八年级数学 分式与分式计算
北师大版八年级数学下册 第五章 分式与分式方程 5.2 分式的乘除法 教案

数学八年级下北师大版第五章第二节《分式的乘除法》教学设计一、内容分析1. 教材的地位及作用本节课为北师大版数学教材八年级下册第五章《分式与分式方程》第二节《分式的乘除法》的内容,本节课是学生初中阶段代数部分学习的一个重要内容.在知识的联系上,本节是在学习了分式基本性质、分式的约分和因式分解的基础上,进一步学习分式的乘除法;另一方面,又为学习分式加减法和分式方程等知识奠定了基础.在能力的培养上,学生的运算能力和逻辑思维能力得到了发展和提高.在数学思想方法上,本节课是培养学生类比的一个好素材,同时培养了学生的探索精神和用数学的意识.2. 学情分析(1)从心理学的分析来说,初二学生处于逻辑抽象的起点,思维发展的转折点,表现从经验型思维向理论型思维转化的特点.他们身心发展较快,对事物发展的好奇心强,有一定的求知欲,需要我们不断引导.(2)经过七年级的学习,学生已经具备了一定的知识储备知识技能和良好的数学学习习惯,并且学生已经学习分式基本性质、分式的约分和因式分解,通过与分数的乘除法类比,促进知识的正迁移.(3)八年级的学生接受能力、思维能力、自我控制能力都有很大变化和提高,自学能力较强,通过类比学习加快知识的学习.3. 教学目标(1)知识技能:理解分式的乘除运算法则;会进行简单的分式的乘除法运算.(2)数学思考:经历探索分式的乘除法法则的过程,让学生熟悉“数、式通性”“类比、转化”的数学思想方法,感知数学知识具有普遍的联系性.(3)问题解决:会用分式乘除法法则进行分式乘除法运算,并能解决简单的实际问题,增强应用意识,提高实践能力.(4)情感态度:通过师生观察、猜想、讨论、交流、归纳,培养学生合作探究的意识和能力,同时增强学生的创新意识和应用意识,使学生体验在数学学习活动中探索与创造的乐趣,了解数学的价值,同时化简分式的最简结果也让学生感受到数学的简洁美.4.教学重点难点重点:分式乘除法的法则及应用.难点:分子分母是多项式的分式的乘除法运算.二、教法学法1. 教法分析教育的本质在于引导的艺术,为了充分调动学生学习的积极性,培养学生的运算能力,使本节课教学丰富有效,本课的教法为:在教师的引导下学生经历“类比分数――观察猜想――归纳明晰――理解应用”的活动过程,体会知识的形成和应用,感受学习过程中数学方法的渗透.采用ppt辅助课堂教学,直观呈现教学素材,激发学生的学习兴趣,提高学习效率,体验在数学学习活动中探索的乐趣,体会数学的应用价值.2. 学法指导学习过程中,充分引导学生积极思维,让每个学生都动口、动手、动脑,让学生在自主探索、合作交流中加深理解分式的乘除运算,充分发挥学生学习的主动性.三、教学过程环节过程设计学生活动教师活动设计意图情境引入请你来帮忙!同学们,请你们来帮助老师算一算老师在火星上的体重是变重了还是变轻了?学生积极运算并回答.教师根据学生的回答板书算式:162738239183291=⨯⨯=⨯该问题的提出,立刻给课堂注入活力,极大的激发了学生的学习兴趣,同时引出分数的乘除法,为后面类比得到分式的乘除法做好准备,同时数学的应用价值也得以体现.探究新知1.复习分数的乘法法则162738239183291=⨯⨯=⨯叙述法则并填空:两个分数相乘, 把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;2.复习分数的除法法则学生独立运算,回忆并能够语言描述分数的乘除法法则.通过引例得到分数乘法算式,启发引导学生依据算理回顾分数乘法法则.以同样思路复习回顾分数的除法法则.分数的除法运算关键在与将除法运算转化3364823913829183291=⨯⨯=⋅=÷ 叙述法则:两个分数相除, 把除式的分子分母颠倒位置后,再与被除式相乘. 3. 类比得分式的乘法法则归纳分式的乘法法则:两个分式相乘, 把分子相乘的积作为积的分子,把分母相乘的积作为积的分母; 4. 类比得分式的除法法则归纳分式的乘法法则:两个分式相除, 把除式的分子分母颠倒位置后再与被除式相乘. 5.分式乘法拓展-分式乘方:n na ba b 与n⎪⎪⎭⎫ ⎝⎛有什么关系? 分析:教师引导提问,提示学生类比分数的乘除法运算法则.学生全面参与,独立思考,广泛交流,自主归纳出法则.学生思考并解答,教师为乘法运算,体现转化思想.类比分数的乘除法法则得到分式的乘除法则,由学生自己尝试探索猜想、归纳总结,把课堂还给学生,激发学生自主学习的积极性.探索的过程体现了从特殊到一般的思想方法,符合学生的认知规律,易于学生理解、接受,同时培养学生观察分析、猜想、归纳的能力,及有条理的思维和表达的能力.