五年级奥数牛吃草习题含答案

合集下载

小学奥数牛吃草习题有答案

小学奥数牛吃草习题有答案

小学奥数牛吃草习题5、牧场上一片匀速生长的草地,可供27头牛吃6周,或供23头牛吃9周,那么它可供21头牛6、一只船有一个漏洞,水以均匀的速度进入船内,发现漏洞时已经进入一些水,如果用12个人舀水,3小时可以舀完,如果只有5个人舀水,要10小时才能舀完,现在要2小时舀完,需要多少人7、一水井原有水量一定,河水每天均匀入库,5台抽水机连续20天可以抽干,6台同样的抽水机连续15天可以抽干,若要求6天抽干,需要多少台同样的抽水机8一个水池安装有排水量相等的排水管若干根,一根进水管不断往池里放水,平均每分钟进水量相等,如果开放三根排水管,45分钟可把池中水放完;如果开放5根排水管,25分钟可把池中水放完;如果开放8根排水管,几分钟排完水池中的水9、有一酒槽,每天泄漏等量的酒,如让6人饮,则4天喝完;如让4人饮,则5天喝完,若每人的饮酒量相同,问每天的漏酒量为多少10、某火车站的检票口,在检票开始前已有一些人排队,检票开始后每分钟有10人前来排队检票;一个检票口每分钟能让25人检票进站;如果只有一个检票口,检票开始8分钟后就没有人排队;如果两个检票口,那么检票开始后多少分钟就没有人排队11、某游乐场在开门前400人排队等候,开门后每分钟来的人数是固定的,一个入口每分钟可以进10个游客;如果开放4个入口,20分钟就没有人排队;现在开放6个入口,那么开门后多少分钟就没有人排队12、一个大水坑,每分钟从四周流掉四壁渗透一定数量的水;如果用5台水泵,5小时就能抽干水坑的水;如果用10台水泵,3小时就能抽干水坑的水;现在要1小时抽干水坑的水,问要用多少台水泵13、画展9点开门,但早有人排队等候入场;从第一个观众来到时起,每分钟来的观众人数一样多,如果开了3个入场口,9点9分就不再有人排队;如果开5个入场口,9点5分就没人排队,问第一个观众到达的时间是几点几分14、两只蜗牛由于耐不住阳光的照射,从井顶逃向井底;白天往下爬,两只蜗牛白天爬行的速度是不同的,一只每天爬20分米,另一只每天爬15分米;黑夜往下滑,两只蜗牛滑行的速度都是相同的;结果一只蜗牛恰好用5个昼夜到达井底,另一只蜗牛恰好用6个昼夜到达井底;求井深;15、经测算,地球上的资源可供100亿人生活100年或可供80亿人生活300年;假设地球每年新生成的资源是一定的,为了使资源不至减少,地球上最多生活多少人16、自动扶梯以平均速度往上行驶着,两位急性的孩子要从扶梯上梯;已知男孩每秒钟走3级梯级,女孩每妙秒钟走2级梯级;结果男孩用了4秒钟到达梯顶,女孩用了5秒钟到达梯顶,问扶梯共有多少级17、11头牛10天可吃5公顷草地上的草;12头牛14天可吃完6公顷全部牧草;问8公顷草地可供19头牛吃多少天假设每块草地每公顷每天牧草长得一样快4、解:设每头牛每天的吃草量为117头牛30天的吃草量为:17×30=51019头牛24天的吃草量为:19×24=456两种吃法的草量差一定是新生的草的一部分,这部分新生的草对应的时间是两种吃法所用的时间差;每天新生的草量:510-456÷30-24=9原有草量:510-9×30=240经过6+2=8天之后,牧场上原有和新生的草的总量是:240+9×8=312吃草8天的牛共吃的草量:312-4×6=288共有吃8天草的牛:288÷8=36头加上4头死亡的牛,一共有牛:36+4=40头5、解:设每头牛每周的吃草量为127头牛6周的吃草量为:27×6=16223头牛9周的吃草量为:23×9=207两种吃法的草量差一定是新生的草的一部分,这部分新生的草对应的时间是两种吃法所用的时间差;每周新生的草量:207-162÷9-6=15原有草量:162-15×6=72每周新生的草量为15个单位,也就是够15头牛吃的,设想21头牛中15头专吃新生的草,剩下的牛吃原有的草,全部牧场的草供21头牛可吃的周数:72÷21-15=12周6、解:设每人每小时的舀水量为112人3小时舀水量为:12×3=365人10小时舀水量为:5×10=50两种方法的舀水量差一定是新进入的水的一部分,这部分新进入的水对应的时间是两种方法法所用的时间差;每小时新进入的水量:50-36÷10-3=2原有水量:36-2×3=30每小时新进入的水量为2个单位,也就是够2人舀的水量,设想2人专舀新进入的水量,其它人舀原有的水;如果2小时舀完,需用的人数:30