matrix )的形式有:式中H view便是透视投影从一般模型到标准模型的变换矩阵。

5 转换为屏幕坐标对于透视投影的标准模型,视平面的坐标模型如图 7 所示,它的坐标原点位于视平面的中心, x 轴正向水平向右, y 轴正向垂直向上。

要把透视投影的结果在计算机屏幕上显示的话,需要对透视图进行坐标变换,将其从视平面坐标系转换到屏幕坐标系。

图7 视平面坐标模型计算机屏幕的坐标模型如图 8 所示,它的原点位于屏幕的坐上角, y 轴正向垂直向下。

设视平面的宽度为 Wp ,高度为 Hp ;屏幕的宽度为 Ws ,高度为 Hs 。

图8 屏幕坐标模型[5]令视平面坐标系中的点( xp, yp )对应于屏幕坐标系中的点( xs, ys ),它们的变换关系如下:xs = a*xp + b;ys = c*yp + d由图 7 和图 8 可知,视平面中的( 0, 0 )点对应于屏幕坐标系中的中心点( 0.5*Ws-0.5, 0.5*Hs-0.5 )( PS :由于屏幕坐标系是离散坐标系,所有屏幕右下点的坐标为( Ws-1, Hs-1 ),而不是( Ws, Hs ));另外,视平面的( -0.5*Wp, -0.5*Hp )对应于屏幕的( 0, 0 )点。

将上述两种取值代入变换方程可以得出:上式便为视平面坐标系到屏幕坐标系的变换方程。

6 透视投影的实现6.1 载入3D模型使用Matt Fairfax实现的Model_3DS类支持3DS模型文件的载入,该类的实现非常简单,而且很容易使用,具体可参考[7]。

由于本文的DEMO只需要其中的模型载入功能,所以对源代码进行了删减,去掉了纹理加载(暂不需要)和渲染(我们自己实现)代码,在析构函数中添加了资源释放代码。

6.2 视图变换为表示透视投影的一般模型,实现了KCamera类,除保存视点的位置和姿态,还保存视图变换矩阵m_kmView,随着视点位置和姿态的变化,视图矩阵也不断更新,更新算法详见第4节。

对于世界坐标系中的任何一点v(x, y, z),通过v = m_kmView*v将其变换到透视投影的标准模型坐标系,详见KCamera::Transform函数。

6.3 透视变换KFrustum类用来对透视投影的标准模型进行建模,其成员包括视平面的尺寸大小,以及近截面和远截面的z轴坐标。

KFrustum通过Project函数将视图变换的结果变换为透视坐标。

算法的原理见第3节,代码实现如下:void KFrustum::Project(KVector3& v){// xp = x*n/z, yp = y*n/z, zp = n.float fFactor = GetNear()/v.z;v.x *= fFactor;v.y *= fFactor; v.z = GetNear(); }。

相关文档
最新文档