该问题是分式乘法的延伸,即分式的乘方.学生应理解其推导过程,明确算理,同时也是对乘法法则的深入理解.a b a b a b a b a b ⋅⋅⋅⋅⋅=⎪⎪⎭⎫ ⎝⎛n(乘方的意义) a a a a bb b b ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=(分式乘法法则)nn a b =(乘方的意义)强调:1. 分式乘除法运算的根据是分式乘除法法则,实质是分式约分,而分式约分的根据是分式的基本性质;2. 当分式的分子分母中有多项式时,先分解因式,再进行乘除运算;3. 分式乘除的最后结果要化成最简分式或整式. 点拨思路.应用新知典例分析 例1 计算:223a 2y 4y 3a )1(⋅ x 6y(2)3xy 22÷ 例2 计算: a 2a 12-a 2a (1)2+⋅+ 4a 1a 44a -a 1-a (2)222--÷+ 教师点拨: 1.分式乘除法运算的根据是分式乘除法法则,实质是分式约分,而分式约分的根据是分式的基本性质.2.当分式的分子分母中有多项式时,先分解因式,再进行乘除运算.3.分式乘除的最后结果要化成最简分式或整式.明确算理,准确运算,结果最简 教师示范例1第(1)题,一位学生板演第(2)题,教师巡视并及时评价. 学生完成后教师点评. 教师示范例2第(1)题,一位学生板演第(2)题,教师巡视批改,学生完成后,全班讲评,明确步骤算理.例1设计的这两道题都是分子分母为单项式的分式乘除法运算,解题过程中,使学生会根据法则,体会并理解每一步的算理,从而进行简单的分式的乘除法运算,达到突破重点的目的.例2设计的这两道题是分子、分母为多单项式的分式乘除法则的运用,通过学生板演,和学生一起详细分析,提醒学生关注易错易漏的环节,学会解题的方法,从而使难点迎刃而解. 两个例题是将课本例题做重新整合编排,学习内容由简至难,符合学生的认知规律,根据学情合理使用教材,使例题具有针对性和有效性.反馈练习A组2abba)1(⋅1-aa)a-a((2)2÷22yx-1y1(3)÷-xxx3x4x96x-x2x(4)2222--÷++B组购买西瓜时,人们总希望西瓜瓤占整个西瓜的比例越大越好. 假如我们把西瓜都看成球形,并且西瓜瓤的分布是均匀的, 西瓜的皮厚都是d .已知球体的体积公式为334RVπ=(其中R为球的半径),那么(1) 西瓜瓤与西瓜的体积各是多少?(2) 西瓜瓤与西瓜的体积的比是多少?(3) 买大西瓜合算还是买小西瓜合算?四位学生板演,其他学生在练习本上独立完成.做完后教师讲评,同桌交换批改,举手看正答情况.教师巡视,了解学生的作答情况,及时评价.学生先猜测结果,认真审题后,结合问题完成讨论.第3小题若课堂时间不够,可留作课下思考题,下节课再讨论.A组四道题目紧扣课本,是对例题中的各个类型题目的巩固练习,第三小题改编自课本习题,遇到分式的分子或分母符号为负数时,可将负号提出后放在分式的前面,便于计算,这也是学生的易错点,则要通过练习加以巩固.四位学生板演既是对这几个学生知识掌握情况的了解,也是以此估计全班学习情况的手段,了解学生知识技能的掌握情况,检查教学目标完成效果.B组通过实例进一步丰富分式乘除运算的实际背景,增强学生的代数推理能力与应用意识.一开始设问“买大西瓜划算还是买小西瓜划算”,引起学生质疑和兴趣,引出计算体积,再与学生共同讨论分析后,根据三个问题的设问层层递进,降低问题的难度,得以顺利解决.此题一方面巩固了分式乘除法法则,应用了nnabab=⎪⎪⎭⎫⎝⎛n的关系进行讨论,培养了学生的钻研精神和发散思维,提高了学生的运算能力,培养了学生的应用意识,体现了数学的价值.小结提升 将本节课知识梳理如下:学生回答相互补充,交流,归纳.课堂小结是对整节课的完整概括,框图形成了完整的知识结构,清晰明了.布置作业1.习题 5.3:第1、2、3、4题;2.预习第三节内容.3.你还有什么问题吗?若有,课下可与同学交流.学生课后认真完成.作业的布置巩固了学生对知识的扎实掌握,训练了学生利用有关概念性质解决问题的能力;预习旨在培养了学生良好的学习习惯.提问是有意识的培养学生发现问题、提出问题的能力和创新意识.课后寄语 祝同学们 今天一路奋斗、一路付出、一路坚持;明天一份欢欣、一份成长、一份收获!给学生美好祝愿!四、板书设计5.2 分式的乘除法分式乘除法法则: 例1:(1) 例2:(1)bcad c d b a =⨯bcad c d b a b a =⨯=÷d c (2) (2)。
第二章分式与分式方程单元教学设计(五四制)数学八年级上册

第七节
2.3 分式的加减法3
1.能准确进行分式的混合运算, 体会类比的数学方法.