÷2+2=17人7、解:设每台抽水机每天的抽水量为15台抽水机20天舀水量为:5×20=1006台抽水机15天舀水量为:6×15=90两种方法的抽水量差一定是新进入的水的一部分,这部分新进入的水对应的时间是两种方法法所用的时间差;每小天新进入的水量:100-90÷20-15=2原有水量:100-2×20=60每天新进入的水量为2个单位,也就是够2台抽水机抽的水量,设想2台抽水机专抽新进入的水量,其它抽水机抽原有的水;如果6天抽干,需要的抽水机数:60÷6+2=12台8、解:设每根排水管每分钟的排水量为13根排水管45分钟的排水量为:3×45=1355根排水管25分钟的排水量为:5×25=125两种方法的排水量差一定是新放入的水的一部分,这部分新进入的水对应的时间是两种方法所用的时间差;每分钟新进入的水量:135-125÷45-25=原有水量:×45=每分钟新放入的水量为个单位,也就是够台抽水机抽的水量也就是2分钟新进入的水量够1根排水管1分钟排的,设想台抽水机专抽新进入的水量,其它抽水机抽原有的水;排完水池中的水,需要:÷=15分钟9、解:设每人每天喝的酒量为16人4天喝的酒量为:6×4=244人5天喝的酒量为:4×5=20两种喝法的酒量差一定是泄漏的酒的一部分,这部分泄漏的酒对应的时间是两种喝法所用的时间差;每天泄漏的酒量:24-20÷5-4=4每天泄漏的酒量为4个单位,也就是够4人喝的酒量10、解:一个检票口8分钟检票进站人数:25×8=200人一个检票口8分钟新增加的排队检票的人数:10×8=80人原有的排队人数:200-80=120人开2个检票口在一分钟内,原有队伍中检完票的人数:25×2-10=40人开2个检票口,需要几分钟检完票:120÷40=3分钟11、解:4个入口20分钟进入的游客数:4×10×20=800人20新增加的排队游客数:800-400=400人每分钟增加的排队游客数:400÷20=20人/分钟6个入口在1分钟内,进入的原有排队游客数:6×10-20=40人6个入口多少分钟后就没有人排队:400÷40=10分钟12、解:设每台水泵每小时的抽水量为15台水泵5小时的抽水量为:5×5=2510台水泵3小时的抽水量为:10×3=30两种方法的抽水量差一定是新流掉水量的一部分,这部分新流掉的水量对应的时间是两种方法所用的时间差;每小时新流掉的水量:30-25÷5-3=原有水量:25+×5=在原有水量里再减去新流掉的水量,才是真正要抽的水量;要1小时抽干,需要的水泵台数:台13、解:每分钟入场的客众量为19分钟3个入口入场的观众量:9×3=275分钟5个入口入场的客众量:5×5=25每分钟新来的客众量:27-25÷9-5=原有观众量:×9=来了个单位的观众量需要多长时间:÷=45分钟第一个观众到达的时间:60-45=15分,8点15分;14、解:第一只蜗牛比第二只蜗牛5个白天共多爬行的距离:20-15×5=25分米第一只蜗牛比第二只蜗牛5个白天共多爬行的距离,正是第二只蜗牛爬行1个白天和滑行一个夜晚的距离,也就是第二只蜗牛行进一昼夜的距离;从井顶到井底第二只蜗牛用了6个昼夜,因此井深为:25×6=150分米15、解:假设每人每年生活需要的资源量为1100亿人生活100年生活需要的资源量为:100×100=1000080亿人生活300年生活需要的资源量为:80×300=24000每年新生成的资源量:24000-10000÷300-100=70使资源不至减少,利用每年新生的资源来满足人们的生活需要,因此地球上最多生活:70÷1=70亿人16、解:男孩到达梯顶多走的梯级数:3×4=12女孩到达梯顶多走的梯级数:2×5=10每秒钟扶梯走的梯级数12-10÷5-4=2梯级数:3+2×4=20男孩走梯级的速度加上扶梯上升的速度才是男孩实际上升的速度,即3+2=5,一秒钟男孩上升了5个梯级,到达梯顶用时是4秒钟,因此扶梯梯级数为20;17、解:设每头牛每天的吃草量为111头牛10天,说明在5公顷草地上总产草量原有草及新生长的草为11×10=110;1公顷草地上产草量是:110÷5=2212头牛14天,说明在6公顷草地上总产草量原有草及新生长的草为12×14=168;1公顷草地上产草量是:168÷6=281公顷草地上新长的草量:28-22÷14-10=1公顷草地上原有的草量:×10=78公顷草地原有草量:7×8=568公顷可供19头牛吃:56÷×8=8天。

