结构力学例题
结构力学例题

v AF 7Pl3 60EI
此道题也可采用李兹法。设挠度曲 线 。 n
v(x) ai xi i 1
例5 用矩阵法写出下图所示连续梁单元 ①②的单元刚度矩阵,建立总刚度方 程,并进行约束处理,计算节点处的 位移。已知EI为常数,A l3 / (12EI ) 。
l
3
l
解:(1)根据结构的受力特点,将它离散 为2个单元,3个节点,并建立杆元的 局部坐标及结构的总坐标如上图所示。
结构力学例题
例1 利用梁的弯曲要素表计算下图中梁 的固定端弯矩。已知 l / (6EI) 。
解:由叠加法原理可将上述结构拆为下 列情况的组合。
q
M1
M2
ql / 3
通过查弯曲要素表有
图(a)中
1
M1l 3EI
M 2l 6EI
2
M1l 6EI
M 2l 3EI
图 (b) 中
3
1 45
ql 3 EI
M 32 0
弯矩图如下所示:
0.065ql 2
0.18ql 2
0.25ql 2
0.125ql 2
例4 用能量法求解如图所示梁的静不定 性。已知图中EI为常数,柔性系数
。 A l3 / (12EI )
解:设弹性支座处的支反力为F,则有力 的平衡关系可得弯矩分布函数,如下:
M (x) (F P)x (3P F)l (0 x l) 2
则杆元①在总坐标系中的刚度矩阵为
杆元②的局部坐标与总坐标一致,故有
A 0 0 A 0 0
0
12I l2
6I l
0
12I l2
6I
l
6I
K (2)
E l
0 A
结构力学习题及答案

结构力学习题及答案结构力学习题及答案结构力学是工程学中的重要学科之一,它研究物体在外力作用下的变形和破坏。
在工程实践中,结构力学的应用广泛,涉及到建筑、桥梁、航空航天等领域。
在学习结构力学时,练习解答一些习题是非常重要的,下面我将给大家提供一些常见的结构力学习题及其答案。
题目一:简支梁的弯矩计算已知一根长度为L的简支梁,两端受到均布载荷q。
求梁的中点处的弯矩M。
解答一:根据简支梁的受力分析,可以得出梁的弯矩与距离中点的距离x之间的关系为M=qL/8-x^2/2,其中x为距离中点的距离。
因此,中点处的弯矩M=qL/8。
题目二:悬臂梁的挠度计算已知一根长度为L的悬臂梁,端部受到集中力F作用。
求梁的端部挠度δ。
解答二:根据悬臂梁的受力分析,可以得出梁的端部挠度与力F之间的关系为δ=FL^3/3EI,其中F为作用力,E为梁的杨氏模量,I为梁的截面惯性矩。
因此,梁的端部挠度δ=FL^3/3EI。
题目三:刚度计算已知一根长度为L的梁,截面形状为矩形,宽度为b,高度为h,梁的杨氏模量为E。
求梁的刚度K。
解答三:梁的刚度可以通过计算梁的弯曲刚度和剪切刚度得到。
弯曲刚度Kb可以通过梁的截面惯性矩I和杨氏模量E计算得到,即Kb=E*I/L。
剪切刚度Ks可以通过梁的剪切模量G和梁的截面面积A计算得到,即Ks=G*A/L。
因此,梁的刚度K=Kb+Ks=E*I/L+G*A/L。
题目四:破坏载荷计算已知一根长度为L的梁,截面形状为圆形,直径为d,梁的杨氏模量为E。
求梁的破坏载荷P。
解答四:梁的破坏载荷可以通过计算梁的破坏弯矩和破坏挠度得到。
破坏弯矩Mf可以通过梁的截面惯性矩I和杨氏模量E计算得到,即Mf=π^2*E*I/L^2。
破坏挠度δf可以通过梁的破坏弯矩Mf和梁的刚度K计算得到,即δf=Mf/K。
因此,梁的破坏载荷P=Mf/L=π^2*E*I/L^3。
结构力学是一门综合性较强的学科,掌握结构力学的基本原理和解题方法对于工程师来说非常重要。
结构力学计算题及结构力学练习题含答案

结构力学计算题及结构力学练习题含答案结构力学是研究结构在外力作用下内力和变形规律的科学,以下是一篇结构力学计算题及练习题,包括答案的示例。