2.能解决一些简单的实际问题
3.进一步体会分式的模型思想
同步及训练案
按考点复习,做到一讲一练
训练案
第八节
2.3 分式的加减法4
1.能准确进行分式的混合运算, 体会类比的数学方法.
2.能解决一些简单的实际问题
3.进一步体会分式的模型思想.
3练案
按考点复习,做到一讲一练
训练案
第五节
2.3 分式的加减法1
1.掌握同分母分式的加减法运算法则, 能熟练进行同分母分式的
加减运算
2.理解算理, 进一步发展学生的运算能力.
3.能解决一些与分式加减相关的简单的实际问题, 激发学习数
学的热情。
同步及训练案
按考点复习,做到一讲一练
训练案
第六节
2.3 分式的加减法2
1.知道通分、 最简公分母的概念;
2.掌握异分母分式的加减法运算法则, 能熟练进行异分母分式
的加减运算
3.理解算理, 进一步发展学生的运算能力.
4.能解决一些与分式加减相关的简单的实际问题, 激发学习数
学的热情。
同步及训练案
按考点复习,做到一讲一练
学情分析
经过前期的学习,学生初步养成了自主探究意识。一方面,学生己经学习了整式及加减运算和整式的乘除,已经具备了研究分式的基础知识与方法;另一方面,“分式”是“分数”的“代数化”,学生可以通过类比进行分式的学习。另外。在学习本之前,学生已经分两次学习过整式方程(一元一次方程、二元一次方程组),他们对于整式方程特别是一元一次方程的解法及其基本思路已经比较熟悉,分式方程的未知数在分母中,它的解法比以前学过的整式方程复杂。随着问题复杂性的增加,学生需要不断地提高认识问题的水平,这里包括提高对新事物与已热悉的事物之间的联系的认识,这种认识水平的提高,是构建知识体系的过程中不可决少的。
八年级数学上第12章分式和分式方程提分专项分式化简求值的常用方法课冀教

【拓展应用】已知x3=-2y=4z,求分式yx22+-42yxzy++4yz22的值. 解:令x3=-2y=4z=a(a≠0), ∴x=3a,y=-2a,z=4a,
∴原式=((yx+-2yz))22=([3-a-2a(+-2×2a4)a)]22=2356aa22=2356.
2.(1)已知 x2-3x+2=0,求xx2+-1x·x2-x2- 2x+1 1+xx2-+146÷1x的值; 解:xx2+-1x·x2-x2-2x1+1+xx2-+146÷1x
=x(xx+-11)·(x+(1x)-(1)x-2 1)+(x+4)x+(4x-4)·x =x+x2-4x=x2-3x. ∵x2-3x+2=0,∴x2-3x=-2,∴原式=x2-3x=-2.
(2)已知1x-1y=3,求3xx- -52xxyy- -3yy的值; 解:∵1x-1y=3,∴y-xyx=3,即 x-y=-3xy. ∴3xx- -52xxyy- -3yy=3(xx--yy-)2-xy5xy=- -93xxyy- -52xxyy=--154xxyy=154.
第12章 分式和分式方程
提分专项(二) 分式化简求值的常用方法
1 见习题 2 见习题 3 见习题
提示:点击 进入习题
答案显示
1.【提出问题】已知x4=3y=2z,求分式xxy2+-yy2z的值.