(完整版)小学奥数之牛吃草问题(含答案)

(完整版)小学奥数之牛吃草问题(含答案)

“牛吃草问题就是追及问题,牛吃草问题就是工程问题。

”英国大数学家牛顿曾编过这样一道数学题:牧场上有一片青草,每天都生长得一样快。

这片青草供给10头牛吃,可以吃22天,或者供给16头牛吃,可以吃10天,如果供给25头牛吃,可以吃几天?解题关键:牛顿问题,俗称“牛吃草问题”,牛每天吃草,草每天在不断均匀生长。

解题环节主要有四步:1、求出每天长草量;2、求出牧场原有草量;3、求出每天实际消耗原有草量4、最后求出可吃天数想:这片草地天天以同样的速度生长是分析问题的难点。

把10头牛22天吃的总量与16头牛10天吃的总量相比较,得到的10×22-16×10=60,是60头牛一天吃的草,平均分到(22-10)天里,便知是5头牛一天吃的草,也就是每天新长出的草。

求出了这个条件,把25头牛分成两部分来研究,用5头吃掉新长出的草,用20头吃掉原有的草,即可求出25头牛吃的天数。

解:新长出的草供几头牛吃1天:(10×22-16×1O)÷(22-1O)=(220-160)÷12=60÷12=5(头)这片草供25头牛吃的天数:(10-5)×22÷(25-5)=5×22÷20=5.5(天)答:供25头牛可以吃5.5天。

----------------------------------------------------------------“一堆草可供10头牛吃3天,这堆草可供6头牛吃几天?”这道题太简单了,一下就可求出:3×10÷6=5(天)。

如果我们把“一堆草”换成“一片正在生长的草地”,问题就不那么简单了,因为草每天都在生长,草的数量在不断变化。

这类工作总量不固定(均匀变化)的问题就是牛吃草问题。

例1 牧场上一片青草,每天牧草都匀速生长。

这片牧草可供10头牛吃20天,或者可供15头牛吃10天。

小学奥数牛吃草习题-(有答案)

小学奥数牛吃草习题-(有答案)