结构力学计算题题目:一简支梁AB,跨度为4米,受到均布荷载q=2 kN/m,梁的截面惯性矩I=1.2×10^6 mm^4,弹性模量E=210 GPa。
求梁的最大弯矩和最大挠度。
解题步骤:1. 计算梁的最大弯矩Mmax。
根据简支梁受均布荷载的弯矩公式:\[ M_{max} = \frac{ql^2}{8} \]代入已知数据:\[ M_{max} = \frac{2 \times 4^2}{8} = 4 \text{ kN·m} \]2. 计算梁的最大挠度y_max。
根据简支梁受均布荷载的挠度公式:\[ y_{max} = \frac{ql^4}{384EI} \]代入已知数据:\[ y_{max} = \frac{2 \times 4^4}{384\times 1.2 \times 10^6 \times 210 \times 10^9} = 0.00017 \text{ m} = 0.17 \text{ mm} \]答案:梁的最大弯矩Mmax为4 kN·m,最大挠度y_max为0.17 mm。
---结构力学练习题1. 一悬臂梁CD,长度为3米,受到集中力F=5 kN作用在自由端,梁的截面惯性矩I=1.5×10^6 mm^4,弹性模量E=200 GPa。
求悬臂梁的最大弯矩和最大挠度。
答案:最大弯矩Mmax为5 kN·m,最大挠度y_max为0.013 mm。
2. 一连续梁EF,跨度为6米,分为两段,每段长度为3米,中间有一支点G。
梁上受到均布荷载q=1.5kN/m,梁的截面惯性矩I=2×10^6 mm^4,弹性模量E=220 GPa。
求支点G的反力及中间梁段的最大弯矩。
答案:支点G的反力为4.5 kN,中间梁段的最大弯矩为2.25 kN·m。
结构力学考试题及答案

结构力学考试题及答案一、选择题1. 结构力学中,下列哪项不是结构的基本概念?A. 结构的刚度B. 结构的稳定性C. 结构的强度D. 结构的美观性答案:D2. 简支梁受均布荷载作用时,最大弯矩出现在:A. 跨中B. 支点处C. 任意截面D. 四分之三跨长处答案:A3. 在结构力学中,剪力和弯矩的方向约定为:A. 剪力向上为正,弯矩顺时针为正B. 剪力向下为正,弯矩逆时针为正C. 剪力向上为正,弯矩逆时针为正D. 剪力向下为正,弯矩顺时针为正答案:B4. 确定结构的内力分布情况通常采用的方法是:A. 能量法B. 虚功原理C. 弯矩分配法D. 刚度法答案:D5. 连续梁与简支梁相比,其特点是:A. 刚度更高B. 跨越能力更强C. 造价更低D. 所有上述选项答案:D二、填空题1. 结构力学中的__________是指结构在荷载作用下不发生位移的能力。
答案:刚度2. 结构的__________是指结构在荷载作用下不发生翻转的能力。
答案:稳定性3. 在进行结构分析时,通常首先需要确定结构的__________和反力。
答案:内力4. 结构力学中,__________是指构件截面上所有外力的集合效果。
答案:截面剪力5. 对于简支梁,当荷载作用在离支点一定距离处时,该点处的弯矩可以通过__________计算得出。
答案:剪力乘以距离三、简答题1. 请简述结构力学中的虚功原理及其应用。
答:虚功原理是指在一个平衡系统中,任何微小的位移或变形所对应的虚功等于该系统内力对该变形所做的功。
这个原理在结构力学中用于分析静不定结构,通过假设结构的位移或变形,计算出相应的虚功,然后根据虚功原理建立平衡方程,求解未知的反力或内力。
2. 描述简支梁受集中荷载作用时的弯矩图和剪力图。
答:简支梁受集中荷载作用时,弯矩图在荷载作用点会出现一个突变,即弯矩值突然增大到最大值,然后随着距离的增加逐渐减小回到零。
剪力图则显示在荷载作用点两侧的剪力值相反,一边为正值,另一边为负值,且随着距离的增加,剪力值逐渐减小到零。
《结构力学习题》(含答案解析)