【解决问题】设x4=3y=2z=k(k≠0),则 x=4k,y=3k,z= 2k2,5 将它们代入xxy2+-yy2z中并化简,可得分式xxy2+-yy2z的值为 ___6_____.
提分专项 1、书籍是朋友,虽然没有热情,但是非常忠实。2022年3月11日星期五2022/3/112022/3/112022/3/11
2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于 独立思考的人,给那些具有锲而不舍的人。2022年3月2022/3/112022/3/112022/3/113/11/2022 3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022/3/112022/3/11March 11, 2022 4、享受阅读快乐,提高生活质量。2022/3/112022/3/112022/3/112022/3/11
2021秋八年级数学上册第二章分式与分式方程2、4分式方程第3课时分式方程的应用鲁教版五四制

5×20×(1+20%)×2
4y00+2
400·(10-2)=24
000.
解得 y=480.
经检验,y=480 是原方程的根,且符合题意.
故原计划安排的工人人数为 480 人.
11.【 中考·日照】某市为创建全国文明城市,开展 “美化绿化城市”活动,计划经过若干年使城区 绿化总面积新增360万平方米.该项活动自 2013年初开始实施后,实际每年绿化面积是原 计划的1.6倍,这样可提前4年完成任务.
解:问题1 设A型“小黄车”的成本单价为x元,则B型“小黄车” 的成本单价为(x+100)元,依题意得50x+50(x+ 100)=25 000. 解得x=200.∴x+100=300. 故A,B两种型号“小黄车”的成本单价分别是200 元和300元.
问题 2:投放方式 该公司决定采取如下投放方式:甲街区每 1 000 人 投放 a 辆“小黄车”,乙街区每 1 000 人投放8a+a240 辆“小黄车”,按照这种投放方式,甲街区共投放 1 500 辆,乙街区共投放 1 200 辆,如果两个街区共 有 15 万人,试求 a 的值.
(1)甲、乙两种货车每辆可装多少件帐篷?
解:设甲种货车每辆车可装 x 件帐篷,乙种货车每辆 车可装 y 件帐篷,依题意有x1=0x0y0+=2800y,0, 解得xy==8100.0,经检验,xy==81000,是原方程组的解,且 符合实际.故甲种货车每辆车可装 100 件帐篷,乙种 货车每辆车可装 80 件帐篷.
(2)该同学打算用自己的100元压岁钱购买这种笔 和本子,计划100元刚好用完,并且笔和本子 都买,请列出所有购买方案.
解:设恰好用 100 元可购买这种笔 m 支,购买这种本子 n 本,由题意得 10m+6n=100,整理得 m=10-35n. ∵m,n 都是正整数,∴n=5 时,m=7;n=10 时,m =4;n=15,m=1.∴有三种方案: ①购买这种笔 7 支,购买这种本子 5 本; ②购买这种笔 4 支,购买这种本子 10 本; ③购买这种笔 1 支,购买这种本子 15 本.
北师大版八年级数学下册第五章分式与分式方程

八下第 五 章 分式与分式方程专题复习【本章知识框架】一、 认识分式1、定义:A 、B 表示两个整式,且B 中含有字母,则把B A 称为分式。
例如:a b 2,-x x -+41x xy2、性质:分子和分母同时乘以或除以一个不为0的整式,分式的值不变,数学语言:a b =m a m b⋅⋅(m )0≠,a b =m a m b ÷÷(m )0≠※ 约分:(1)定义:把一个分式的分子和分母的公因式约去,这种变形称为约分。
(2)约分的关键:提取公因式(当分子分母为多项式时先分解因式)3、运算:(1)乘除法:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘(2)加减法:同分母的分式相加减,分母不变,把分子相加减。
异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算(通分,找最小公倍数,当分母为多项式时先分解因式)运算结果形式化成最简分数,分子一定要展开,分母不作要求4、经典题型解法:a 、有无意义:分式有意义的条件:分母不为0分式无意义的条件:分母为0分式值为0的条件:分子为0B 、平方法、换元法、整体代入法、倒数法二、分式方程1、定义:分母中含有未知数的方程2、解法:a 、转化法:将分式方程转化为整式方程。
