3.1.1两角差的余弦公式
学案4:3.1.1 两角差的余弦公式

3.1.1 两角差的余弦公式学习目标(1)了解两角差的余弦公式的推导过程,通过公式的推导了解角与角之间的内在联系;(2)正确理解与掌握两角差的余弦公式,并会进行化简、求值等应用.学习过程基础预探两角差的余弦公式:cos (α-β)=________________.学习引领两角差的余弦公式对任意的角都成立,是前面学习的诱导公式的一般化.在利用两角差的余弦公式时,运用两角差的三角函数求解问题一般分三步:第一步求某一个三角函数值;第二步确定角所在的范围;第三步得结论求得所求角的值.典例导析题型一:公式的直接应用例1.计算:cos80ºcos35º+sin80ºsin35º=( )A .1B .21 C .22 D .23 题型二:公式的间接应用例2.计算:cos65ºcos35º+cos25ºcos55º=( )A .1B .21 C .22 D .23 题型三:公式的综合应用例3.已知α、β、γ∈(0,2π),sin α+sin γ=sin β,cos β+cos γ=cos α,求β-α的值.随堂练习1.计算:cos75ºcos15º+sin75ºsin15º=( )A .1B .21 C .22 D .23 2.化简cos (x +y )cos (x -y )+sin (x +y )sin (x -y )的值为( )A .cos2xB .cos2yC .sin2xD .sin2y3.计算:cos (38º-x )cos (8º-x )+sin (38º-x )sin (8º-x )=( )A .1B .21 C .22 D .23 4.计算:cos68ºcos8º+sin68ºcos82º=________.5.化简:cos (α-2β)cos (2α-β)+ sin (α-2β)sin (2α-β)=________. 6.若锐角α、β满足cos α=54,cos (α+β)=53,求cos β的值.参考答案学习过程基础预探cos αcos β+sin αsin β典例导析题型一:公式的直接应用例1.C【解析】cos80ºcos35º+sin80ºsin35º=cos (80º-35º)=cos45º=22,故选C . 题型二:公式的间接应用例2.D【解析】由于cos25º=sin (90º-25º)=sin65º,cos55º= sin (90º-55º)=sin35º, 则cos65ºcos35º+cos25ºcos55º= cos65ºcos35º+sin65ºsin35º=cos (65º-35º) =cos30º=23,故选D . 题型三:公式的综合应用例3.解:由已知,得sin γ=sin β-sin α,cos γ=cos α-cos β,平方相加得(sin β-sin α)2+(cos α-cos β)2=1,即sin 2β-2sin αsin β+sin 2α+cos 2α-2cos βcos α+cos 2β=1,亦即2-2(sin αsin β+cos βcos α)=1,∴-2cos (β-α)=-1,∴cos (β-α)=21, ∴β-α=±3π, ∵sin γ=sin β-sin α>0,∴β>α,∴β-α=3π. 随堂练习1.B【解析】cos75ºcos15º+sin75ºsin15º=cos (75º-15º)=cos60º=21; 2.B3.D 【解析】cos (38º-x )cos (8º-x )+sin (38º-x )sin (8º-x )=cos[(38º-x )-(8º-x )]=cos30º=23; 4.21 【解析】cos68ºcos8º+sin68ºcos82º=cos68ºcos8º+sin68ºsin (90º-8º)=cos68ºcos8º+sin68ºsin8º=cos (68º-8º)=cos60º=21. 5.cos (2βα+) 【解析】cos (α-2β)cos (2α-β)+ sin (α-2β)sin (2α-β) = cos [(α-2β)-(2α-β)]= cos (2βα+). 6.解:由于锐角α满足cos α=54,则sin α=α2cos 1-=2)54(1-=53, 又锐角α、β满足cos (α+β)=53,则sin (α+β)=)(cos 12βα+-=2)53(1-=54, 所以cos β=cos [(α+β)-α]= cos (α+β)cos α+ sin (α+β)sin α=53×54+54×53=2524.。
3.1.1两角和(差)的余弦公式

c o s 1 5 c o ( 6 0 4 5 ) s co s 1 5 co( 4 5 3 0 ) s
你 会 算 co s 1 5 吗 ?
思考:
有 一 座 小 山 坡 O A ,O A 长 为 a, A C O C , 且 AO C = 15 o ,求 坡 脚 线 O C的 长 度 ?
A
a
15
O
o
C
解 : 在 R t A O C 中 , O C A O co s 1 5 a co s 1 5
o
o
co s 1 5 co ( 6 0 4 5 ) s co s 6 0 co s 4 5 1 2 2 2
co s co s co s sin sin sin 2 2 2
所 以 有 co s sin 2
例6.已知 cos = 求 cos .
1 17
, )=cos(
47 51
, , 0
2
解 : 由 sin , , , 得 3 2
cos 1 sin
3
2
2 1 3
2
5 3
3 由 cos , , ,得 5 2
sin 1 cos
两角和的余弦公式
C
Hale Waihona Puke 两角和与差的余弦公式co s
3.1.1 两角差的余弦公式