《结构力学习题》(含答案解析)本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March20 第三章 静定结构的位移计算一、判断题:1、虚位移原理等价于变形谐调条件,可用于求体系的位移。
2、按虚力原理所建立的虚功方程等价于几何方程。
3、在非荷载因素(支座移动、温度变化、材料收缩等)作用下,静定结构不产生内力,但会有位移且位移只与杆件相对刚度有关。
4、求图示梁铰C 左侧截面的转角时,其虚拟状态应取:A.;; B.D.M C.=1=1=15、功的互等、位移互等、反力互等和位移反力互等的四个定理仅适用于线性变形体系。
6、已知M p 、M k 图,用图乘法求位移的结果为:()/()ωω1122y y EI +。
M kM p 21y 1y 2**ωω( a )M =17、图a 、b 两种状态中,粱的转角ϕ与竖向位移δ间的关系为:δ=ϕ 。
8、图示桁架各杆E A 相同,结点A 和结点B 的竖向位移均为零。
Aa a9、图示桁架各杆EA =常数,由于荷载P是反对称性质的,故结点B的竖向位移等于零。
2121二、计算题:10、求图示结构铰A 两侧截面的相对转角ϕA ,EI = 常数。
q l l l /211、求图示静定梁D 端的竖向位移 ∆DV 。
EI = 常数 ,a = 2m 。
a a a 10kN/m12、求图示结构E 点的竖向位移。
EI = 常数 。
l l l /3 2 /3/3q13、图示结构,EI=常数 ,M =⋅90kN m , P = 30kN 。
求D 点的竖向位移。
P 3m 3m 3m14、求图示刚架B 端的竖向位移。
q15、求图示刚架结点C 的转角和水平位移,EI = 常数 。
q16、求图示刚架中D点的竖向位移。
EI =常数。
l ll/217、求图示刚架横梁中D点的竖向位移。
EI=常数。
18、求图示刚架中D点的竖向位移。
结构力学静定多跨梁例题

结构力学静定多跨梁例题一个结构力学静定多跨梁例题如下:假设有一根静定多跨梁,有三个等距的支点,梁长为L,弯矩载荷为M。
梁的截面形状为矩形,宽度为b,高度为h。
梁的材料为钢材,弹性模量为E。
求解该横梁在每个支点的支反力。
解题步骤如下:1. 画出梁的剪力图和弯矩图,在每个支点处标注支反力Ra、Rb和Rc。
2. 针对每个支点,应用力平衡条件,即对于任意截面处的受力情况进行分析。
a) 在支点A处,由于该支点不受水平力的作用,只有垂直支反力Ra。
根据力平衡条件,有:Ra = M/L。
b) 在支点B处,有垂直支反力Rb和水平支反力Hb。
由于该支点不受竖直力的作用,有:Rb = Ra + M/L,Hb = 0。
c) 在支点C处,有垂直支反力Rc和水平支反力Hc。
由于该支点不受竖直力的作用,有:Rc = Rb + M/L,Hc = 0。
3. 再应用弯矩平衡条件,根据剪力图和弯矩图的关系求解支反力。
a) 在悬臂端A处,由于支反力Ra是唯一的垂直力,可以得到弯矩方程:Ma = -M。
b) 在支点B处,可以得到弯矩方程:Ma + Mb = 0,即-M + Rb*(L/2) = 0。
c) 在支点C处,可以得到弯矩方程:Ma + Mb + Mc = 0,即-M + Rb*(L/2) + Rc*L = 0。
4. 将以上三个方程联立求解,即可得到支反力Ra、Rb和Rc的具体数值。
需要注意的是,在实际求解过程中,可能还需要考虑其他因素,如材料的应力和变形等。
此处只给出了一个简化的静定多跨梁的例题。
真实的工程问题可能更为复杂,需要综合考虑不同因素进行分析和计算。
结构力学叠加法例题

结构力学叠加法例题
结构力学叠加法例题:
假设有一条由材料A制成的钢筋混凝土梁,该构件长度为L,宽度
为b,厚度为h,吊装高度为H,支座位置为x0和x1。