检验:将所得的根代入最简分母,分母为0,则为增根B 、换元法:主要使方程形式简化3、题型解法:方程有增根: 增根必满足(1)满足化解后的整式方程(2)使分母为零方程无解: 无解必满足 (1)整式方程无解(2)有界但为增根4、实际问题:尽量少设元【本章经典错题再现(10~15道)】选择题1、 若分式112--X X 的值为0,则x 的值为( )A, -1 B, 0 C, 1 D, 1±2、下列分式最简分式是( )A 、1212+-X X B 、121-+X X C 、-XY X Y XY X -+-2222 D 、122362+-X X 3、已知311=-Y X ,则代数YXY X Y XY X ---+232的值为( ) A 、-27 B 、-211 C 、29 D 、43 4、在正数范围内定义一种运算 *,其规则为a *b=ba 11+,根据这个规则X *(X+1)=23的解为( ) A 、 X=32 B 、X=1 C 、X=-32或1 D 、X=32或-1 填空题1、 当X 为_______,分式622||-+-x x x 的值为零 2、 若分式aa ++13的值为正,则a 的取值范围______________ 3、 不论X 取何值,分式M X X +-221总有意义,则M 的取值范围 解答题1、解方程(1)22-x x =1-x -21 (2)3-x x -621-x =21(3) 42-x x +22+x =x x x 2222-- (4)x x 22+-22-+x x =xx x 2222--4、 计算题:(1) (-3)2b a ÷(2322)b a3、分式化简求值(1)122-x -X ÷12222+++X X X +11-X ,其中X=2(2) (ba b a ba bab a +---++22222)÷b a b a -+,其中a=-2,b=3(3) 若分式2521-n ,51+n 的最简公分母为11.求n 的值 4、应用题(1)某水果店搞促销活动,对某种水果打8折出售,若用60元钱买这种水果,可以比打折前多买3斤,求该种水果打折前的单价是多少?(2)某市为绿化环境计划植树2400棵,实际劳动中每天植树的数量比原计划多20%,结果提前8天完成任务,则原计划每天植树多少【本章巩固练习(10~15道)】选择题1、当x 为任意实数时,下列分式一定有意义( )2、A, 21XX + B, 121+-X X C, 121+-X X D, 1||1-+X X 2、若解分式方程X X m X X ++-+2112=X X 1+产生增根,则m 的值是( ) A 、 -1或者-2 B 、 -1或者2 C 、 1或者2 D 、 1或者-23、若Y a YX 2-X 2a 22-÷aYaX Y X ++2)(的值为5,则a 的值是(A 、 5B 、 -5C 、51D 、-51 4、已知X+Y=43.X-Y=3,则(Y X XY Y X -+-4)(Y X XY Y X +-+4)的值是( ) A 、 48 B 、23 C 、16 D 、12填空题1、 当m 为___________时,关于x 的方程234222+=-+-X X mX X 无解 2、 当K 为 时,分式方程XX X K X X 5)1(216-++=-有增根。
初二数学分式计算

初二数学分式计算初二数学(下): 分式的运算及分式方程一、基本运算1.计算 $17x^2y-9ab^3\div\frac{222x-6x+9x+2xy}{51xy}$,化简得 $\frac{17x^2y-9ab^3}{222x+2xy}$。
2.计算 $\frac{2}{x-4}-\frac{x}{x-3}\div(-x)$,化简得$\frac{2x-7}{(x-4)(x-3)}$。
3.计算 $\frac{-y}{xz}\div\frac{-x}{yz}$,化简得$\frac{y^2}{x^2}$。
4.计算 $\frac{24}{a-bab-a^2}\div\frac{22}{4a+abab-a}$,化简得 $\frac{12}{a+b}$。
5.计算 $\frac{4x^2-4xy+y^2}{2x-y}\div(4x^2-y^2)$,化简得 $\frac{1}{2x+y}$。
6.计算 $\frac{2x-y}{x+3y}\div\frac{2x-3y}{2-x}$,化简得$\frac{2-x}{3y}$。
7.计算 $\frac{2xy}{xy+a}+\frac{6}{a}-\frac{a}{a+3}-\frac{3}{a}$,化简得 $\frac{8xy+6a}{a(a+3)(xy+a)}$。
8.计算 $\frac{2}{2x+y}-\frac{x}{x-y}+\frac{y}{x+y}-\frac{y}{x}$,化简得$\frac{2x^2-xy-2y^2}{(2x+y)(x-y)(x+y)}$。
9.计算 $\frac{2}{x+y}-\frac{2}{x-y}+\frac{a}{x+y}-\frac{3a}{a-3}$,化简得$\frac{-2x+2y+4a}{(x+y)(x-y)(a-3)}$。
10.计算$\frac{x^2a^2+3a+12b^2}{1+12a-b}-(x-1)\div(a-1)$,化简得$\frac{x^2a^2+15a+12b^2-12bx+12b}{(1+12a-b)(a-1)}$。
八年级数学上册 第十五章《分式》15.2 分式的运算 15.2.1 分式的乘除 15.2.1.1 分