3.1.1 两角差的余弦公式班级: 姓名: 编者:陆祖银 审阅:高一数学备课组 问题引航2、两角差的余弦公式是什么?3、两角差的余弦公式的使用条件是什么? 自主探究βα,,其终边与单位圆相交于B A ,两点,那么OA = ,OB = .(尝试用βα,的三角函数值表示,的坐标)2、如图,观察与的夹角θ与βα,的关系θ= .3、利用向量夹角计算公式表示θcos = .4、通过坐标运算,大家发现了什么? .5、两角差的余弦公式:)cos(βα-= .6、简记符号: .7、两角差的余弦公式的使用条件:βα,都是 .互动探究(1)︒15cos ;(2)︒75cos .例题2:已知53sin =α,),2(ππα∈,1312sin -=β,)23,(ππβ∈,求)cos(βα-的值。
当堂检测1.已知βα,均为锐角,且552cos =α,1010cos =β,则βα-的值为多少?2.︒345cos 的值等于( ) 462.-A 426.-B 462.+C 462.+-D3.)24sin()21sin()24cos()21cos(︒-︒++︒-︒+θθθθ= .4.已知1413)cos(,71cos =-=βαα,且20παβ<<<,求β的值。
知识拓展1.已知1312)cos(,1312)cos(=+-=-βαβα,且)2,23(),,2(ππβαππβα∈+∈-,求角β的值。
作业课本127页练习第2、3、4题自我评价你对本节课知识掌握的如何( )A.非常好 B.较好 C.一般 D.较差 E.很差。
3.1.1 两角差的余弦公式

解析:(1)原式=cos(15° -105° ) =cos(-90° )=cos 90° =0; (2)原式=cos [(α-35° )-(25° +α)] 1 =cos(-60° )=cos 60° . = 2 4 3 (3) ∵ sin α=- ,180° <α<270° ,∴cos α=- , 5 5 5 12 ∵sin β= ,90° <β<180° ,∴cos β=- , 13 13 ∴cos(α-β)=cos αcos β+sin αsin β -3×-12+-4× 5 =16. = 5 13 5 13 65
两角差的余弦公式的简单应用 (1)sin7°cos23°+sin83 °cos67°的值为( )
1 3 3 B. C. D.- 2 2 2 π π (2) 3sin +cos 的值为( ) 12 12 1 A. B.1 C. 2 D. 3 2 分析:(1)本题考查公式的逆用.如何将式子转化为两 角差的余弦公式的展开式是关键.
已知角的变形在解题中的应用
(1)计算:cos(-15° ); 2cos 10° -sin 20° (2) 的值是( sin 70° 1 A. 2 3 B. 2 C. 3 ) D. 2
分析:(1)本小题是两角差的余弦公式的直接应用, 要善于进行角的变形,使之符合公式特征. (2)本题考查角的变换技巧,有一定难度.
| || |
依据和可能.
练习1:在直角坐标系中始边在x轴正半轴,30°角
的终边与圆心在原点的单位圆的交点坐标为________.
练习2:cos(45°-30°)=________.
3 1 练习 1: , 2 2
6+ 练习 2: 4 2
二、角的组合 α=(α+β)-β,α=β-(β-α), 1 α= [(α+β)-(β-α)] 2 1 α= [(α+β)+(α-β)],2α=(β+α)-(β-α)等. 2
3.1.1两角差的余弦公式

三.给值求角
4
3小Biblioteka :1、两角和与差的余弦公 式: cos( ) cos cos sin sin cos( ) cos cos sin sin
2、运用公式时注意角的范围、三角 函数值的正负及与特殊角的关系等.
作业 课时作业小本(二十七)
4 5 例2:已知sin = , ( ,),cos = , 5 2 13
二、给值求值
β是第四象限角,求cos(α-β)的值.
思考:运用公式求解需要做哪些准备?
( ,)去掉, 变式:若将例2中的条件 2
对结果和求解过程会有什么影响?
练习:已知 , 均为锐角, 且 , 3 3 10 cos , cos( ) , 求 cos 的值. 5 10
2 10
1 9
3 5 例4、在ABC中, cos A= , cos B= , 5 13 则cosC的值等于( )
提示: (1)C=180°-(A+B),
(2)正、余弦值的符号。
所以cosC= -cos(A+B)
33 = -cosAcosB+sinAsinB 65
解后回顾: 三角形中的给值求值,内角和180度
cos15 cos 60 45
练习: sin 75 , cos75
练习:
1 1. cos1750 cos550 sin 1750 sin 550 2
2. cos( 210 ) cos( 240 ) sin( 210 ) sin( 240 )
2 2
体现了角的整体性
3.已知 cos 25 cos 35 cos 65 cos 55的值等于( B ) A 0 B 1 2 C 3 2 D 1 2
《两角差的余弦公式》优质课教学设计

