柴油机曲轴工艺设计方案[]

柴油机曲轴工艺设计方案[]
柴油机曲轴工艺设计方案[]

0 引言

本次毕业设计是关于R180柴油机曲轴的工艺设计及其中两道工序的夹具设计。

曲轴是柴油机中的关键零件之一,其材质大体分为两类:一是钢锻曲轴,二是球墨铸铁曲轴。由于采用铸造方法可获得较为理想的结构形状,从而减轻质量,且机加工余量随铸造工艺水平的提高而减小。球铁的切削性能良好,并和钢制曲轴一样可以进行各种热处理和表面强化处理,来提高曲轴的抗疲劳强度和耐磨性。而且球铁中的内摩擦所耗功比钢大,减小了工作时的扭转振动的振幅和应力,应力集中也没有钢制曲轴来的敏感。所以球墨铸铁曲轴在国内外得到广泛采用。本次设计中曲轴的材质为球铁。

从目前整体水平来看, 毛坯的铸造工艺存在生产效率低,工艺装备落后,毛坯机械性能不稳定、精度低、废品率高等问题。从以下几个工艺环节采取措施对提高曲轴质量具有普遍意义。①熔炼国内外一致认为,高温低硫纯净铁水的获得是生产高质量球铁的关键所在。为获得高温低硫磷的纯净铁水,可用冲天炉熔化铁水,经炉外脱硫,然后在感应电炉中升温并调整成分。②球化处理③孕育处理冲天炉熔化球铁原铁水,对铜钼合金球铁采用二次孕育。这对于防止孕育衰退,改善石墨形态,细化石墨及保证高强度球铁机械性能具有重要作用。④合金化配合好铜和钼的比例对形成珠光体组织十分有利,可提高球铁的强度,而且铜和钼还可大大降低球铁件对壁厚的敏感性。⑤造型工艺气流冲击造型工艺优于粘土砂造型工艺,可获得高精度的曲轴铸件,该工艺制作的砂型具有无反弹变形量的特点,这对于多拐曲轴尤为重要。⑥浇注冷却工艺采用立浇—立冷,斜浇—斜冷、斜浇—反斜冷三种浇注方式较为理想,其中后一种最好。斜浇—反斜冷的优点是:型腔排气充分,铁水充型平稳,浇注系统撇渣效果好,冒口对铸件的补缩效果好,适应大批量流水线生产。

目前,国内大部分专业厂家普遍采用普通机床和专用组合机床组成的流水线生产,生产效率、自动化程度较低。曲轴的关键技术工程仍与国外相差1~2个数量级。国外的机加工工艺大致可归纳为如下几个特点。①广泛采用数控技术和自动线,生产线一般由几段独立的自动化生产单元组成,具有很高的灵活性和适应性。采用龙门式自动上下料,集放式机动滚道传输,切削液分粗加工与精加工两段集中供应和回收处理。②曲轴的主要加工工序基准中心孔,一般采用质量定心加工方式,这样在静平衡时,加工量很少。③轴颈的粗加工一般采用数控铣削或车拉工艺。工序质量可达到国内粗磨后的水平,且切削变形小、效率高。铣削和车拉是曲轴粗加工的发展方向。④国外的曲轴磨床均采用CNC控制技术,具有自动进给、自动修正砂轮、自动补偿和自动分度功能,使曲轴的磨削精度和效率显著提高。⑤油

孔的加工采用鼓轮钻床和自动线,近几年随着枪钻技术的应用,油孔的加工大多已采用枪钻自动线钻孔—修缘—抛光。⑥曲轴的抛光采用CNC控制的砂带抛光机,所有轴颈一次抛光只需20多秒,粗糙度可达Ra0.4以下,大大减小了发动机的磨合期。⑦动平衡一般采用CNC控制的综合平衡机,测量、修正一次完成。⑧检验一般在生产线上配备MARPOSS或HOMWORK综合检测机,实现在线检测,对曲轴的几乎所有机加工工程均可一次完成检测、显示和打印。⑨曲轴的清洗采用专用精洗机定点定位清洗,保证了曲轴清洁度要求。⑩广泛采用了轴颈过渡圆角滚压技术。专用圆角滚压机自动控制,对所有轴颈圆角进行一次滚压,而且滚压力和滚压角度可自动调节,使圆角处产生最佳的残余压应力,提高了曲轴的疲劳强度。

曲轴热处理的关键技术是表面强化处理。一般均正火处理,为表面处理作好组织准备。表面强化处理一般采用感应淬火或氮化工艺,少数厂家还引进了圆角淬火技术和设备。

球铁曲轴具有诸多优点,国内外广泛采用。但整体水平与国外还有相当差距,除生产规模小、管理落后外,主要差距仍是制造工艺的落后。借鉴国外的先进技术和工艺方法是提高我国曲轴制造水平的捷径。

制定工艺规程的思路是:①收集和熟悉制定工艺规程的有关资料图样,进行零件的结构工艺性;②确定毛坯的类型及制造方法;③选择定位基准;④拟定工艺路线;⑤确定各工序的工序余量、工序尺寸及其公差;⑥确定各工序的设备,刀具、夹具、量具和辅助工具;⑦确定各工序的切削用量及时间定额;⑧确定主要工序的技术要求及检验方法;⑨进行技术经济分析,选择最佳方案;⑩编制工艺文件。

机械制造技术的新发展包括计算机辅助工艺规程设计和计算机辅助制造。计算机辅助制造是指通过计算机直接或间接地与企业中的物质资源和人力资源交换信息,实现计算机对制造过程各环节的管理、控制和操作。柔性制造系统工作内容有:①生产工程分析和设计;②生产计划调度;③工作站和设备的运行控制;④工程监测和质量保证;⑤物资供应与财会管理。计算机集成制造系统包括计算机辅助设计、计算机辅助工艺规程、计算机辅助制造、计算机辅助质量管理和自动存取等。

夹具设计的思路是:①明确设计任务,收集设计资料;②拟订夹具的结构方案、绘制结构草图;③绘制夹具总装图。绘制夹具总装图的顺序和方法:①用双点化线或红色笔绘出工件的轮廓外形和主要表面,并用网纹线表示出加工余量;②视工件轮廓为透明体,分别绘出定位、导向、夹紧及其他元件或装置,最后绘制夹具体,形成一个夹具整体;③标注尺寸、公差与配合和技术要求;④对零件进行编号,填写零件明细栏和标题栏;⑤绘制夹具零件图。计算机辅助绘制夹具装配图:1、通常采用“菜单”的形式,对夹具元件图形进行编目和检索。2、夹具装配图由

若干夹具元件图形拼接而成。在微机上开发的系统中可采用以下几种方法进行图形消隐:①按配合形式分别存图;②利用图形软件的一些基本命令作消隐处理;③参数化建库的消隐处理。

1 R180柴油机曲轴工艺设计

1.1 分析零件图

1.1.1 零件的作用

曲轴是柴油机的一个主要零件。曲轴主要用于作往复运动的机械中。

1.1.2 零件的工艺分析

曲轴图样的视图、尺寸、公差和技术要求齐全、正确;零件选用材料为QT800-2,该材料具有较高的强度、韧性和塑性,切削性能良好;结构工艺性比较好。

根据各加工方法的经济精度及一般机床所能达到的位置精度,该零件没有很难加工的表面,上述各表面的技术要求采用常规加工工艺均可以保证。

1.2确定生产类型

已知零件的年生产纲领为120000件,零件质量 3.76kg,由《机械制造工艺及设备设计指导手册》表15—2可确定其生产类型为大量生产。故初步确定工艺安排的基本倾向为:加工设备以自动化和专用设备为主,通用设备为辅;机床按流水线或自动线排列;采用高效专用夹具;广泛采用专用夹具;广泛采用专用量具、量仪和自动检验装置。这样生产效率高。

1.3确定毛坯

1.3.1 确定毛坯种类

根据零件材料确定毛坯为铸件。并依其结构形状、尺寸大小和生产类型,毛坯的铸造方法选用金属模机械砂型铸造。根据《机械制造工艺及设备设计指导手册》表15—5铸件尺寸公差等级采用CT9级。

1.3.2 确定铸件余量及形状

根据《机械制造工艺及设备设计指导手册》表15—7,取加工余量为MA-G级。查《机械制造工艺及设备设计指导手册》表15—8确定各表面的铸件机械加工余量。

对于金属模机械砂型铸造,根据《机械制造工艺及设备设计指导手册》表15—9铸件最小孔的直径,故本零件上的孔不铸出。

1.3.3 画铸件—零件综合图<见曲轴零件毛坯图)

1.4 机械加工工艺过程设计

1.4.1 选择表面加工方法

根据各表面加工要求和各种加工方法所能达到的经济精度,查《机械制造工艺及设备设计指导手册》表15—32~表15—34选择零件主要表面<依次为从长头到短头)的加工方法与方案如下:

M36X2螺纹:粗车

1:8圆锥面:粗车

Ф45圆柱面:粗车

Ф50圆柱面:粗车

Ф60圆柱面:粗车

K面:铣

Ф45连杆颈圆柱面:粗车

Ф14.2斜孔:钻

Ф5斜油孔:钻

Ф60圆柱面:粗车

Ф50圆柱面:粗车

Ф40圆柱面:粗车

Ф19孔:钻孔Ф18.5

M6螺纹:钻孔2—Ф5

1.4.2 确定工艺过程方案

<1)拟定方案

由于各表面加工方法已基本确定,现按照“先粗后精”、“先主后次”、“先面后孔”、“基准先行”的原则,初步拟定两种工艺过程方案,见表1。

表1 工艺过程方案

<2)方案论证

方案Ⅰ的优点在于基本遵循粗精加工划分阶段的原则。方案Ⅱ的不足之处是加工过程中的检验太少,不利于控制曲轴的加工质量。

根据以上分析,确定方案Ⅰ为曲轴零件加工的工艺路线。

1.5 选择加工设备与工艺装备

1.5.1 选择机床

考虑到大量生产,尽量选用高效机床。

①工序070、080、090、100均为圆柱面的车削加工,用CJK6140数控车床加工方便且效率高。

②工序180、190、260、270、280、290均为圆柱面的磨削加工,用JK101数显曲轴磨床加工方便且效率高。

③其余表面加工均采用通用机床。如:C6140卧式车床、X62W万能铣床、Z5125立式钻床等。

1.5.2 选择夹具

考虑到大量生产,均采用专用夹具。

1.5.3 选择刀具

①在车床上加工的工序,均采用YG6硬质合金外圆车刀,并尽量采用成形车刀。

②在铣床上加工的工序,铣平面选用YG6A硬质合金圆盘铣刀,铣键槽选用键槽铣刀。

③在磨床上加工的工序,磨主轴颈选用砂轮P600X63X305,C46K2B35,其外径为600mm,厚度为63mm,内径为305mm;磨连杆颈选用砂轮P600X25X305,

C46K2B35,其外径为600mm ,厚度为25mm ,内径为305mm 。

④ 在钻床上加工的工序,均选用麻花钻和机用丝锥。

1.5.4 选择量具

工序070粗加工可选通用量具。现按计量器具的不确定度选择量具。

粗车Ф40h6mm 至Φ025.08.41-mm 。查《互换性技术测量应用手册》表5.1-1知计量器具不确定度允许值1U =0.029mm 。查《互换性技术测量应用手册》表5.1-2,选择分度值0.02mm 的游标卡尺,其不确定度U=0.02mm ,U<1U ,可以选用。

其他工序所用量具详见工序卡片。

1.6 确定工序尺寸

径向各圆柱表面加工时的工艺基准与设计基准重合。前面根据资料已初步确定工件各面的总加工余量,现依据《机械制造工艺及设备设计指导手册》第十五章有关资料确定各表面精加工、半精加工余量,由后向前推算工序尺寸,并确定其公差,见表2。

表2 各表面工序尺寸及公差

1.7 确定切削用量及时间定额

1.7.1 工序070<粗车长头)切削用量及时间定额

本工序选用CJK6140数控车床,拨盘、顶尖装夹,分三个工步:工步1为车Ф40h6,工步2为车Ф50k6主轴颈,工步3为车Ф60。加工后表面粗糙度为Ra≤12.5μm。

(1> 工步1粗车Ф40h6

1)选择刀具

①选择外圆车刀。

②根据《切削用量简明手册》表 1.1,由于车床的中心高为200mm<表

1.30),故选刀杆尺寸BXH=16mmX25mm,刀片厚度为4.5mm。

③根据《切削用量简明手册》表1.2,可选择YG6牌号硬质合金。

④车刀几何形状<见表 1.3),选择平面带倒棱前刀面,κr=60°,κr′

γ=—10°,=10°,α。=6°,γ。=12°,λs= —10°,γε=0.8mm,

01

b=0.4mm。

2)选择切削用量

①确定切削深度αp 由于粗加工余量仅为1.6mm,可在一次走刀内切完,故

αp=<45—41.8)/2mm=1.6mm

② 确定进给量 f 根据《切削用量简明手册》表 1.6,在粗车铸铁、表面粗糙度Ra=12.5μm 时

f=0.25~0.40mm/r

按CJK6140数控车床说明书选择

f=0.36mm/r

③ 选择车刀磨钝标准及寿命 根据《切削用量简明手册》表 1.9,车刀后刀面最大磨损量取为1.0mm ,车刀寿命T=60min 。

④ 确定切削速度Vc 切削速度Vc 可根据公式计算,也可直接由表中查出。 根据《切削用量简明手册》表1.27

v yv

xv

p m

v

c k f

T C v α=

(1—1>

式中V k =tv k v K k γsv k Tv k Kv k 故Vc=69.6m/min n=492r/min

按CJK6140数控车床说明书,选择n=500r/min ,这时Vc=110m/min 。 最后决定的车削用量为

αp=1.6mm ,f=0.36mm/r ,n=500r/min ,Vc=110m/min 。 3)计算基本工时

nf

L

t m =

<1—2) 式中L=l+y+△,l=12mm ,根据《切削用量简明手册》表1.26,车削时的入切量及超切量y+△=2.1mm ,则L=12+2.1mm=14.1mm ,故

tm=0.08min

(2> 工步2粗车Ф50k6主轴颈 1)选择刀具 ① 选择外圆车刀。

② 根据《切削用量简明手册》表 1.1,由于车床的中心高为200mm<表1.30),故选刀杆尺寸BXH=16mmX25mm ,刀片厚度为4.5mm 。

③ 根据《切削用量简明手册》表1.2,可选择YG6牌号硬质合金。

④ 车刀几何形状<见表 1.3),选择平面带倒棱前刀面,κr=60°,κr ′=10°,α。=6°,γ。=12°,λs= —10°,r ε=0.8mm ,01γ=—10°,

1γb =0.4mm 。

2)选择切削用量

① 确定切削深度αp 由于粗加工余量仅为1.55mm ,可在一次走刀内切完,故

αp=<55—51.9)/2mm=1.55mm

② 确定进给量 f 根据《切削用量简明手册》表 1.6,在粗车铸铁、表面粗糙度Ra=12.5μm 时

f=0.25~0.40mm/r

③ 选择车刀磨钝标准及寿命 根据《切削用量简明手册》表 1.9,车刀后刀面最大磨损量取为1.0mm ,车刀寿命T=60min 。

④ 确定切削速度Vc 切削速度Vc 可根据公式计算,也可直接由表中查出。 根据《切削用量简明手册》表1.27

v yv

xv

p m

v

c k f

T C v α=

<1—1)

式中V k =tv k v K k γsv k Tv k Kv k 故Vc=69.9m/min n=405r/min

按CJK6140数控车床说明书,选择n=500r/min ,这时Vc=86m/min 。 最后决定的车削用量为

αp=1.55mm ,f=0.36mm/r ,n=500r/min ,Vc=86m/min 。 3)计算基本工时

nf

L

t m =

(1—2> 式中L=l+y+△,l=21mm ,根据《切削用量简明手册》表1.26,车削时的入切量及超切量y+△=2.1mm ,则L=21+2.1mm=23.1mm ,故

tm=0.13min

(3> 工步3粗车Ф60 1)选择刀具 选择R3成形车刀。 2)选择切削用量

① 确定切削深度αp 由于粗加工余量仅为1.95mm ,可在一次走刀内切完,故

αp=<65—61.1)/2mm=1.95mm

② 确定进给量 f 根据《切削用量简明手册》表 1.6,在粗车铸铁、表面粗糙

度Ra=12.5μm 时

f=0.25~0.40mm/r

③ 选择车刀磨钝标准及寿命 根据《切削用量简明手册》表 1.9,车刀后刀面最大磨损量取为1.0mm ,车刀寿命T=60min 。

④ 确定切削速度Vc 切削速度Vc 可根据公式计算,也可直接由表中查出。 根据《切削用量简明手册》表1.27

v yv

xv

p m

v

c k f

T C v α=

<1—1)

式中V k =tv k v K k γsv k Tv k Kv k 故Vc=59.7m/min n=271r/min

按CJK6140数控车床说明书,选择n=500r/min ,这时Vc=110m/min 。 最后决定的车削用量为

αp=1.95mm ,f=0.36mm/r ,n=500r/min ,Vc=110m/min 。 3)计算基本工时

nf

L

t m =

<1—2) 式中L=l+y+△,l=6mm ,根据《切削用量简明手册》表 1.26,车削时的入切量及超切量y+△=3.6mm ,则L=6+3.6mm=9.6mm ,故

tm=0.05min

1.7.2 工序130<钻孔Ф14.2)切削用量及时间定额

本工序选用Z5125立式钻床,专用夹具装夹。 <1)选择刀具

选择高速钢麻花钻头,其直径d 。=14.2mm 。

钻头几何形状为:双锥修磨横刃,β=30°,2φ=118°,2φ1=70°,b ε=3.5mm ,α。=12°,ψ=55°,b=2mm ,l=4mm 。

<2)选择切削用量 1)决定进给量f

① 按加工要求决定进给量:根据《切削用量简明手册》表 2.7,当加工要求为H12~H13精度,铸铁的硬度大于200HBS ,d 。=14.2mm 时,f=0.37~0.45mm/r 。

由于l/d=47/14.2=3.3>3,故应乘孔深修正系数k1f=0.915,则

f=<0.37~0.45)X0.915mm/r=0.34~0.41mm/r

② 按钻头强度决定进给量:根据《切削用量简明手册》表 2.8,当灰铸铁硬度大于213HBS ,d 。=14.2mm ,钻头强度允许的进给量f=1.0mm/r 。

③ 按机床进给机构强度决定进给量:根据《切削用量简明手册》表 2.9,当灰铸铁硬度大于210HBS ,d 。≤14.5mm ,机床进给机构允许的轴向力为8830N 时,进给量为0.81mm/r 。