小学奥数牛吃草习题-(有答案)5、牧场上一片匀速生长的草地,可供27头牛吃6周,或供23头牛吃9周,那么它可供21头牛?6、一只船有一个漏洞,水以均匀的速度进入船内,发现漏洞时已经进入一些水,如果用12个人舀水,3小时可以舀完,如果只有5个人舀水,要10小时才能舀完,现在要2小时舀完,需要多少人?7、一水井原有水量一定,河水每天均匀入库,5台抽水机连续20天可以抽干,6台同样的抽水机连续15天可以抽干,若要求6天抽干,需要多少台同样的抽水机?8一个水池安装有排水量相等的排水管若干根,一根进水管不断往池里放水,平均每分钟进水量相等,如果开放三根排水管,45分钟可把池中水放完。

如果开放5根排水管,25分钟可把池中水放完。

如果开放8根排水管,几分钟排完水池中的水?9、有一酒槽,每天泄漏等量的酒,如让6人饮,则4天喝完;如让4人饮,则5天喝完,若每人的饮酒量相同,问每天的漏酒量为多少?10、某火车站的检票口,在检票开始前已有一些人排队,检票开始后每分钟有10人前来排队检票。

一个检票口每分钟能让25人检票进站。

如果只有一个检票口,检票开始8分钟后就没有人排队。

如果两个检票口,那么检票开始后多少分钟就没有人排队?11、某游乐场在开门前400人排队等候,开门后每分钟来的人数是固定的,一个入口每分钟可以进10个游客。

如果开放4个入口,20分钟就没有人排队。

现在开放6个入口,那么开门后多少分钟就没有人排队?12、一个大水坑,每分钟从四周流掉【四壁渗透】一定数量的水。

如果用5台水泵,5小时就能抽干水坑的水;如果用10台水泵,3小时就能抽干水坑的水。

现在要1小时抽干水坑的水,问要用多少台水泵?13、画展9点开门,但早有人排队等候入场。

从第一个观众来到时起,每分钟来的观众人数一样多,如果开了3个入场口,9点9分就不再有人排队。

如果开5个入场口,9点5分就没人排队,问第一个观众到达的时间是几点几分?14、两只蜗牛由于耐不住阳光的照射,从井顶逃向井底。

【奥数专题】精编人教版小学数学五年级上册 牛吃草问题(试题)含答案与解析

【奥数专题】精编人教版小学数学五年级上册 牛吃草问题(试题)含答案与解析

经典奥数:牛吃草问题(专项试题)一.填空题(共6小题)1.某牧场上有一片青草,可供27头牛吃6周,或供23头牛吃9周.如果草每周生长速度相同,那么这片青草可供21头牛吃周.2.有一个蓄水池装有9根水管,其中一根为进水管,其余8根是相同的出水管.已知储水池内有一定体积的水,并且进水管正以均匀的速度向这个蓄水池注水,如果8根出水管全部打开,需要3小时把池内的水全部排光;如果打开5根出水管,需要6小时把池内的水全部排光.如果在9小时内把水池中的水全部排光,需要同时打开根出水管.3.一艘轮船发生漏水事故。