已知:
a)竖向荷载为Q1=200KN,横向荷载为Q2=100KN。
b)钢筋混凝土梁外表面有一层保温材料层厚为t。
根据叠加法,梁的受力状态应先考虑梁的横向荷载,再考虑竖向
荷载。
1. 横向荷载:因为受均布力作用时承受拉应力,故钢筋混凝土梁
的设计应力应符合承载力限值。
因此:α1应满足fc'd ≤ 0.85fck
其中fc'd为混凝土抗拉强度,fck为钢筋混凝土强度等级标准值。
进一步,梁对横向荷载Q2所受的弯矩M2应满足M2 ≤
0.9bd^2fcd ,其中d为梁截面的深度,即:d = h +t 。
2. 竖向荷载:因为受均布力和集中力的作用,竖向荷载会造成弯矩,从而使梁产生弯曲,因此,梁受竖向荷载时,应使梁的剪力不大
于设计值。
因此,梁受竖向荷载Q1时,应满足:Fp·L/2b ≤ Φ·M1
其中Fp为梁受荷载时的设计剪力,M1为梁受竖向荷载时的弯矩,
Φ为保守系数。
3. 支座支撑:由于梁的支座支撑位置x0和x1之间有空隙,梁中
间的部分会受到支座边缘附件间的细微剪荷载。
因此,梁受支座边缘附件的剪力的弯矩M3必须满足:M3 ≤ 0.9bd^2fc'd
综上,当上述三种受力状态都满足相应的要求时,可以认定该钢筋混凝土梁设计是合理的。
结构力学典型例题

结构力学典型例题(共19页) -本页仅作为预览文档封面,使用时请删除本页-第2章平面体系的几何构造分析典型例题1. 对图体系作几何组成分析。
图分析:图等效图(去掉二元体)。
对象:刚片Ⅰ、Ⅱ和Ⅲ;联系:刚片Ⅰ、Ⅲ有虚铰A(杆、2);刚片Ⅱ、Ⅲ有虚铰C(无穷远)(杆3、4);刚片Ⅰ、Ⅱ有虚铰B(杆5、6);结论:三铰共线,几何瞬变体系。
2. 对图体系作几何组成分析。
图分析:去掉二元体(杆12、杆34和杆56图),等效图。
对象:刚片Ⅰ和Ⅱ;联系:三杆:7、8和9;结论:三铰不共线,无多余约束的几何不变体系。
3. 对图体系作几何组成分析。
图分析:图对象:刚片Ⅰ(三角形原则)和大地Ⅱ;联系:铰A和杆1;结论:无多余约束的几何不变体系。
对象:刚片Ⅲ(三角形原则)和大地Ⅱ;联系:杆2、3和4;结论:无多余约束的几何不变体系。
第3章静定结构的受力分析典型题1. 求图结构的内力图。
图解(1)支座反力(单位:kN)由整体平衡,得=100.= ,=.(2)内力(单位:制)取AD为脱离体:,,;,,。
取结点D为脱离体:,,取BE为脱离体:,,。
取结点E为脱离体:,,(3)内力图见图~d。
2. 判断图和b桁架中的零杆。
图分析:判断桁架零杆的常用方法是找出桁架中的L型结点和T型结点。
如果这两种结点上无荷载作用.那么L型纪点的两杆及T型结点的非共线杆均为零杆。
解:图:考察结点C、D、E、I、K、L,这些结点均为T型结点,且没有荷载作用,故杆件CG、DJ、EH、IJ、KH、LF均为零杆。
考察结点G和H,这两个结点上的两竖向链杆均已判断为零杆,故这两个结点的受力也已成为T型结点的情形.由于没有荷载作用,故杆件AG、BH也为零杆。
整个结构共有8根零杆.如图虚线所示。
图:考察结点D,为“K”型结点且无荷载作用,故;对称结构对称荷载(A支座处的水平反力为零),有,故杆件DE和DF必为零杆。
考察结点E和F,由于DE、DF已判断为零杆.故杆件AE、BF也是零杆。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
K 22 (2) (2) K 32
K 23 (2) K 33
(2)
(3)根据各杆元刚度矩阵的分割子矩阵, 组成结构刚度矩阵:
K
99
K K
(1) 11 (1) 21
K12 K 22 K32
(1)
(1) (2) (2)
(2) K 23 (2) K33