从以上三个进给量比较可以看出,受限制的进给量是工艺要求,其值为f=0.34~0.41mm/r 。根据Z5125钻床说明书,选择f=0.36mm/r 。

2)决定钻头磨钝标准及寿命 由《切削用量简明手册》表 2.12,当d 。=14.2mm 时,钻头后刀面最大磨损量取为0.8mm ,寿命T=60min 。

3)决定切削速度

由《切削用量简明手册》表2.15,当f=0.36mm/r 时,Vt=13m/min 。 切削速度的修正系数为:k Tv =1.0,k cv =1.0,k lv =0.85,k tv =1.0,故

v=v t ·k v =13X1.0X1.0X0.85X1.0m/min=11.1m/min п

n=1000v/(пd 。>=248.8r/min

根据Z5125钻床说明书,可考虑选择n=272r/min,但因所选转数较计算转数为高,会使刀具寿命下降,故可将进给量降低一级,即取f=0.28mm/r ;也可选择较低一级转数n=195r/min,仍用f=0.36mm/r ,比较这两种方案:

第一方案 f=0.28mm/r,n=272r/min

nf=272×0.28mm/min=76.16mm/min 第二方案 f=0.36mm/r,n=195r/min

nf=195×0.28mm/min=70.2mm/min

因为第一方案nf 的乘积较大,基本工时较少,故第一方案较好。这时Vc=12m/min 。f=0.28mm/r 。

<3)计算基本工时

nf

L

t m

<1—2) 式中L=l+y+△,l=47mm ,根据《切削用量简明手册》表 2.29,入切量及超切量y+△=6mm ,则L=47+6mm=53mm ,故

tm=0.70min

1.7.3 工序240<铣K 面)切削用量及时间定额

<1)选择刀具

1)根据《切削用量简明手册》表1.2,选择YG6A 硬质合金刀片。

根据《切削用量简明手册》表3.1,铣削深度αp ≤4mm 时,圆盘铣刀直径d 。为

80mm ,a 为60mm 。但已知铣削宽度a e 为70mm ,故应根据铣削宽度a e ≤49mm ,选择d 。=80mm 。由于采用标准硬质合金圆盘铣刀,故齿数z=12<表3.12)。

2)铣刀几何形状<表3.2);由于铸铁硬度大于200HBS ,故选择κr=60°, κr ε=30°,κr ′=5°,α。=8°<假定αcmax>0.08mm ), α。′=10°,λs= —10°, γ。1=—5°。

<2)选择切削用量

1)决定铣削深αp 由于加工余量不大,故可在一次走刀内切完,则

αp=h=3mm

2>决定每齿进给量fz 根据《切削用量简明手册》表3.3,当使用YG6A ,铣床功率为4.5KW 时,

fz=0.20~0.30mm/z

fz=0.30mm/z

3)选择铣刀磨钝标准及刀具寿命 根据《切削用量简明手册》表 3.8,由于铣刀直径d 。=80mm ,故刀具寿命T=180min<表3.8)。

4)决定切削速度Vc 和每分钟进给量V f 切削速度Vc 可根据《切削用量简明手册》表3.27中的公式计算,也可直接由表中查出。

根据《切削用量简明手册》表3.27的公式进行计算。 各修正系数为:k Mv =0.72,ksv=0.8 (见表1.28> kv= k Mv ksv=0.576 故 Vc=14.5m/min n=58r/min 根据X62W 型铣床说明书选择 n=60r/min,Vfc=235mm/min 因此实际切削速度和每齿进给量为

v c =πd 。n/1000=3.14*80*60/1000m/min=15m/min f zc =Vfc/n z=235/(60*12>mm/z=0.33mm/z

<3)计算基本工时

f

m v L

t

<1—3) 式中L=l+y+△,l=40mm ,根据《切削用量简明手册》表 3.25,入切量及超切量y+△=17mm ,则L=40+17mm=57mm ,故

tm=0.32min

其余工序切削用量及基本时间见工序卡片。

1.8 填写工艺规程卡

1.8.1 机械加工工艺过程卡片<见附件1)1.8.2 机械加工工序卡片<见附件2)

2 R180柴油机曲轴第一套夹具设计

2.1 明确设计任务、收集分析原始资料

2.1.1 加工工件的零件图<见曲轴零件毛坯图)

2.1.2 设计任务书<见表3)

表3 设计任务书一

2.1.3 工序简图<见图1)

图1 工序卡片230

本夹具设计的是第230道工序钻、铰Φ8孔的钻床夹具。本工序加工要求如下:

①保证工序图所示尺寸32、52±0.20、18;

②相对K面的垂直度为0.03mm;

③相对三轴颈共面的位置度为0.05。

2.1.4 分析原始资料

主要从以下几方面分析:

①工件的轮廓尺寸小,刚性好,结构简单。工件在夹具上装夹方便,且定位夹紧元件较好布置。

②本工序所使用的机床为Z5125立钻,刀具为通用标准刀具。

③本工序是在工件其他表面半精加工后进行加工的,所以工件获得比较精确的定位基面。

④生产类型为大量生产。

所以应在保证工件加工精度要求和适当提高生产率的前提下,尽可能地简化夹具结构,以缩短夹具设计与制造周期,降低设计与制造成本,获得良好的经济效益。

2.2 确定夹具的结构方案

2.2.1 根据六点定位规则确定工件的定位方式

由工序简图可知,该工序限制了工件六个自由度。现根据加工要求来分析其必须限制的自由度数目及其基准选择的合理性。

为保证工序尺寸32mm、52±0.20mm、18mm,应限制工件6个自由度。定位基准为两主轴颈、Φ45连杆颈外圆和主轴颈轴肩。

为了保证相对K面的垂直度,需限制工件Y方向旋转自由度,其定位基准为连杆颈。

由以上分析可知,根据工件加工要求分析工件应限制的自由度、采用的定位基准与工序简图所限制的自由度、使用的定位基准相同。

2.2.2 选择定位元件,设计定位装置

根据已确定的定位基面结构形式,确定定位元件的类型和结构尺寸。

(1)选择定位元件

根据以上分析,本工序限制了工件6个自由度,定位基准为两主轴颈、连杆颈和主轴颈轴肩。相应夹具上的定位元件为在两主轴颈处选V型块定位,连杆颈处选支承钉定位。

(2)确定定位元件尺寸及配合偏差

V型块的设计参照工件尺寸设计,具体尺寸详见夹具零件图R180—A11—02 支承钉根据GB/T2226—91设计。

2.2.3 分析计算定位误差

通过定位误差分析,判断所设计的定位装置是否合理。

造成定位误差的原因是定位基准与工序基准不重合以及定位基准的位移误差两个方面。

(1> 基准不重合误差

由于定位基准与工序基准不重合而造成的定位误差,称为基准不重合误差。

尺寸52±0.20mm的定位误差

?B=∑=n

i 1

δicos β <2-1)

式中,δI —定位基准与工序基准间尺寸链组成环的公差。

β—δi 方向与加工尺寸方向间的夹角。

由于用V 型块定位加工孔,即β=900 所以 ?B=0

即基准不重合误差为0。 (2> 基准位移误差

由于定位基准的误差或定位支承的误差而造成的定位基准位移,即工件实际位置对确定位置的理想要素的误差,这种误差称为基准位移误差。

在本道工序中,若不计V 形块的误差而仅有工件基准面的圆度误差时,其工件的定位中心会发生偏移,产生基准位移误差?Y 。

?Y=

)

2/sin(2a d

δ <2-2)

式中,d δ—工件定位基准的直径公差。

α/2—V 形块的半角

V 形块的对中性好,即其沿x 向的位移误差为零。 本次设计的V 形块的α=1050 所以:?Y=0.630d δ 左端:d δ=0.03mm 代入上式,?Y=0.019mm 右端:d δ=0.07mm 代入上式,?Y=0.044mm (3> 误差的合成 由于?B=0

左端∶?D=?Y=0.019mm 右端∶?D=?Y =0.044mm 而Tc=0.5mm

?D 左<1/3Tc ?D 右<1/3Tc

因此该方案能满足位置尺寸52±0.20mm 的要求。 相对K 面垂直度的定位误差计算同上。

?B=0,?Y=0

即?D=0

所以,此方案能满足加工要求。

2.2.4 确定工件的夹紧装置

(1> 确定夹具类型

由工序简图可知,本工序所加工的四孔,位于同一平面内,孔径不大,轮廓尺寸小及生产批量大等原因,采用钻模。

(2> 计算切削力与夹紧力 工件在加工时受到轴向力的作用。 根据《金属切削用量手册》查知

Fx=9.81C Fx d 0ZF fy F k F <2-3)

已知d 。=7.8mm ,取f=0.1mm/r ,其余各参数值可由《金属切削用量手册》查出,代入上式得

Fx=809.2N

(3)设计夹紧装置

本设计所设计的夹紧机构如图∶

图示的夹紧机构,能产生的夹紧力F ′可由下图压板受力分析图求得。

F ′=2)21(''L L L F +η <2-4)

式中,η—夹紧机构效率,取η=0.9 。 F ″—螺栓的许用夹紧力(N>

选取L1=L2,由《机床夹具设计》表3-8查得:当螺杆螺纹公称直径d=10mm 时,F ″=3570N

所以,F ′=2F ″η=2?3570?0.9=6426KN

2.3 绘制夹具结构草图

上述得到的夹具结构总体设计,按照相关资料绘制夹具结构草图。

2.3.1 拟订夹具总装图的尺寸、公差与配合以及技术要求

这里包括夹具总图的主要尺寸和技术要求。主要尺寸指决定夹具精度和使用的那些尺寸,主要技术条件通常是指夹具上某些表面的形位公差要求和其他一些特殊技术说明。

(1> 尺寸、公差与配合

①夹具轮廓尺寸

长?宽?高=195mm?140mm?220mm

②工件与定位元件间的联系尺寸

两V形块要保证一定的同轴度要求。

③夹具内部的配合尺寸

这部分的主要配合尺寸有Ф10H7/r6

(2> 制订技术条件

主要包括以下几个方面:

①两V形块V形表面待装配时进行调整加工;

②配打V形块与夹具体、钻模板与夹具体定位用销钉;

③加工前调整垫圈,使支承钉5对工件定位;

④钻套与衬套配合Ф16F7/m6,衬套与钻模板配合Ф24H7/r6。

2.3.2绘制夹具总装图

步骤如下∶

①根据工件在几个视图上的投影关系,分别画出其轮廓线;

②布置定位元件;

③布置夹紧机构;

④安排联接元件、设计夹具体、并完成夹具总装图;

⑤标注总图尺寸、公差与配合、技术要求。

发动机曲轴结构设计

2.1 曲轴的结构 曲轴的作用是把活塞往复运动通过连杆转变为旋转运动,传给底盘的传动机构。同时,驱动配气机构和其它辅助装置,如风扇、水泵、发电机等【18】。 曲轴一般由主轴颈,连杆轴颈、曲柄、平衡块、前端和后端等组成,如图1.1所示。一个主轴颈、一个连杆轴颈和一个曲柄组成了一个曲拐,直列式发动机曲轴的曲拐数目等于气缸数,而V型发动机曲轴的曲拐数等于气缸数的一半。 图1.1 主轴颈是曲轴的支承部分,通过主轴承支承在曲轴箱的主轴承座中。主轴承的数目不仅与发动机气缸数目有关,还取决于曲轴的支承方式。 曲柄是主轴颈和连杆轴颈的连接部分,断面为椭圆形,为了平衡惯性力,曲柄处常设置平衡重。平衡重用来平衡发动机不平衡的离心力矩及一部分往复惯性力,从而保证了曲轴旋转的平稳性【19】。 曲轴的连杆轴颈是曲轴与连杆的连接部分,曲柄与主轴颈的相连处用圆弧过渡,以减少应力集中。直列发动机的连杆轴颈数目与气缸数相等而V型发动机的连杆轴颈数等

于气缸数的一半。 曲轴前端装有正时齿轮,以驱动风扇和水泵的皮带轮以及起动爪等。为了防止机油沿曲轴轴颈外漏,在曲轴前端装有一个甩油盘,在齿轮室盖上装有油封。曲轴的后端用来安装飞轮,在后轴颈与飞轮凸缘之间制成档油凸缘与回油螺纹,以阻止机油向后窜漏。 曲轴的形状和曲拐相对位置取决于气缸数、气缸排列和发动机的发火顺序。多缸发动机的发火顺序应使连续作功的两缸保持尽量远的距离,这样既可以减轻主轴承的载荷,又能避免可能发生的进气重叠现象。此外作功间隔应力求均匀,也就是说发动机在完成一个工作循环的曲轴转角,每个气缸都应发火作功一次,以保证发动机运转平稳。 曲轴的作用:它与连杆配合将作用在活塞上的气体压力变为旋转的动力,传给底盘的传动机构。同时,驱动配气机构和其它辅助装置,如风扇、水泵、发电机等。工作时,曲轴承受气体压力,惯性力及惯性力矩的作用,受力大而且受力复杂,并且承受交变负荷的冲击作用。同时,曲轴又是高速旋转件,因此,要求曲轴具有足够的刚度和强度,具有良好的承受冲击载荷的能力,耐磨损且润滑良好【20】。 2.2 曲轴的疲劳损坏形式 曲轴的工作情况十分复杂,它是在周期性变化的燃气作用力、往复运动和旋转运动惯性力及其他力矩作用下工作的,因而承受着扭转和弯曲的复杂应力。曲轴箱主轴承的不同心度会影响到曲轴的受力状况,其次,由于曲轴弯曲与扭转振动而产生的附加应力,再加上曲轴形状复杂,结构变化急剧,产生了严重的应力集中。最后曲轴主轴颈与曲柄销是在比压下进行高速转动,因而产生强烈的磨损。因此柴油机在运转中发生曲轴裂纹和断裂事故不为鲜见,尤其是发电柴油机曲轴疲劳破坏较多。依曲轴产生裂纹的交变应力的性质不同,主要有以下三种疲劳裂纹:弯曲疲劳裂纹、扭转疲劳裂纹和弯曲一扭转疲劳裂纹【21】,如图2.1所示。

材料力学课程设计 单缸柴油机曲轴

材料力学课程设计 班级: 作者: 题目:单缸柴油机曲轴的强度设计及刚度计算、疲劳强度校核 指导老师: 2007.11.05

班级 姓名 一、 课程设计的目的 材料力学课程设计的目的是在于系统学习材料力学后,能结合工程中的实际问题,运用材料力学的基本理论和计算方法,独立地计算工程中的典型零部件,以达到综合运用材料力学的知识解决工程实际问题之目的。同时,可以使我们将材料力学的理论和现代计算方法及手段融为一体。既从整体上掌握了基本理论和现代的计算方法,又提高了分析问题,解决问题的能力;既把以前所学的知识综合应用,又为后继课程打下基础,并初步掌握工程中的设计思想和设计方法,对实际工作能力有所提高。 1)使所学的材料力学知识系统化,完整化。让我们在系统全面复习的基础上,运用材料力学知识解决工程实际问题。 2)综合运用以前所学的各门课程的知识(高等数学、工程图学、理论力学、算法语言、计算机等),使相关学科的知识有机地联系起来。 3)使我们初步了解和掌握工程实践中的设计思想和设计方法,为后续课程的学习打下基础。 二、 课程设计的任务和要求 要系统复习材料力学课程的全部基本理论和方法,独立分析、判断设计题目的已知所求问题,画出受力分析计算简图和内力图,列出理论依据并导出计算公式,独立编制计算程序,通过计算机给出计算结果,并完成设计计算说明书。 三、 设计题目 某柴油机曲轴可以简化为下图所示的结构,材料为球墨铸铁(QT450-5)弹性常数为E 、μ,许用应力为[σ],G 处输入转矩为e M ,曲轴颈中点受切向力t F 、径向力r F 的作用,且r F = 2t F 。曲柄臂简化为矩形截面,1.4≤h D ≤1.6,2.5≤h b ≤4, 3l =1.2r,已知数据如下表:

推荐-柴油机曲轴加工工艺及夹具设计 精品

柴油机曲轴加工工艺及夹具设计

目录 摘要 1 Abstract 2 0 引言 1 1 R180柴油机曲轴工艺设计 3 1.1 分析零件图 3 1.2 确定生产类型 3 1.3 确定毛坯 3 1.4 机械加工工艺过程设计 3 1.5 选择加工设备与工艺装备 6 1.6 确定工序尺寸 7 1.7 确定切削用量及时间定额 9 1.8 填写工艺规程卡 15 2 R180柴油机曲轴第一套夹具设计 16 2.1 明确设计任务、收集分析原始资料 16 2.2 确定夹具的结构方案 17 2.3 绘制夹具结构草图 19 3 R180柴油机曲轴第二套夹具设计 21 3.1 明确设计任务、收集分析原始资料 21 3.2 确定夹具的结构方案 22 3.3 夹具定位误差分析 22 3.4 拟订夹具总装图的尺寸、公差与配合及技术要求 22 3.5 绘制夹具总装图 23

4 结论 24 致谢 25 26 附件清单 27 摘要 本文主要介绍了R180柴油机曲轴工艺设计及其中两道工序的夹具设计。本文作者是在保证产品质量、提高生产率、降低成本、充分利用现有生产条件、保证工人具有良好而安全劳动条件的前提下进行设计的。在工艺设计中,作者结合实际进行理论设计,对曲轴传统生产工艺进行了改进,优化了工艺过程和工艺装备,使曲轴的生产加工更经济、合理。在夹具设计部分,作者在收集加工所用机床、刀具及辅助工具等有关资料后,对工件材料、结构特点、技术要求及工艺分析的基础上,按照夹具设计步骤设计出符合曲轴生产工艺及夹具制造要求的夹具。 关键词:柴油机曲轴工艺夹具 Abstract This text introduce R180 diesel engine crankshaft technological design and two of them jig of process design mainly. The author of this text is guaranteeing product quality, boost productivity, lower costs, utilize existing working condition, guaranteeing worker to have good work prerequisite of terms to design . In technological design, the author bine carrying on theory design, improve the traditional production technology of the crankshaft actually, optimize craft course and craft equip, enable economy rational even more of production and processing of the crankshaft. Designing in the jig , the author collect the relevant materials, such as lathe, cutter and handling tool,etc. At the foundation of the analyse of work piece material, specification requirement and craft, and make jig of request according to jig measure design and cankshaft production technology and jig.