当漏进水600桶时,两部抽水机开始排水,甲机每分钟能排水20桶,乙机每分钟能排水16桶,经50分钟刚好将水全部排完。

每分钟漏进的水有桶。

4.有一个酒桶坏了,所以每天匀速往外面流失酒,已知酒桶里面的酒可供7人喝6天,可供5人喝8天.若1人独饮,可以喝天.5.有一片牧场,草每天都在均匀地生长.如果在牧场上放养24头牛,那么6天就把草吃完了;如果只放养21头牛,那么8天才把草吃完、请问:(1)要使得草永远吃不完,最多可以放养头牛;(2)如果放养36头牛,天可以把草吃完.6.李奶奶家有12只鸡蛋和一只每天能下一只鸡蛋的母鸡,如果她家每天要吃3只鸡蛋,那么这些鸡蛋可连续吃天.二.解答题(共15小题)7.某建筑工地开工前运进一批砖,开工后每天运进相同数量的砖,如果派250个工人砌砖墙,6天可以把砖用完,如果派160个工人,10天可以把砖用完,现在派120个工人砌10天后,又增加5个工人一起砌还需要再砌几天可以把砖用完?8.一艘轮船发生漏水事故,立即安装两台抽水机向外抽水,此时已漏进水600桶.一台抽水机每分钟抽水18桶,另一台每分钟抽水14桶,50分钟把水抽完.每分钟漏进的水有多少桶?9.陕北某村有一块草场,假设每天草都均匀生长.这片草场经过测算可供100只羊吃200天,或可供150只羊吃100天.问:如果放牧250只羊可以吃多少天?放牧这么多羊对吗?为防止草场沙化,这片草场最多可以放牧多少只羊?10.经测算,地球上的资源可供100亿人生活100年,或可供80亿人生活300年.假设地球新生成的资源增长速度是一定的,为使人类有不断发展的潜力,地球最多能养活多少亿人?11.有一个蓄水池装有9根水管,其中1根为进水管,其余8根为相同的出水管,开始进水管以均匀的速度不停地向这个蓄水池注水,池内注入一些水后,有人想把出水管也打开,使池内的水再全部排光,如果把8根出水管全部打开,需要3个小时可将池内的水排光;若仅打开3根出水管,则需要18小时才能将池内的水排光.问:如果想要在8小时内将池中的水全部排光,最少要打开几根出水管?12.某地遭遇干旱,政府为解决居民饮水问题,在一眼山泉旁边修了一个蓄水池,每小时有40立方米的水注入水池.当开动5台抽水机时,2.5小时把池水抽完,当开动8台抽水机时,1.5小时把池水抽完,这个蓄水池能容多少立方米水?13.一只船被发现漏水时,已经进了一些水,水均匀进入船内.如果10人淘水,3小时淘完;如果5人淘水,8小时淘完.如果要求2小时淘完,需要安排多少人淘水?14.牧场上有一片牧草,可以供27头牛吃6天,供23头牛吃9天,如果每天牧草生长的速度相同,那么这片牧草可以供21头牛吃几天?15.现在有牛、羊、马吃一块地的草,草均匀生长,牛、马吃需要45天吃完,马、羊吃需要60天吃完,牛、羊吃需要90天吃完,牛、羊一起吃草的速度为马吃草的速度,求马、牛、羊一起吃,需多少时间?16.有一口水井.在无渗水的情况下,甲抽水机用20小时可将水抽完,乙抽水机用12小时可将水抽完.现在甲、乙两台抽水机同时抽,由于有渗水,结果用9小时才将水抽完.在有渗水的情况下,用甲抽水机单独抽需多少小时抽完?17.有100名游客在世界文化历史遗产秦始皇兵马俑博物馆门前排队,开门后每分钟来的游人是相等的,一个入口处平均每分钟可以放进10名游客;如果两个入口处20分钟就可以全部检完票,外面没有人排队了,为了减少游客排队时间,现在开放4个入口处,那么开门后多少分钟就没有人排队了?18.有三块草地,面积分别是5,15,24亩.草地上的草一样厚,而且长得一样快.第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天,问第三块地可供多少头牛吃80天?19.科技馆9点营业,每分钟来的人数相同.如果开5个窗口,则9点5分可无人排队;如果开3个窗口,则9点9分可没有人,求8点几分第一个游客到?20.某快递公司已存在部分快件,但仍有快件不断运来.公司决定用快递专车将快件分给客户(装车时间不计)若用9辆车发货,12小时可运完.若用8辆车发货,16小时可运完.快递公司开始只用了6辆车发货,三小时后增加若干辆车.再经过5小时就运完了,那么后来增加的车辆数应该是多少辆?21.有一池泉水,泉底不断涌出泉水,而且每分钟涌出的泉水一样多.如果用8部抽水机10小时能把全池泉水抽干,如果用12部抽水机6小时能把全池泉水抽干,那么用14部抽水机多少小时能把全池泉水抽干?参考答案与试题解析一.填空题(共6小题)1.【解答】解:假设每头牛每周吃青草1份,青草增加的速度:(23×9﹣27×6)÷(9﹣6),=45÷3,=15(份);原有的草的份数:27×6﹣6×15,=162﹣90,=72(份);可供21头牛吃:72÷(21﹣15),=72÷6,=12(周);答:这个草场的草可供21头牛吃12周.故答案为:12周.2.【解答】解:设每根出水管每小时出水1份,进水管的速度为:(5×6﹣8×3)÷(6﹣3),=6÷3,=2(份);蓄水池内原有的水为:5×6﹣2×6,=30﹣12,=18(份);9小时内把水池中的水全部排光,需要打开出水管的根数是:(18+2×9)÷9,=36÷9,=4(根);答:如果在9小时内把水池中的水全部排光,需要同时打开4根出水管.故答案为:4.3.【解答】解:[(20+16)×50﹣600]÷50=[36×50﹣600]÷50=[1800﹣600]÷50=1200÷50=24(桶)答:每分钟漏进的水有24桶。