15.2分式的运算15.2.1分式的乘除第1课时分式的乘除◇教学目标◇【知识与技能】理解并掌握分式的乘除法那么,运用法那么进展运算,能解决一些与分式有关的实际问题.【过程与方法】经历从分数的乘除法运算到分式的乘除法运算的过程,培养学生类比的探究能力,加深对从特殊到一般数学的思想认识.【情感、态度与价值观】通过让学生在自主探究,合作交流中渗透类比转化的思想,使学生感受探索的乐趣和成功的体验.◇教学重难点◇【教学重点】掌握分式的乘除运算.【教学难点】分子、分母为多项式的分式乘除法运算.◇教学过程◇一、情境导入观察以下运算:.猜一猜=?=?二、合作探究探究点1分式的乘法典例1化简分式的结果是()A. B. C. D.[解析]进展分式乘除法运算时,先约分,再化简即可..[答案] B变式训练计算的结果是()A.-1B.0[解析]原式==1.[答案] C探究点2分式的除法典例2化简的结果是()A.a2B.C. D.[解析]先将分子因式分解,再将除法转化为乘法后约分即可.原式=.[答案] D变式训练计算:,其结果正确的选项是()A. B.C. D.[答案] D探究点3分式乘除混合运算典例3计算的结果是()A. B.-C. D.-[解析]先将除法转化为乘法,再根据分式的乘法法那么计算、约分即可.=-.[答案] B【技巧点拨】做分式乘除混合运算时,一般是先统一为乘法运算,所以分式乘除法的运算,归根到底是乘法的运算,运算的最后结果是最简分式或整式.计算÷(y-x)·.[解析]÷(y-x)·.三、板书设计分式的乘除分式的乘除◇教学反思◇在分式的乘除法这一课的教学中,仍然采用类比的方法,让学生回忆以前学过的分数的乘除法的运算方法,提示学生分式的乘除法法那么与分数的乘除法法那么类似,要求他们用语言描述分式的乘除法法那么.学生反响较好,能根本上完整地讲出分式的乘除法法那么;要让学生明确分式乘除运算的结果是最简分式或整式,最后的结果是要化简的.如有侵权请联系告知删除,感谢你们的配合!。
八年级数学分式和分式方程易错题精选附答案

分式和分式方程易错题精选第1节 分式一、分式的概念和性质易错点:忽略分母不为零的条件1、若分式242+-x x 的值等于0,则x 的值为( )A .-2或2B .2C .-2D .02、若分式2)1(3-+x x 的值为正数,则x 的取值范围是_____________.3、【变式1】当x=2时,分式mx kx +-的值为0,则k 和m 必须满足的条件是_______________.4、【变式2x )1)(3(||26-+-x x x 】当取何值时,分式的值为0?5、【变式3】当x 取何值时,分式22||+-x x 满足下列要求:(1)有意义; (2)无意义; (3)值为0.6、【变式4】若分式23xx -的值为负数,则x 的取值范围是_________. 参考答案 1、B2、13≠->x x 且3、2=k ,2-≠m4、3=x5、(1)2-≠x ;(2)2-=x ;(3)2=x6、03≠<x x 且易错点:分式基本性质理解不全面1、下列从左到右的变形正确的是__________(填序号).①ab a b a 2=;②2a ab b a =;③babc ac =;④)1()1(22++=x b x a b a ;2、【变式1】下列从左到右的变形正确的是( )A .)1()1(22--=x b x a b aB .11++=b a b a C .)2)(3(231+-+=-x x x x D .31)2)(3(2-=+-+x x x x 参考答案 1、③④ 2、D二、约分易错点:不理解约分的条件1、约分:ababa 222+2、【变式1】约分:x xxy 392-3、【变式2】约分:yxy x 392+-参考答案1、b b a 22+2、392-y3、y x 3-三、通分易错点:找最简公分母就直接乘1、下列各题中,所求最简公分母正确的是( )A .x 31和261x 的最简公分母是218xB .c b a b a 32326121与的最简公分母是c b a 326C .42121-x x 与的最简公分母是)42(2-x xD .11112-+a a 与的最简公分母是)1)(1(2-+a a 参考答案 1、B易错点:不会处理分母中互为相反数的项1、下列各题中,所求最简公分母正确的是( )A .11-m 与m -11的最简公分母是2)1(--mB .)(1y x a -与)(1x y b -的最简公分母是))((x y y x ab --C .n m -1与n m +1的最简公分母是))((n m n m +-D .b a -1与a b -1的最简公分母是b a -参考答案 1、CD第2节 分式的运算一、分式的乘除易错点:没考虑到除数不能为零1、使2132-+÷-+x x x x 有意义的条件是________. 2、【变式1】先化简:222)2(3443-+÷+-+x xx x x x ,然后为x 选取一个合适的数代入求值. 