柴油机曲轴设计

1前言 1.1柴油机与曲轴 1.1.1柴油机的工作原理 柴油机的每个工作循环都要经历进气、压缩、做功和排气四个过程。 四行程柴油机的工作过程:柴油机在进气冲程吸入纯空气,在压缩冲程接近终了时,柴油经喷油泵将油压提高到10MPa以上,通过喷油器以雾状喷入气缸,在很短时间内与压缩后的高温空气混合,形成可燃混合气。压缩终了时气缸内空气压力可达3.5~4.5MPa,温度高达476.85℃~726.85℃,极大地超过柴油的自燃温度,因此柴油喷人气缸后,在很短的时间内即着火燃烧,燃气压力急剧达到6~9MPa,温度升高到1726.85℃~2226.85℃。在高压气体推动下,活塞向下运动并带动曲轴旋转做功。废气同样经排气门、排气管等处排出。 四行程柴油机的每个工作循环均经过如下四个行程: (1)进气行程在这个行程中,进气门开启,排气门关闭,气缸与化油器相通,活塞由上止点向下止点移动,活塞上方容积增大,气缸内产生一定的真空度。可燃混合气被吸人气缸内。活塞行至下止点时,曲轴转过半周,进气门关闭,进气行程结束。 由于进气道的阻力,进气终了时气缸内的气体压力稍低于大气压,约为0.07~0.09MPa。混合气进入气缸后,与气缸壁、活塞等高温机件接触,并与上一循环的高温残余废气相混合,所以温度上升到96.85℃~126.85℃。 (2)压缩行程进气行程结束后,进气门、排气门同时关闭。曲轴继续旋转,活塞由下止点向上止点移动,活塞上方的容积缩小,进入到气缸中的混合气逐渐被压缩,使其温度、压力升高。活塞到上止点时,压缩行程结束。 压缩终了时鼓,混合气温度约为326.85℃~426.85℃,压力一般为0.6~ 1.2MPa。 (3)做功行程活塞带动曲轴转动,曲轴通过转动把扭矩输出。 (4)排气行程进气口关闭,排气口打开,排除废气。 由上可知,四行程汽油机或柴油机,在一个工作循环中,只有一个行程作功,其余三个行程作为辅助行程都是为作功行程创造条件的。因此,单缸发动机工作不平稳。现代汽车都采用多缸发动机,在多缸发动机中,所有气缸的作功行程并不同时进行,而尽可能有一个均匀的作功间隔,因而多缸发动机曲轴运转均匀,工作平稳,并可获得足够大的功率。例如六缸发动机,在一个工作循环中,曲轴要旋转720°,曲轴转角每隔120°就有一个气缸作功。

发动机曲轴结构设计

发动机曲轴结构设计 Document number:PBGCG-0857-BTDO-0089-PTT1998

曲轴的结构 曲轴的作用是把活塞往复运动通过连杆转变为旋转运动,传给底盘的传动机构。同时,驱动配气机构和其它辅助装置,如风扇、水泵、发电机等【18】。 曲轴一般由主轴颈,连杆轴颈、曲柄、平衡块、前端和后端等组成,如图所示。一个主轴颈、一个连杆轴颈和一个曲柄组成了一个曲拐,直列式发动机曲轴的曲拐数目等于气缸数,而V型发动机曲轴的曲拐数等于气缸数的一半。 图 主轴颈是曲轴的支承部分,通过主轴承支承在曲轴箱的主轴承座中。主轴承的数目不仅与发动机气缸数目有关,还取决于曲轴的支承方式。 曲柄是主轴颈和连杆轴颈的连接部分,断面为椭圆形,为了平衡惯性力,曲柄处常设置平衡重。平衡重用来平衡发动机不平衡的离心力矩及一部分往复惯性力,从而保证了曲轴旋转的平稳性【19】。 曲轴的连杆轴颈是曲轴与连杆的连接部分,曲柄与主轴颈的相连处用圆弧过渡,以减少应力集中。直列发动机的连杆轴颈数目与气缸数相等而V型发动机的连杆轴颈数等于气缸数的一半。

曲轴前端装有正时齿轮,以驱动风扇和水泵的皮带轮以及起动爪等。为了防止机油沿曲轴轴颈外漏,在曲轴前端装有一个甩油盘,在齿轮室盖上装有油封。曲轴的后端用来安装飞轮,在后轴颈与飞轮凸缘之间制成档油凸缘与回油螺纹,以阻止机油向后窜漏。 曲轴的形状和曲拐相对位置取决于气缸数、气缸排列和发动机的发火顺序。多缸发动机的发火顺序应使连续作功的两缸保持尽量远的距离,这样既可以减轻主轴承的载荷,又能避免可能发生的进气重叠现象。此外作功间隔应力求均匀,也就是说发动机在完成一个工作循环的曲轴转角内,每个气缸都应发火作功一次,以保证发动机运转平稳。 曲轴的作用:它与连杆配合将作用在活塞上的气体压力变为旋转的动力,传给底盘的传动机构。同时,驱动配气机构和其它辅助装置,如风扇、水泵、发电机等。工作时,曲轴承受气体压力,惯性力及惯性力矩的作用,受力大而且受力复杂,并且承受交变负荷的冲击作用。同时,曲轴又是高速旋转件,因此,要求曲轴具有足够的刚度和强度,具有良好的承受冲击载荷的能力,耐磨损且润滑良好【20】。 曲轴的疲劳损坏形式 曲轴的工作情况十分复杂,它是在周期性变化的燃气作用力、往复运动和旋转运动惯性力及其他力矩作用下工作的,因而承受着扭转和弯曲的复杂应力。曲轴箱主轴承的不同心度会影响到曲轴的受力状况,其次,由于曲轴弯曲与扭转振动而产生的附加应力,再加上曲轴形状复杂,结构变化急剧,产生了严重的应力集中。最后曲轴主轴颈与曲柄销是在比压下进行高速转动,因而产生强烈的磨损。因此柴油机在运转中发生曲轴裂纹和断裂事故不为鲜见,尤其是发电柴油机曲轴疲劳破坏较多。依曲轴产

柴油机曲轴工艺过程及夹具毕业设计论文

重庆大学网络教育学院 毕业设计(论文) 柴油机曲轴零件加工工艺及夹具设计 学生所在校外学习中心江苏张家港校处学习中心批次层次专业111 专升本机械设计制造及其自动化学号 w11107861 学生 指导教师 起止日期 2013.1.21--2013.4.14

摘要 曲轴是发动机上的一个重要的旋转机件,装上连杆后,可承接活塞的上下(往复)运动变成循环运动。曲轴主要有两个重要加工部位:主轴颈和连杆颈。主轴颈被安装在缸体上,连杆颈与连杆大头孔连接,连杆小头孔与汽缸活塞连接,是一个典型的曲柄滑块机构。发动机工作过程就是:活塞经过混合压缩气的燃爆,推动活塞做直线运动,并通过连杆将力传给曲轴,由曲轴将直线运动转变为旋转运动。而曲轴加工的好坏将直接影响着发动机整体性能的表现。曲轴的材料是由碳素结构钢或球墨铸铁制成的,有两个重要部位:主轴颈,连杆颈。 这次毕业设计介绍柴油机曲轴加工工艺规程及相关夹具的设计,及曲轴的规程制定中遇到问题的分析,经济性分析,工时定额,切削用量的计算。同时还介绍曲轴加工中用到的两套夹具的设计过程。在工艺设计中,结合实际进行设计,对曲轴生产工艺进行了改进,优化了工艺过程和工艺装备,使曲轴的生产加工更经济、合理。 根据现阶段机械零件的制造工艺和技术水平,本着以制造技术的先进性,合理性,经济性进行零件的形状、尺寸、精度等级、表面粗糙度、材料等技术分析。并根据以上分析来选择合理的毛坯制造方法,设计工艺规程,夹具设计。 关键词:柴油机曲轴工艺夹具

目录 中文摘要…………………………………………………………………………………………I 1.引言 (1) 2.曲轴的生产纲领 (2) 3.零件的分析 (2) 3.1曲轴的用途及工作条件 (2) 3.2分析零件上的技术要求,确定要加工的表面 (3) 3.3加工表面的尺寸和形状精度 (4) 3.4尺寸和位置精度 (4) 3.5加工表面的粗糙度及其它方面的质量要求 (4) 3.6热处理要求 (4) 4.曲轴材料和毛坯的定 (4) 4.1确定毛坯的类型 (4) 4.2确定毛坯的生产方法 (4) 4.3确定毛坯的加工余量 (4) 5.曲轴的工艺过程设计 (5) 5.1粗、精加工的定位基准 (5) 5.1.1粗加工 (5) 5.1.2粗加工 (5) 5.2工件表面加工方法的选择 (5) 5.3曲轴机械加工的基本路线 (5) 5.4加工余量及毛坯尺寸 (6) 5.5工序设计 (6) 5.5.1加工设备与工艺装备的选择 (8) 5.5.2机械加工余量、工序尺寸及公差的确定 (9) 5.6确定工时定额 (11) 5.7机械加工工艺规程卡片和机械加工工序卡片 (12) 5.7.1机械加工工艺过程卡片 (12) 5.7.2机械加工工序卡片 (12) 6.柴油机曲轴加工键槽夹具设计 (13) 6.1.1夹具类型的分析 (13) 6.1.2工装夹具定位方案的确定 (13) 6.1.3工件夹紧形式的确定 (13) 6.1.4对刀装置 (13) 6.1.5分度装置的确定以及补补助装置 (14) 6.1.6夹具定位夹紧方案的分析论证 (14) 6.1.7夹具结构类型的设计 (15) 6.2夹具总图设计 (16) 6.4绘制夹具零件图 (16)

柴油发动机曲轴机械加工工艺规程设计及夹具(毕业设计)