五年级数学奥数:牛吃草问题练习及答案【三篇】

五年级数学奥数:牛吃草问题练习及答案【三篇】

【导语】海阔凭你跃,天⾼任你飞。

愿你信⼼满满,尽展聪明才智;妙笔⽣花,谱下锦绣第⼏篇。

学习的敌⼈是⾃⼰的知⾜,要使⾃⼰学⼀点东西,必需从不⾃满开始。

以下是⽆忧考为⼤家整理的《五年级数学奥数:⽜吃草问题练习及答案【三篇】》供您查阅。

【第⼀篇】牧场上⼀⽚青草,每天牧草都匀速⽣长.这⽚牧草可供10头⽜吃20天,或者可供15头⽜吃10天.问:可供25头⽜吃⼏天? 分析:这类题难就难在牧场上草的数量每天都在发⽣变化,我们要想办法从变化当中找到不变的量.总草量可以分为牧场上原有的草和新⽣长出来的草两部分.牧场上原有的草是不变的,新长出的草虽然在变化,因为是匀速⽣长,所以这⽚草地每天新长出的草的数量相同,即每天新长出的草是不变的.即: (1)每天新长出的草量是通过已知的两种不同情况吃掉的总草量的差及吃的天数的差计算出来的. (2)在已知的两种情况中,任选⼀种,假定其中⼏头⽜专吃新长出的草,由剩下的⽜吃原有的草,根据吃的天数可以计算出原有的草量. (3)在所求的问题中,让⼏头⽜专吃新长出的草,其余的⽜吃原有的草,根据原有的草量可以计算出能吃⼏天. 解答:解:设1头⽜1天吃的草为“1“,由条件可知,前后两次青草的问题相差为10×20-15×10=50. 为什么会多出这50呢?这是第⼆次⽐第⼀次多的那(20-10)=10天⽣长出来的,所以每天⽣长的青草为50÷10=5. 现从另⼀个⾓度去理解,这个牧场每天⽣长的青草正好可以满⾜5头⽜吃.由此,我们可以把每次来吃草的⽜分为两组,⼀组是抽出的15头⽜来吃当天长出的青草,另⼀组来吃是原来牧场上的青草,那么在这批⽜开始吃草之前,牧场上有多少青草呢?(10-5)×20=100. 那么:第⼀次吃草量20×10=200,第⼆次吃草量,15×10=150; 每天⽣长草量50÷10=5. 原有草量(10-5)×20=100或200-5×20=100. 25头⽜分两组,5头去吃⽣长的草,其余20头去吃原有的草那么100÷20=5(天). 答:可供25头⽜吃5天. 点评:解题关键是弄清楚已知条件,进⾏对⽐分析,从⽽求出每⽇新长草的数量,再求出草地⾥原有草的数量,进⽽解答题中所求的问题. 这类问题的基本数量关系是: 1、(⽜的头数×吃草较多的天数-⽜头数×吃草较少的天数)÷(吃的较多的天数-吃的较少的天数)=草地每天新长草量. 2、⽜的头数×吃草天数-每天新长量×吃草天数=草地原有的草.