高中数学人教A版必修4第三章《3.1.1两角差的余弦公式》(第一学时)教学设计一、教学目标:1. 通过对两角差的余弦公式的猜想和探究过程,培养学生通过交流,探索,发现和获得新知(二)新知探究在平面直角坐标系xOy 中内作单位圆O ,以Ox 为始边作角βα,,它们的终边与单位圆的交 点分别为B A ,,则()(),sin ,cos ,sin ,cos ββαα==OB OA 由向量数量积的坐标表示有:βαβαsin sin cos cos +=⋅OB OA 。
设向量OA 与OB 的夹角为θ,由向量数量积的定义有:θθcos ==⋅OB OA ,所以βαβαθsin sin cos cos cos +=。
已知()()Z k k Z k k ∈+=∈++=πθβαπθβα2-2或,所以()Z k k ∈±=-θπβα2,所以()θβαcos cos =-,又因为βαβαθsin sin cos cos cos +=,所以可知对任意角βα,,都有()βαβαβαsin sin cos cos cos +=-。
(三)巩固理解例1、利用差角余弦公式求o15cos 的值。
分析:本题关键是将o15角分成o45与o30的差或者分解成o60与o45的差,再利用两角差的余弦公式即可求解。
例2、已知,135cos ,,2,54sin -=⎪⎭⎫⎝⎛∈=βππααβ是第三象限角,求()βα-cos 的值。
分析:观察公式()βα-cos 与本题已知条件应先计算出αcos ,βsin ,再代入公式求值。
求βαsin ,cos 的值可借助于同角三角函数的平方关系,并注意βα,的取值范围来求解。
例3、求值(1)oooo35sin 65sin 35cos 65cos + (2)απααπαsin 3sin cos 3cos ⎪⎭⎫ ⎝⎛++⎪⎭⎫⎝⎛+(3)oooo 40cos 110sin 50cos 110cos + (4)oooo42sin 78cos 42cos 12cos +为o50sin ,再逆向使用两角差余弦公,即可将原式化为o60cos ;对于(4),可先用诱导公式化o 78cos 为o 12sin ,再逆向使用两角差余弦公,即可将原式化为o 30cos 。
23冯文平3.1.1《两角差的余弦公式》说课

15 °
A岛
五、教学过程分析
环节一:创设情境,导入新课
2.特例验证,引发思考 思考1:如果我们不仅想提高数学应用能力,还 想进一步提高数学推理运算能力,那么,不用计算 器不查表,该如何计算cos15°? 思考2:我们能否将15°转化成两个特殊角的差, 进而利用特殊角的三角函数值求出cos15°呢? 思考3:如何用α,β 的正弦、余 弦值来表示cos(α-β) 呢?
两角差的余 弦公式
中卫市 中宁中学 说课教师:冯文平
说课思路
教学背景分析 教学目标分析 教法学法分析 课堂结构设计 教学过程分析 教学评价反思
一、教学背景分析
1、教材分析
本节内容选自人教A版《普通高中课程标准实验 教科书》数学必修4第3.1.1节。它是三角函数线和 诱导公式等知识的延伸,是两角和与差的正弦、余 弦、正切,以及二倍角公式等知识的基础。对三角 变换、三角恒等式的证明和三角函数式的化简、求 值等问题的解决,有重要的支撑作用。…… 基于上述分析,本节的 教学重点是:两角差的余弦公式的推导及简单 应用。
一、教学背景分析
2、学情分析
学生已经学习了任意角三角函数的定义、同角 三角函数的基本关系、诱导公式及平面向量,这为 他们探究公式建立了良好的基础。但学生的推理论 证能力毕竟有限,要发现并证明公式C(α-β)有一定 的难度。…… 基于上述分析,本节的 教学难点是:两角差的余弦公式的探索及探索 过程的组织和适当引导。
〖探究1〗 借助单位圆上的三角函数线来推导cos(α -β )公式
y
1 A
P1
sin
OM= cos(α-β) OB=cosαcosβ BM=sinαsinβ
P 又 OM=OB+BM
3.1.1两角差的余弦公式PPT