(5)约束处理。本题中,因不计杆件的轴 向变形又有 u1 v1 1 u2 v2 u3 0,因此 在上式中需划去与 u1, v11, u2 , v2 , u3 对应 的六个行与列。 在节点3处y方向有弹性支座,在总 刚相应行的主对角线元素上加上弹性 支座的刚度后可不计其外载荷项。故 经约束处理后的方程式为
2 6 ql 2 8 l 12 2 EI 6 12 12 6 ql ( 2 2 ) v3 l l l l l 2 3 2 6 ql 2 4 l 12
该系统的变形能主要由两部分组成杆所 具有的变形能 V1 和弹性支座所具有的 变形能 V2 。
杆件所具有的变形能
3P 3Pl 2 2 [( F P) x ( F )l ] ) 3l ( Px l 2 2 d V1 dx 2 x 0 l 2EI 2EI
2 3 l3 3 P 3 P P l 2 2 [( F P) 3( F )( P F ) 3( F ) ] 6 EI 2 2 48EI
M 32
'
2 EI 6 EI 4 EI 2 2 v3 3 l l l
ql 2
N32
'
N 32
6 EI 12 EI 6 EI 2 2 3 v3 2 3 l l l
将其带入整理,联立求得
13ql 3 1 1200EI
ql 2 120EI
8ql 2 v3 300EI
0 6I l 4I 0 6I l 2I
A 0 0 A 0 0
0 12 I 2 l 6I l 0 12 I l2 6I l
0 6I l 2I 0 6I l 4I
杆元①需进行坐标转换,因 270o,故坐 标转换矩阵为
解: 本例的刚架为静不定结构,现将节 点3处的刚性固定约束去除,并在节点2 处切开,加上未知弯矩 M 3 和 M 2 ,原来 作用于节点2上的外力矩m可考虑在杆1-2 上亦可考虑在杆2-3上,今考虑在杆1-2 上。于是得到两根单跨梁如下图所示。
变形连续条件为节点2转角连续及 节点3转角为零,利用单跨梁的弯曲要 素表,这两个条件给出:
12 23
3
A
解:设节点1、2、3的转角位移为 1, 2 , 3 节点3的挠度为 v3 。 根据平衡条件有 节点1 1 ' M 12 M 12 M 12 ( 1 ) 节点2
(M 21 M21' ) (M 23 M 23' ) 0
(2)
节点3
M 32 M32 0
ql 12
2
ql 0 2
ql 12
2
T
杆元①因无外载荷作用,故没有固 端弯矩及固端剪力,在总坐标系中, 固端力矩阵为
P P
(1)
(1)
0
T
由此可列出节点平衡方程式形式如 下:
K11(1) (1) K 21
K12 (1) K 22 (1) (2) K 32 (2)
(3)
整理(1)(2)(3)式,并带入 Q q0l0 / 2 P 0.8q0l0 m q0l02 /15 A l03 / (6EI ) 得:
5M 2 M3 37q0l0 / 60
2
(4) (5)
M 2 2M3 2q0l0 /15
2
联立(4)(5)式得
M 2 11q0l0 / 90
2
M3 q0l02 /180
同时可解得
P M2 m 19 qolo 4 v AR A( ) 2 l0 540 EI
例3 试求解下图连续梁的静不定问题。 l / (6 EI ) I I I, 已知 P ql ,l12 l23 l , A l / (12EI ) 。画出弯矩图。
则杆元①在总坐标系中的刚度矩阵为
杆元②的局部坐标与总坐标一致,故有
0 A I 0 12 l2 6I 0 E l (2) K l A 0 0 12 I l2 6I 0 l 0 6I l 4I 0 6I l 2I A 0 0 A 0 0 0 12 I 2 l 6I l 0 12 I l2 6I l 0 6I l 2I 0 6I l 4I
弹性支座的应变能
2 3 1 F l 2 V2 AF 2 24 EI
系统的总应变能
V V1 V2