3、【变式2】先化简,再求值:)11()1541(2aa a a a a --÷---+,其中a 从-2,0,1,2中选一个你喜欢的数代入求值.参考答案1、1-≠x 且2≠x 且3≠x2、x 1,只要x 不取0,-3和2,取其它数都可以.3、)2(-a a ,当a 取0,1,2时分母或除数为0,原只能a=-2,原式=8. 易错点:被诱导弄错运算顺序 1、计算:)1(11-⋅-÷x x x2、【变式1】计算:)1(3)1(+⋅+÷x x x3、【变式2】计算:)(1)(1)(122222n m n m n m -÷-÷+ 4、【变式3】计算:yx x x y x y x +⋅+÷+)( 参考答案1、x x x +-2322、1232++x x x3、222n mn m +-4、y x x +2 二、分式的加减 易错点:忽视分式中的隐藏括号 1、计算:xyy x xy x +--22、【变式1】计算:y x yx x y x y x 2222+---++参考答案 1、2--y2、1易错点:整式与分式加减时添括号出错1、计算:2a ab a b --- 2、【变式1】计算:x y y x y +-- 3、【变式2】阅读下列计算过程,回答问题: 1121121)1(1)1(111 222222++=+++-=++-+=+-+=+-+x x x x x x x x x x x x x x x x (1)以上过程有两处错误,分别在第几行? (2)请写出正确的结果.参考答案1、b a b -22、yx y xy x -+-22223、第二行和第四行有错,正确结果是11+x .三、分式的混合运算 易错点:误以为除法有分配律1、计算:)131(12-+-÷--x x x x 2、计算:24)22(-÷+--x x x x x x 3、【变式1】计算:)1(1x x x x -÷- 4、【变式2】计算:12)131(--÷--+x xx x 参考答案1、4222+--x x x2、21+x3、11+x4、2--x 四、整数指数幂易错点:负整数指数幂概念不清 1、下列各式计算正确的有__________(填序号).①3)3(1=--;②2233-=-;③2231)31(=--;④169)34(2=--;④1)14.3(0=-π;⑥823-=- 2、【变式1】计算:222)21(22---+3、【变式2】计算:102)31()4(2--+-+-π参考答案 1、④④2、41 3、-6第3节 分式方程易错点:去分母时漏乘没有分母的项1、解方程:yy y y 13112-=+- 2、【变式1】解方程:1213-+=+x x x 3、【变式2】解方程:12324+-=-xx x参考答案1、31=y2、53-=x3、35-=x易错点:分式方程忘记检验1、解方程:)2)(1(311-+=-+x x x x 2、【变式1】解方程:3911332-=-+x x x参考答案 1、无解 2、无解易错点:考虑问题不全面1、若关于x 的分式方程3222=-+-+xmx m x 的解为正实数,则实数m 的取值范围是__________.2、【变式1】若关于x 的分式方程3122=--x a x 的解为非负数,则实数a 的取值范围是__________.3、【变式2】若关于x 的分式方程xkx --=+-21221的解为正实数,则实数k 的取值范围是__________.4、【变式3】若关于x 的分式方程211=---x nx x 的解为非正实数,则实数n 的取值范围是__________. 参考答案1、26≠<m m 且2、432≠≥a a 且3、22≠->k k 且4、2≥n易错点:分不清分式方程无解和有增根 1、若关于x 的分式方程011=--x x m 有增根,则m 的值为_________. 2、若关于x 的分式方程011=--x x m 无解,则m 的值为_________.3、【变式1】若关于x 的分式方程454-+=-x ax x 有增根,则a 的值为_________. 4、【变式2】若关于x 的分式方程131212-=--+x x x m 有增根,则m 的值为_________. 5、【变式3】若关于x 的分式方程x x x m 2132=--+无解,则m 的值为_________.6、【变式4】若关于x 的分式方程2)2(321x ax x --=-无解,则a 的值为_________. 7、【变式5】若关于x 的分式方程332+-=++x kx x 无解,则k 的值为_________. 参考答案 1、0 2、0或1 3、44、23-5、21-或23-6、1或237、1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学:分式和分式的计算
一.填空题:
1、分式的定义是
2、x 时,分式42-x x 无意义; 当x 时,分式122
3+-x x 有意义;
3、当x= 时,分式2
152x x --的值为零;当x 时,分式x
x --11
2的值等于零.