【第⼆篇】由于天⽓逐渐冷起来,牧场上的草不仅不长⼤,反⽽以固定的速度在减少.已知某块草地上的草可供20头⽜吃5天,或可供15头⽜吃6天.照此计算,可供多少头⽜吃10天? 分析:20头⽜5天吃草:20×5=100(份):15头⽜6天吃草:15×6=90(份);青草每天减少:(100-90)÷(6-5)=10(份);⽜吃草前牧场有草:100+10×5=150(份); 150份草吃10天本可供:150÷10=15(头);但因每天减少10份草,相当于10头⽜吃掉;所以只能供⽜15-10=5(头). 解:①青草每天减少:(20×5-90)÷(6-5)=10(份); ②⽜吃草前牧场有草 10×5+20×5 =50+100, =150(份). ③150÷10-10, =5(头). 答:可供5头⽜吃10天. 点评:此题属于⽜吃草问题,这类题⽬有⼀定难度.对于本题⽽⾔,关键的是要求出青草每天减少的数量.【第三篇】有⼀个蓄⽔池装有9根⽔管,其中⼀根为进⽔管,其余8根为相同的出⽔管.进⽔管以均匀的速度不停地向这个蓄⽔池注⽔.后来有⼈想打开出⽔管,使池内的⽔全部排光(这时池内已注⼊了⼀些⽔).如果把8根出⽔管全部打开,需3⼩时把池内的⽔全部排光;如果仅打开5根出⽔管,需6⼩时把池内的⽔全部排光.问要想在4.5⼩时内把池内的⽔全部排光,需同时打开⼏个出⽔管? 分析:假设打开⼀根出⽔管每⼩时可排⽔“1份”,那么8根出⽔管开3⼩时共排出⽔8×3=24(份);5根出⽔管开6⼩时共排出⽔5×6=30(份);两种情况⽐较,可知3⼩时内进⽔管放进的⽔是30-24=6(份);进⽔管每⼩时放进的⽔是6÷3=2(份);在4.5⼩时内,池内原有的⽔加上进⽔管放进的⽔,共有8×3+(4.5-3)×2=27(份).由此解答即可. 解:设打开⼀根出⽔管每⼩时可排出⽔“1份”,8根出⽔管开3⼩时共排出⽔8×3=24(份);5根出⽔管开6⼩时共排出⽔5×6=30(份). 30-24=6(份),这6份是“6-3=3”⼩时内进⽔管放进的⽔. (30-24)÷(6-3)=6÷3=2(份),这“2份”就是进⽔管每⼩时进的⽔. [8×3+(4.5-3)×2]÷4.5 =[24+1.5×2]÷4.5 =27÷4.5 =6(根) 答:需同时打开6根出⽔管. 点评:此题属于⽜吃草问题,解答关键是把打开⼀根出⽔管每⼩时可排⽔“1份”,进⼀步分析推理求解.。

牛吃草问题例题详解(含练习和答案)

牛吃草问题例题详解(含练习和答案)