柴油发动机曲轴机械加工工艺规程设计及夹具设计 由吴祖德t053329 于星期五, 2009/06/19 - 12:41下午发表 ?学士学位 ?机电与汽车工程学院 学号: 05120332 专业: 机械设计制造及其自动化 研究方向: 机械设计与制造 导师姓名: 曾宏达 中图分类号: TH16 论文总页码: 47 参考文献总数: 20 曲轴是柴油发动机的重要零件。它的作用是把活塞的往复直线运动变成旋转运动,将作用在活塞的气体压力变成扭矩,用来驱动工作机械和柴油发动机各辅助系统进行工作。曲轴在工作时承受着不断变化的压力、惯性力和它们的力矩作用,因此要求曲轴具有强度高、刚度大、耐磨性好,轴颈表面加工尺寸精确,且润滑可靠。 本设计是根据被加工曲轴的技术要求,进行机械工艺规程设计,然后运用夹具设计的基本原理和方法,拟定夹具设计方案,完成夹具结构设计。主要工作有:绘制产品零件图,了解零件的结构特点和技术要求;根据生产类型和所在企业的生产条件,对零件进行结构分析和工艺分析;确定毛坯的种类及制造方法;拟定零件的机械加工工艺过程,选择各工序的加工设备和工艺设备,确定各工序的加工余量和工序尺寸,计算各工序的切削用量和工时定额;填写机械加工工艺过程卡片、机械加工工序卡片等工艺卡片;设计指定的专用夹具,绘制装配总图和主要零件图。 中文关键字: 机械制造,加工工艺,曲轴,夹具 英文题目: Technological process design and fixture design of diesel engine crankshaft 英文摘要: Crankshaft is a very important parts of diesel engine. Ist action is change the to

缸柴油机曲轴》

材料力学课程设计 学号:41091307 姓名:吴茂坤 题目:单缸柴油机曲轴的强度设计及刚度计算、疲劳强度校核指导老师:李锋 2011.10.20

目录 一、课程设计的目的 (2) 二、课程设计的任务和要求 (2) 三、设计题目 (3) 四、设计过程 (4) 1、画出曲轴的内力图 (4) 2、设计曲轴颈直径d和主轴颈直径D (6) 3、校核曲柄臂的强度 (7) 4、校核主轴颈H-H截面处的疲劳强度 (9) 5、用能量法计算A-A截面的转角yθ,zθ (9) 五、设计的改进措施及方法 (13) 六、程序计算部分 (13) 七、设计体会 (15) 八、参考文献 (15)

一、课程设计的目的 材料力学课程设计的目的是在于系统学习材料力学后,能结合工程中的实际问题,运用材料力学的基本理论和计算方法,独立地计算工程中的典型零部件,以达到综合运用材料力学的知识解决工程实际问题之目的。同时,可以使我们将材料力学的理论和现代计算方法及手段融为一体。既从整体上掌握了基本理论和现代的计算方法,又提高了分析问题,解决问题的能力;既把以前所学的知识综合应用,又为后继课程打下基础,并初步掌握工程中的设计思想和设计方法,对实际工作能力有所提高。 1)使所学的材料力学知识系统化,完整化。让我们在系统全面复习的基础上,运用材料力学知识解决工程实际问题。 2)综合运用以前所学的各门课程的知识(高等数学、工程图学、理论力学、算法语言、计算机等),使相关学科的知识有机地联系起来。 3)使我们初步了解和掌握工程实践中的设计思想和设计方法,为后续课程的学习打下基础。 二、课程设计的任务和要求 要系统复习材料力学课程的全部基本理论和方法,独立分析、判断设计题目的已知所求问题,画出受力分析计算简图和内力图,列出理论依据并导出计算公式,独立编制计算程序,通过计算机给出计算结果,并完成设计计算说明书。

柴油机曲轴工艺设计方案[]

0 引言 本次毕业设计是关于R180柴油机曲轴的工艺设计及其中两道工序的夹具设计。 曲轴是柴油机中的关键零件之一,其材质大体分为两类:一是钢锻曲轴,二是球墨铸铁曲轴。由于采用铸造方法可获得较为理想的结构形状,从而减轻质量,且机加工余量随铸造工艺水平的提高而减小。球铁的切削性能良好,并和钢制曲轴一样可以进行各种热处理和表面强化处理,来提高曲轴的抗疲劳强度和耐磨性。而且球铁中的内摩擦所耗功比钢大,减小了工作时的扭转振动的振幅和应力,应力集中也没有钢制曲轴来的敏感。所以球墨铸铁曲轴在国内外得到广泛采用。本次设计中曲轴的材质为球铁。 从目前整体水平来看, 毛坯的铸造工艺存在生产效率低,工艺装备落后,毛坯机械性能不稳定、精度低、废品率高等问题。从以下几个工艺环节采取措施对提高曲轴质量具有普遍意义。①熔炼国内外一致认为,高温低硫纯净铁水的获得是生产高质量球铁的关键所在。为获得高温低硫磷的纯净铁水,可用冲天炉熔化铁水,经炉外脱硫,然后在感应电炉中升温并调整成分。②球化处理③孕育处理冲天炉熔化球铁原铁水,对铜钼合金球铁采用二次孕育。这对于防止孕育衰退,改善石墨形态,细化石墨及保证高强度球铁机械性能具有重要作用。④合金化配合好铜和钼的比例对形成珠光体组织十分有利,可提高球铁的强度,而且铜和钼还可大大降低球铁件对壁厚的敏感性。⑤造型工艺气流冲击造型工艺优于粘土砂造型工艺,可获得高精度的曲轴铸件,该工艺制作的砂型具有无反弹变形量的特点,这对于多拐曲轴尤为重要。⑥浇注冷却工艺采用立浇—立冷,斜浇—斜冷、斜浇—反斜冷三种浇注方式较为理想,其中后一种最好。斜浇—反斜冷的优点是:型腔排气充分,铁水充型平稳,浇注系统撇渣效果好,冒口对铸件的补缩效果好,适应大批量流水线生产。 目前,国内大部分专业厂家普遍采用普通机床和专用组合机床组成的流水线生产,生产效率、自动化程度较低。曲轴的关键技术工程仍与国外相差1~2个数量级。国外的机加工工艺大致可归纳为如下几个特点。①广泛采用数控技术和自动线,生产线一般由几段独立的自动化生产单元组成,具有很高的灵活性和适应性。采用龙门式自动上下料,集放式机动滚道传输,切削液分粗加工与精加工两段集中供应和回收处理。②曲轴的主要加工工序基准中心孔,一般采用质量定心加工方式,这样在静平衡时,加工量很少。③轴颈的粗加工一般采用数控铣削或车拉工艺。工序质量可达到国内粗磨后的水平,且切削变形小、效率高。铣削和车拉是曲轴粗加工的发展方向。④国外的曲轴磨床均采用CNC控制技术,具有自动进给、自动修正砂轮、自动补偿和自动分度功能,使曲轴的磨削精度和效率显著提高。⑤油

曲轴的加工工艺及夹具设计.

明达职业技术学院 毕业设计 曲轴加工工艺及曲轴连杆轴颈 磨床夹具设计 专业机电一体化技术 学生姓名郑为山 班级09 机电一班 学号 62093138 指导教师问德刚 完成时间2011年12月15日

目录 摘要 (2) 1轴零件图的分析 (3) 1.1曲轴零件及其工艺特点 (3) 1.2曲轴的主要技术要求 (4) 1.3曲轴零件加工要求 (4) 1.4 曲轴零件工艺特点 (4) 2曲轴的机械加工 (4) 2.1曲轴的材料和毛坯 (4) 2.2 曲轴的机械加工工艺过程 (5) 3曲轴连杆轴颈磨床夹具设计 (14) 3.1 机床夹具的分类、基本组成和功用 (14) 3.2加紧方案 (15) 3.3定位基准的选择 (15) 3.4定位误差分析 (15) 3.5夹具结构简图 (17) 3.6夹具的使用方法 (19) 总结 (20) 参考文献 (21) 致谢 (22)

曲轴加工工艺及曲轴连杆轴颈磨床夹具设计 郑为山 【摘要】曲轴是汽车发动机的关键零件之一,其性能好坏直接影响到汽车发动机的质量和寿命.曲轴在发动机中承担最大负荷和全部功率,承受着强大的方向不断变化的弯矩及扭矩,同时经受着长时间高速运转的磨损,因此要求曲轴材质具有较高的刚性、疲劳强度和良好的耐磨性能。发动机曲轴的作用是将活塞的往复直线运动通过连杆转化为旋转运动,从而实现发动机由化学能转变为机械能的输出。 本课题是曲轴的加工工艺的分析与设计进行探讨。工艺路线的拟定是工艺规程制订中的关键阶段,是工艺规程制订的总体设计。所撰写的工艺路线合理与否,不但影响加工质量和生产率,而且影响到工人、设备、工艺装备及生产场地等的合理利用,从而影响生产成本。 所以,本次设计是在仔细分析曲轴零件加工技术要求及加工精度后,合理确定毛坯类型,经过查阅相关参考书、手册、图表、标准等技术资料,确定各工序的定位基准、机械加工余量、工序尺寸及公差,最终制定出曲轴零件的加工工序卡片。 【关键词】发动机曲轴工艺分析工艺设计夹具

汽车发动机曲轴材料的选择及工艺设计

专业课程设计任务书 学生姓名:班级: 设计题目:汽车发动机曲轴材料的选择及工艺设计 设计内容: 1、根据零件工作原理,服役条件,提出机械性能要求和技术要求。 2、选材,并分析选材依据。 3、制订零件加工工艺路线,分析各热加工工序的作用。 4、制订热处理工艺卡,画出热处理工艺曲线,对各种热处理工艺进行分 析,并分析所得到的组织,说明组织及性能的检测方法与使用的仪器设备。 5、分析热处理过程中可能产生的缺陷及补救措施。 6、分析零件在使用过程中可能出现的失效方式及修复措施。