π
1.两角差的余弦公式: 1.两角差的余弦公式: 两角差的余弦公式
cos(α − β ) = cos α cos β + sin α sin β
2.已知一个角的正弦(或余弦) 2.已知一个角的正弦(或余弦)值,求该角 已知一个角的正弦 的余弦(或正弦)值时, 的余弦(或正弦)值时, 要注意该角所在的 象限,从而确定该角的三角函数值符号. 象限,从而确定该角的三角函数值符号.
1 π 4 3 . 解:由 cosα= ,0<α< ,得 sinα= 7 7 2 π π 13 由 0<β<α< ,得 0<α-β< . 又∵cos(α-β)= , 2 2 14 ∴sin(α-β)= 1-cos (α-β)= )
2
13 2 3 3 1-( ) = . ( 14 14
由 β=α-(α-β),得 cosβ=cos[α-(α-β)] =cosαcos(α-β)+sinαsin(α-β) 1 13 4 3 3 3 1 = × + = . × 7 14 7 14 2 π ∴β= . 3
第三章 三角恒等变换
3.1 两角和与差的正弦、余弦 和正切公式
3.1.1 两角差的余弦公式
1、掌握两角差的余弦公式,并能正确的运用 掌握两角差的余弦公式, 公式进行简单三角函数式的化简、求值; 公式进行简单三角函数式的化简、求值; 2、掌握“变角”和“拆角”的方法. 掌握“变角” 拆角”的方法.
对于30° 45° 60° 对于30°,45°,60°等特殊角的三角函 30 数值可以直接写出, 数值可以直接写出,利用诱导公式还可进 一步求出150° 210° 315° 一步求出150°,210°,315°等角的三角 150 函数值.我们希望再引进一些公式,能够求 函数值.我们希望再引进一些公式, 更多的非特殊角的三角函数值, 更多的非特殊角的三角函数值,同时也为 三角恒等变换提供理论依据. 三角恒等变换提供理论依据.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学 以 致 用
4 cosβ = - 5 α , , , 例3.已知 sinα = , 13 5 2 β 是第三象限角,求cos(α -β )的值
cos(α -β ) cosα cosβ + sinα sinβ
1 0 0 0 0 练习: 1. cos175 cos55 sin 175 sin 55 2
3 解: ∵ cosα = - α , 5 2
∴
cos(
4 sinα = 1 cos α 5
2
4
-α ) cos
4 4 2 3 2 4 2α + sin
sinα
cos(α -β ) cosα cosβ + sinα sinβ
对于任意角
α , β
结 cos(α -β ) cosα cosβ + sinα sinβ 论 归 差角的余弦公式 C 纳
α β
注意:1.公式的结构特点;
2.对于α ,β ,只要知道其正弦或余弦,就 可以求出cos(α-β)
cos( α -β ) cosα cosβ + sinα sinβ
3.1.1两角差的余弦公式
两个向量的数量积
温 故 知 新
a b a b cosθ 其中θ ∈[0,π ]
a x1 , y1
b x2 , y2
a b x1x2 y1y2
两角差的余弦公式 问 题 探 究
如何用任意角α 与β 的正弦、 余弦来表示cos(α -β )? 思考:你认为会是 cos(α -β )=cosα -cosβ 吗?
思考:以上推导是否有不严谨之处?
当α -β 是任意角时,由诱导公式总可以找到 一个角θ ∈[0,2π ),使cosθ =cos(α -β ) 若θ ∈[0,π ],则 OA OB cos cos( )
若θ ∈[π ,2π ),则2π -θ ∈[0,π ],且
OA OB cos(2π –θ )=cosθ =cos(α -β )
分析: cos
cosα sinα cos αβ sin αβ
5 4 12 3 13 5 13 5 16 65
2 2. cos( 210 ) cos( 240 ) sin( 210 ) sin( 240 ) 2
小结
两角差的余弦公式
对于任意角α ,β 都有
cos(α -β )=cosα cosβ +sinα sinβ 注意:1.公式的结构特点;
2.对于α ,β ,只要知道其正弦或余弦,就 可以求出cos(α-β).
作业:P137. 2、3 、4
再
见
cos(α -β ) cosα cosβ + sinα sinβ
思考题:已知 α ,β
5 cos α +β 13
4 都是锐角, cosα = , 5
求 cosβ 的值
α +β α 变角: β =
cos
学 以 致 用
例1.利用差角余弦公式求cos15 的值
分析: cos15 cos 45 30
cos15 cos 60 45
思考:你会求 sin 75 的值吗?
cos(α -β ) cosα cosβ + sinα sinβ
学 以 致 用
3 cos α 例2.已知 cosα = - α , 求 的值. 4 5 2
OA cosα ,sinα
OB cosβ , sinβ
y
OA OB OA OB cos( )
cos( )
∵ OA OB
A
1
α -β B β 1 x
α
-1 o
cos cos sin sin
-1
∴
cos(α -β )=cosα cosβ +sinα sinβ