2 3 2 3 l3 3 P 3 P P l F l 2 2 [( F P) 3( F )( P F ) 3( F ) ] 6 EI 2 2 48EI 24 EI
(2)
整理得
31 2 2M1 M 2 ql 120
29 2 M 1 3M 2 ql 120
解得
8 2 M1 ql 75
9 M2 ql 2 200
例2 用力法求解下图简单刚架,设各杆 之长度均为L,断面惯性矩均为I,并已知
P 0.8q0l0
m q0l0 /15
2
A l03 / (6EI )
M 32 0
2
弯矩图如下所示:
0.18ql 2
0.065ql 2
0.125ql 2
0.25ql
2
例4 用能量法求解如图所示梁的静不定 性。已知图中EI为常数,柔性系数 A l / (12EI ) 。
3
解:设弹性支座处的支反力为F,则有力 的平衡关系可得弯矩分布函数,如下:
3P (0 x l ) M ( x) ( F P) x ( F )l 2 3l (l x 3l / 2) M ( x) P( x) 2
解得
ql 2 32 EI
ql 3 96 EI
ql 4 v3 32 EI
3
3
l l
3
解:(1)根据结构的受力特点,将它离散 为2个单元,3个节点,并建立杆元的 局部坐标及结构的总坐标如上图所示。 (2)计算杆元的刚度矩阵。 杆元①:
0 A 12 I 0 2 l 6I 0 l K (1) E l A 0 0 12 I l2 6 I点平衡 方程式。
杆元②因均布荷重引起固端弯矩及 固端剪力,在单元坐标系中,固端力 矩阵为
P
(2)
ql 0 2
ql 12
2
ql 0 2
ql 12
2
T
由于杆元②局部坐标系与总坐标系 同向,故有
P P
(2)
(2)
ql 0 2
3
3ql3 3 200EI
进而可得
M 12 6 EI1 13ql 2 0.065ql 2 l 200
2 2 2 EI 4 EI ql 9 ql 1 2 M 21 M 21 M ' 21 0.18ql 2 8 l l 50
M 23 M 21 0.18ql
Rx1 R y1 u1 M R1 v 1 Rx 2 1 R ql y2 u 2 2 K 23(2) * v2 ql 2 K 33(2) 2 12 0 u3 v 3 v ql 2 3 A ql 2 12
'
(3) (4)
N 32 N32
'
其中
M 12
v A
Pl ql 2 M 21 8 8
'
M 12
4 EI 2 EI 1 2 l l
M
' 21
2 EI 4 EI 1 2 l l
'
M 23 M 32
ql 2 12
M 23
4 EI 6 EI 2 EI 2 2 v3 3 l l l
(m M 2 )l0 v Pl0 2 M 2l0 M 3l0 7Ql0 2 • 3EI l0 16EI 3EI 6EI 180EI
•
(1)
M 2l0 M 3l0 2Ql0 2 0 6 EI 3EI 45 EI
(2)
再列节点1处弹性支座的补充方程式:
P M2 m v AR A( ) 2 l0
结构力学例题
例1 利用梁的弯曲要素表计算下图中梁 的固定端弯矩。已知 l / (6 EI ) 。
解:由叠加法原理可将上述结构拆为下 列情况的组合。
q
M1
M2
ql / 3
通过查弯曲要素表有 图(a)中
M 1l M 2l 1 3EI 6 EI
M 1l M 2l 2 6 EI 3EI
由“最小功原理”知
V 0 F
解得
7 F P 5
弹性支座处的挠度
7 Pl 3 v AF 60 EI
此道题也可采用李兹法。设挠度曲 线 v( x) a x 。
n i i 1 i
例5 用矩阵法写出下图所示连续梁单元 ①②的单元刚度矩阵,建立总刚度方 程,并进行约束处理,计算节点处的 3 A l / (12EI ) 。 位移。已知EI为常数,