目录 0 前言 (1) 1 汽车发动机曲轴的工作条件及性能要求 (2) 1.1 汽车发动机曲轴的工作条件 (3) 1.2 汽车发动机曲轴的性能要求及技术要求 (3) 2 汽车发动机曲轴的材料选择及分析 (4) 2.1 零件材料选择的基本原则 (4) 2.2 曲轴常用材料简介 (5) 2.3 汽车发动机曲轴材料的确定 (5) 3 曲轴的加工工艺路线及热处理工艺的制定 (6) 3.1 35CrMo曲轴热处理要求 (6) 3.2 汽车曲轴的热处理工艺的制定 (6) 3.2.1 调质处理 (7) 3.2.2 去应力退火 (8) 3.2.3 圆角高频淬火和低温回火 (9) 4 曲轴热处理过程中可能产生的缺陷及预防措施 (11) 4.1 校直过程引起材料原始裂纹 (11) 4.2 曲轴圆角淬火不当引起裂纹源 (12) 4.3 淬火畸变与淬火裂纹 (12) 4.4 淬火导致氧化、脱碳、过热、过烧 (13) 4.5 淬火硬度不足 (13) 5 曲轴在使用过程中可能产生的失效形式及分析 (13) 6 课程设计的收获与体会 (14) 7 参考文献 (15) 8 工艺卡 (16)

材料力学课程设计 单缸柴油机曲轴

材料力学课程设计 班级:441006班 作者:刘百川44100608 题目:单缸柴油机曲轴的强度设计 及刚度计算、疲劳强度校核题号:4 数据号:24 指导老师:李锋

课程设计的目的 材料力学课程设计的目的是在于系统学习材料力学课程之后,结合工程中的实际问题,运用材料力学的基本理论和计算方法,独立地计算工程中的典型零部件,以达到综合运用材料力学的知识解决工程实际问题的目的。同时,可以使学生将材料力学的理论和现代计算方法及手段融为一体。既从整体上掌握了基本理论和现代的计算方法,又提高了分析问题、解决问题的能力;既是对以前所学的知识的综合应用,又为后续课程的学习打下基础,并初步掌握工程设计思想和设计方法,对实际工作能力有所提高。具体有以下六项: 1.使所学的材料力学知识系统化,完整化。 2.在系统全面复习的基础上,运用材料力学知识解决工程实际中的问题。 3.由于选题力求结合专业实际,因而课程设计可以把材料力学知识与专业需要结合起来。 4.综合运用以前所学的各门课程的知识(高等数学、工程图学、理论力学、算法语言、计算机等),使相关学科的知识有机地联系起来。 5.使我们初步了解和掌握工程实践中的设计思想和设计方法。 6.为后续课程的学习打下基础。 课程设计的任务和要求 参加设计者要系统复习材料力学课程的全部基本理论和方法,独立分析、判断设计题目的已知条件和所求问题,画出受力分析计算简图和内力图,列出理论依据并导出计算公式,独立编制计算程序,通过计算机给出计算结果,并完成设计计算说明书。

设计题目 某柴油机曲轴可以简化为下图所示的结构,材料为球墨铸铁(QT450-5)弹性常数为,E μ,许用应力为[σ],G 处输入转矩为e M ,曲轴颈中点受切向力t F 、径向力r F 的作用,且2t r F F = 。曲柄臂简化为矩形截面,1.4 1.6h D ≤≤,2.54h b ≤≤, 3 1.2l r =。

发动机曲轴加工工艺分析与设计

发动机曲轴加工工艺分析与设计 摘要 曲轴是汽车发动机的关键零件之一,其性能好坏直接影响到汽车发动机的质量和寿命.曲轴在发动机中承担最大负荷和全部功率,承受着强大的方向不断变化的弯矩及扭矩,同时经受着长时间高速运转的磨损,因此要求曲轴材质具有较高的刚性、疲劳强度和良好的耐磨性能。发动机曲轴的作用是将活塞的往复直线运动通过连杆转化为旋转运动,从而实现发动机由化学能转变为机械能的输出。 本课题仅175Ⅱ型柴油机曲轴的加工工艺的分析与设计进行探讨。工艺路线的拟定是工艺规程制订中的关键阶段,是工艺规程制订的总体设计。所撰写的工艺路线合理与否,不但影响加工质量和生产率,而且影响到工人、设备、工艺装备及生产场地等的合理利用,从而影响生产成本。 所以,本次设计是在仔细分析曲轴零件加工技术要求及加工精度后,合理确定毛坯类型,经过查阅相关参考书、手册、图表、标准等技术资料,确定各工序的定位基准、机械加工余量、工序尺寸及公差,最终制定出曲轴零件的加工工序卡片。 关键词:发动机,曲轴,工艺分析,工艺设计 目录 第一章概述1 第二章确定曲轴的加工工艺过程3 2.1曲轴的作用3 2.2曲轴的结构及其特点3 2.3曲轴的主要技术要求分析4 2.4曲轴的材料和毛坯的确定4 2.5曲轴的机械加工工艺过程4 2.6曲轴的机械加工工艺路线5 第三章曲轴的机械加工工艺过程分析 6 3. 1曲轴的机械加工工艺特点6 3. 2曲轴的机械加工工艺特点分析7 3. 3曲轴主要加工工序分析 (8) 3.3.1铣曲轴两端面,钻中心孔 (8) 3.3.2曲轴主轴颈的车削 (8) 3.3.3曲轴连杆轴颈的车削 (8) 3.3.4键槽加工 (9) 3.3.5轴颈的磨削 (9) 第四章机械加工余量、工序尺寸及公差的确定9 4.1曲轴主要加工表面的工序安排9 4.2机械加工余量、工序尺寸及公差的确定10 4.2.1主轴颈工序尺寸及公差的确定10 4.2.2连杆轴颈工序尺寸及公差的确定10 4.2.3φ22 -00.12外圆工序尺寸及公差的确定10 4.2.4φ20 0-0.021外圆工序尺寸及公差的确定11 4.3 确定工时定额11 4.4 曲轴机械加工工艺过程卡片的制订12 谢辞13

柴油机曲轴机械加工工艺规程设计

湖南文理学院芙蓉学院本科生毕业论文(设计) 题目:柴油机曲轴机械加工工艺规程 及斜油孔回转钻模设计学生姓名: 学号: 专业班级: 指导教师: 完成时间:2012-5-18

目录 中文摘要...............................................................4英文摘要...............................................................5第1章绪论 1.1课题的目的及意义..............................................6 1.2设计要求.......................................................7第2章工艺规程设计 2.1 计算生产纲领,确定生产批量..................................8 2.2选择毛坯.......................................................8 2.3工艺规程设计...................................................8 2.3.1定位基准的选择................................................8 2.3.2零件表面加工方法的选择........................................9 2.3.3制订工艺路线.................................................10 2.4确定机械加工余量和毛坯的选择...............................18 2.4.1机械加工余量的确定...........................................18

WD615系列柴油机曲轴

WD615系列柴油机曲轴、活塞、连杆机构WD615系列柴油机采用常规曲轴连杆机构。 WD615发动机采用模锻曲轴,曲轴表面经过特殊热处理及软氮化处理,因此有较好的耐磨和抗疲劳层。 曲轴主轴颈与连杆轴颈椭圆度应≤0.01mm,极限值为o.015mm,锥度应≤o.01mm,极限值为o.015mm。曲轴中间轴颈相对于两端轴颈的偏心距(曲轴弯曲度)O.3mm。 196kw可装用直径西260mm的硅油减振器,其他大马力柴油机曲轴上则可装用西280mm的硅油减振器。在曲轴前端热装有减振器固定法兰和曲轴齿轮。曲轴齿轮应加热至180℃,而固定法兰则需加垫至290℃后热装入曲轴。七道曲轴主轴瓦是等厚钢背低铝合金制成,二道瓦可以互换。止推瓦安装在第二道主轴承两侧。装配中必须测量轴瓦孔径尺寸和轴颈尺寸。选装主轴瓦使主轴承径向间隙为O.095mm~O.163mm,使用极限为0.18mm。动平衡最大不平均数衡量609/cm。曲轴的轴向间隙为o.052mm—o.255mm,使用极限为O.35mm。连杆瓦采用不等厚钢背低锡铝合金制成。曲轴与飞轮为强力螺栓连接,安装飞轮时首先用60N·m扭矩对称扭紧,而后对称将所有螺栓旋转90。±5。,然后再旋转90。±5。并确认最终扭矩达到230N·m~280N·m。对达不到最终扭矩者应予更换。飞轮螺栓可重复使用2次。 活塞采用铝合金制造如图2—18所示。活塞顶部有一“w”型燃烧室和进、排气门的避阀坑。燃烧室容积一般为87mm±0.。75mm。活塞上安装有两道气环与一道油环。第一道气环是在铸铁镶圈环槽内的双面梯形桶面环,内环面上部有切槽,工作表面喷钼,开口间隙为O.40mm一0.60mm,