二.选择题:
1.在31x+21y, xy 1 ,a +51 ,—4xy , 2x
x , πx
中,分式的个数有( )
A 、1个
B 、2个
C 、3个
D 、4个 2.如果把
y
x y
322-中的x 和y 都扩大5倍,那么分式的值( )
A 、扩大5倍
B 、不变
C 、缩小5倍
D 、扩大4倍
3.下列各式:()x
x x x y x x x 2
225
,1,2 ,34 ,151+---π其中分式共有( )个。
A 、2 B 、3 C 、4 D 、5
4.下列判断中,正确的是( )
A 、分式的分子中一定含有字母
B 、当B=0时,分式B
A
无意义
C 、当A=0时,分式B
A
的值为0(A 、B 为整式) D 、分数一定是分式
5.下列各式正确的是( )
A 、11++=++b a x b x a
B 、22x y x y =
C 、()0,≠=a ma na m n
D 、a
m a
n m n --=
6.下列各分式中,最简分式是( )
A 、()()y x y x +-8534
B 、y x x y +-22
C 、2222xy y x y x ++
D 、()
222y x y x +- 7.下列约分正确的是( ) A 、
313m m m +=+ B 、212y x y x -=-+ C 、1
23369+=
+a b
a b D 、()()y x a b y b a x =-- 8.下列约分正确的是( )
A 、3
26x x
x = B 、0=++y x y x C 、x xy x y x 12
=++ D 、214222=y x xy 9.下列分式中,计算正确的是( )
A 、32)(3)(2+=+++a c b a c b
B 、b
a b a b a +=
++1
22 C 、1)()(22-=+-b a b a D 、x y y x xy y x -=---1222
10.若把分式
xy
y
x 2+中的x 和y 都扩大3倍,那么分式的值( ) A 、扩大3倍 B 、不变 C 、缩小3倍 D 、缩小6倍
11、下列分式a
bc 1215,a b b a --2
)(3,)(222b a b a ++,b a b a +-22中最简分式的个数是( ).
A.1
B.2
C.3
D.4
三.化简求值:
1、3234)1(x y y x ∙ x y xy 22
63)3(÷
a a a a 21
22)2(2
+⋅-+ 4
1441)4(222--÷+--a a a a a 2、①x y x y x y -+- ②a a a 31211++ ③4
)223(2
-÷+-+x x
x x x x
④44212-+-m m ⑤4
23)231(--÷
--m m
m ⑥2222x xy y xy xy y x ----
⑦224+--a a ⑧112+-+x x x ⑨1)111(-÷-+-a a a a a ⑩1
1
12112--
+--x x x
四、化简求值:
1、m
m -+-329122
2、a+2-a -24
3、2
2221106532x y x y y x ÷⋅ 4、ac
a
c bc c b ab b a -+-++
5、22224421y xy x y x y x y x ++-÷+--
6、224
)2222(x
x x x x x -⋅-+-+- 7、262--x x ÷ 443
2+--x x x 8、 1⎪⎭⎫ ⎝
⎛⋅÷
÷a b b a b a 324923 9、m n n
n m m m n n m -+-+--2 10、1
111-÷⎪
⎭⎫ ⎝⎛--x x x
11、(﹣)÷
12、(
22+-
-x x x x )2
4-÷x x
;
13.⎪⎪⎭⎫ ⎝
⎛++÷--ab b a b a b a 22222 14.⎪⎭⎫
⎝⎛--+÷--13112x x x x 。
15..()
2
211n m m n m n -⋅⎪⎭
⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛+; 16.168422+--x x x x ,其中x =5.
17、已知2
1)2)(1(12++
-=+-+x B
x A x x x ,求A. B 的值。
18.先化简,再求值2
2
)11(y
xy y x y y x -÷-++,其中2-=x ,1=y .
19.3,3
2
,1)()2(2
22222-==+--+÷+---b a b a a b a a b ab a a b a a 其中。