DF4DD柴油机工艺流程

DF4DD机车柴油机检修工艺流程 一、机车总体分解、组装: 1、机车进入检修台位后打好铁鞋,切断总电源。 2、放掉机油、水、轴齿箱油和压缩空气;抽空所有燃油。 3、拆除冷却室上部的两个冷却风扇及偶合器。 3、拆除所有连接以及空气、电气、油、水管线后,分别拆下冷却室、 动力室、辅助传动室顶盖和侧墙以及预热室顶盖。 4、拆除柴油机上的油、水、电气、仪表、风路等所有连接部分。 5、拆除启动油泵组成、燃油泵组成、前后万向轴组成、膨胀水箱以 及相应的管路、风路、电气设备。 6、拆除机油热交换器、机油滤清器、燃油预热器、辅助机油泵安装 螺栓及各个电气、油、水管线后,分别吊出上述各部件。 7、拆除强化型空气散热器安装连接及管线,吊下强化型空气散热器。 8、拆除静液压变速箱、启动变速箱、启动发电机、厉磁机、后转向 架牵引电动机通风机、后转向架牵引电动机通风机安装螺栓和管线等联接部分以及绳传动轴(节)后,分别吊下上述部件。 9、拆除柴油机地脚紧固螺栓、主发电机地脚紧固螺栓后,使用柴油 机专业吊具将柴油机-发电机组吊下,放在专用支架上。然后拆下发电机与连接箱之间的联接螺栓后将柴油机与发电机分解。 10、拆除空压机电机组安装螺栓及联接的电线、风管等吊出空压机组。 11、拆除柴油机空滤器和电制动装置以及动力室两台通风机。 12、拆除电瓶连接大线及各电瓶之间的连接线,拆下所有电瓶。 13、拆除司机室内座椅、JZ7制动机、两个风喇叭、雨刷器及风缸、 以及司控器、各类仪表、电暖气、空调、信号显示、监控装置等。 14、拆除制动系统中的704-1型调压器、NT2保安阀、中继阀、分 配阀、变向阀、滤尘止回阀、紧急制动阀、ZDF型电动放风阀、基础制动装置、撒砂阀。 15、拆除牵引杆装置、油压减振器、轴箱定位销、牵引电动机进风道 以及车体与转向架的风、水、电各连接管线;将架车机吊至车体两侧的架车座位置。 16、把架车机伸缩臂摇至机车的4个架车座下,分别起升各个架车机, 使其起升座与机车两侧的架车座贴合后;同时起升4台架车机。

柴油机曲轴加工工艺及夹具设计

柴油机曲轴加工工艺及夹具设计 来源:不详作者:佚名添加日期:2010年02月07日点击数: 259 【说明】该全套毕业设计作品包括:论文+源代码+程序+开提报告+PPT答辨稿数据流程图、功能模块图、运行界面图、源代码和程序,另附带有开题报告、论文全文,按计算机毕业论文格式要求书写,适用于计算机专业 【温馨提示】为防止百度搜取本站内容,故论文只贴出部分!?信用说明

目录 摘要 1 Abstract 2 0 引言1 1R180柴油机曲轴工艺设计 3 1.1分析零件图 3 1.2 确定生产类型 3 1.3 确定毛坯 3 1.4 机械加工工艺过程设计 3 1.5 选择加工设备与工艺装备 6 1.6确定工序尺寸 7 1.7 确定切削用量及时间定额 9 1.8 填写工艺规程卡 15 2 R180柴油机曲轴第一套夹具设计 16 2.1明确设计任务、收集分析原始资料 16 2.2 确定夹具的结构方案 17 2.3 绘制夹具结构草图 19 3 R180柴油机曲轴第二套夹具设计 21 3.1 明确设计任务、收集分析原始资料 21 3.2 确定夹具的结构方案 22 3.3 夹具定位误差分析 22 3.4 拟订夹具总装图的尺寸、公差与配合及技术要求 22

3.5 绘制夹具总装图 23 4 结论 24 致谢25 参考文献 26 附件清单 27 摘要 本文主要介绍了R180柴油机曲轴工艺设计及其中两道工序的夹具设计。本文作者是在保证产品质量、提高生产率、降低成本、充分利用现有生产条件、保证工人具有良好而安全劳动条件的前提下进行设计的。在工艺设计中,作者结合实际进行理论设计,对曲轴传统生产工艺进行了改进,优化了工艺过程和工艺装备,使曲轴的生产加工更经济、合理。在夹具设计部分,作者在收集加工所用机床、刀具及辅助工具等有关资料后,对工件材料、结构特点、技术要求及工艺分析的基础上,按照夹具设计步骤设计出符合曲轴生产工艺及夹具制造要求的夹具。 关键词:柴油机曲轴工艺夹具 Abstract This textintroduce R180 diesel enginecrankshafttechnologicaldesign and twoofthemjig ofprocessdesign mainly.The author of this text is guaranteeingproduct quality, boost productivity,lower costs, utilize existing working condition, guaranteeing worker to havegood workprerequisite of terms to design. In technological design, theauthor combine carryingontheorydesign, improve the tradition

柴油机曲轴的制造技术

柴油机曲轴的制造技术 2008-2-15 17:13:05来源: 《汽车与配件》编辑:zc 伴随着汽车工业的发展,我国的发动机曲轴生产得到较大的发展,总量已具相当的规模,无论是设计水平,还是产品品种、质量、生产规模、生产方式都有很快的发展。 曲轴在发动机中是承受载荷传递动力的重要零部件,也是发动机五大零部件中最难以保证加工质量的零部件,其性能水平直接影响整机的性能水平及可靠性。因此,各工业发达国家十分重视曲轴的生产,不断改进其材质及加工手段,以提高其性能水平,满足发动机行业的需要。近几年来,国内曲轴加工发展十分迅速。尤其是大功率柴油机曲轴。 本文就从曲轴材料、热处理、机加工等作简单介绍。 图1为曲轴连杆机构。 曲轴材料 曲轴材料有球墨铸铁曲轴和锻钢曲轴。球墨铸铁曲轴一般采用QT700-2,QT800-2,QT900-2等。锻钢曲轴一般采用45、35CrMo、40Cr、40MnB、42CrMo和非调质钢如C38+N2、48MnV等。其中非调质钢以其性能优良,使用成本低等优点倍受青睐。其在曲轴上的应用已正式纳入标准,成为锻钢曲轴发展的趋势。非调质钢是在中碳钢的基础上加入多种微量合金元素,其力学性能取决于基体显微组织和析出相的强化。这类钢在热轧、锻造、正火状态时的力学性能接近或达到一般调质状态的力学性能水平。因此可省略调质处理的工序,既缩短生产周期又节省能源。图2为四缸机的曲轴。表1为常用锻钢曲轴材料。 锻造毛坯 曲轴锻造工艺过程: 下料——加热——辊锻(如需要)——预成型——终锻——切边——扭拐(部分曲轴)——校正 材料的加热在中频电感应连续加热炉内进行,将坯料加热到1150士50℃,与传统油料加热相比较,不仅简化了操作,同时也解决了加热温度不稳定,坯料加热不均匀,导致过热、过烧、材料热消耗高和不利于环境保护的一系列问题。 扭拐是对连杆轴颈不在一个平面内的曲轴,在终锻时将所有连杆轴颈锻在一个平面上,切边后在扭拐机上根据需要将连杆颈绕主轴颈中心线扭转到要求的角度,通常是90°或120°。增加扭拐工序解决了终锻模具分模复杂、型腔深、锻造工艺性差、毛坯缺肉等问题,并提高生产效率。图3为曲轴扭拐机。 毛坯热处理 曲轴毛坯热处理是决定曲轴机械性能的关键工序,连续工作的正火、淬火、回火机组在热处理工序的应用越来越广泛,逐渐取代箱式炉,使热处理加热温度稳定,保证材料的机械性能和金相指标,并大大地提高生产效率。 图4为曲轴调质机组。常用材料处理方式见表2。 强化处理 曲轴常用的强化处理是轴颈中频感应淬火处理、氮化处理、圆角滚压。

柴油机曲轴飞轮设计说明书

第一章前言 1.1柴油机曲轴设计的背景 柴油机具有良好的经济性、动力性及较高的热效率等显著优点, 在汽车节能等方面有较大的潜力。经过多年的研究和新技术的应用,现代柴油机的现状已与往日不可同日而语。随着电控喷射、高压共轨、涡轮增压、中冷等先进技术的应用,柴油机在重量、噪音、烟度等方面已取得了重大的突破。我国小缸径多缸增压柴油机已取得了较快的发展,但整个市场的需求还在增长。2000年,中国4缸以上、缸径小于100mm的多缸机年产量约63.9W台,主要用于农用运输车、轻型车、面包车、轮式拖拉机、中小型工程机械、小型船舶主辅机等。由此可见,小缸径多缸柴油机的市场前景还是很客观的。 四缸柴油机主要应用于中型轮式拖拉机、中型联合收割机、中型工程机械、轻型汽车等的配套。随着人们对柴油机认识的逐步转变,柴油机的应用领域也在不断地扩大。柴油机热效率高,能量利用率高,节能等特点也得到认可。柴油机的供油系统相对简单,柴油机的可靠性也比汽油机好。在相同的功率情况下,柴油机的低速扭矩性较好,功率大,完全符合农用机械的使用要求。 随着电喷、高压共轨、增压中冷等先进技术的应用,柴油机的燃烧不断得到改善,在节能和有害物的排放方面的优势已逐渐显现出来。现代柴油机随着强化程度的提高,柴油机单位功率的比重也明显降低,轻量化、高速化、低油耗、低噪音和低排放成为现代柴油机的发展方向 曲轴是发动机中最重要的零件之一,发动机的全部功率都是通过它输出的。而且曲轴是在不断周期性变化的力、力矩(包括扭矩和弯矩)的共同作用下工作的,极易产生疲劳破坏。曲轴形状复杂,应力集中严重,因此设计中必须使曲轴有足够的疲劳强度,以保证正常工作。 曲轴是柴油发动机的重要零件。它可以是有若干个相互错开一定角度的曲柄(或曲拐)加上功率输出端和自由端构成的。每个曲柄又

相关文档
最新文档