牛吃草问题“一堆草可供10头牛吃3天,这堆草可供6头牛吃几天”这道题太简单了,同学们一下就可求出:3×10÷6=5(天)。

如果我们把“一堆草”换成“一片正在生长的草地”,问题就不那么简单了,因为草每天都在生长,草的数量在不断变化。

这类工作总量不固定(均匀变化)的问题就是牛吃草问题。

例1牧场上一片青草,每天牧草都匀速生长。

这片牧草可供10头牛吃20天,或者可供15头牛吃10天。

问:可供25头牛吃几天分析与解:这类题难就难在牧场上草的数量每天都在发生变化,我们要想办法从变化当中找到不变的量。

总草量可以分为牧场上原有的草和新生长出来的草两部分。

牧场上原有的草是不变的,新长出的草虽然在变化,因为是匀速生长,所以这片草地每天新长出的草的数量相同,即每天新长出的草是不变的。

下面,就要设法计算出原有的草量和每天新长出的草量这两个不变量。

设1头牛一天吃的草为1份。

那么,10头牛20天吃200份,草被吃完;15头牛10天吃150份,草也被吃完。

前者的总草量是200份,后者的总草量是150份,前者是原有的草加20天新长出的草,后者是原有的草加10天新长出的草。

200-150=50(份),20—10=10(天),说明牧场10天长草50份,1天长草5份。

也就是说,5头牛专吃新长出来的草刚好吃完,5头牛以外的牛吃的草就是牧场上原有的草。

由此得出,牧场上原有草(l0—5)× 20=100(份)或(15—5)×10=100(份)。

现在已经知道原有草100份,每天新长出草5份。

当有25头牛时,其中的5头专吃新长出来的草,剩下的20头吃原有的草,吃完需100÷20=5(天)。

所以,这片草地可供25头牛吃5天。

在例1的解法中要注意三点:(1)每天新长出的草量是通过已知的两种不同情况吃掉的总草量的差及吃的天数的差计算出来的。

(2)在已知的两种情况中,任选一种,假定其中几头牛专吃新长出的草,由剩下的牛吃原有的草,根据吃的天数可以计算出原有的草量。

牛吃草问题-题库及答案

牛吃草问题-题库及答案

牛吃草问题例题一一片青草地,每天都匀速长出青草,这片青草可供27头牛吃6周或23头牛吃9周,那么这片草地可供21头牛吃几周?解:把每天每头牛吃的草量看成"1〞.第6周时总草量为:6×27=162第9周时总草量为:9×23=2073周共增加草量:207-162=45每周新生长草:45÷〔9-6〕=15 即每周生长出的草可以供15头牛吃.原有草量为:162-6×15=72所以可供21头牛吃:72÷〔21-15〕=12〔周〕随堂练习:1、牧场上有一片草地,每天牧草都匀速生长.这片牧草可供10头牛吃20天,或可供15头牛吃10天,问可供25头牛吃几天?解:20天时草地上共有草:10×20=20010天时草地上共有草:15×10=150草生长的速度为:〔200-150〕÷〔20-10〕=5即每天生长的草可供5头牛吃.原草量为:200-20×5=100可供25头牛吃:100÷〔25-5〕=5〔天〕2、一片草地,每天都匀速长出青草.如果可供24头牛吃6天,或20头牛吃10天吃完.那么可供19头牛吃几天?解:6天时共有草:24×6=14410天时共有草:20×10=200草每天生长的速度为:〔200-144〕÷〔10-6〕=14原有草量:144-6×14=60可供19头牛:60÷〔19-14〕=12〔天〕3、一片牧场长满草,每天匀速生长,这片牧场可供5头牛吃8天,可供14头牛吃2天,问可供10头牛吃几天?解:8天时草的总量为:5×8=402天时草的总量为:14×2=28草每天生长的速度为:〔40-28〕÷〔8-2〕=2即每天生长的草可供2头牛吃.草地上原有的草为:28-2×2=24可供10头牛吃:24÷〔10-2〕=3〔天〕4、某牧场上的草,若用17人去割,30天可以割尽,若用19人去割,则只要24天便可割尽,问用多少人割,6天可以割尽?〔草匀速生长,每人每天割草量相同〕解:〔17×30-19×24〕÷〔30-24〕=917×30-9×30=240240÷6+9=49〔人〕5、武钢的煤场,可储存全厂45天的用煤量.当煤场无煤时,如果用2辆卡车去运,则除了供应全厂用煤外,5天可将煤场储满;如果用4辆小卡车去运,那么9天可将煤场储满.如果用2辆大卡车和4辆小卡车同时去运,只需几天就能将煤厂储满?〔假设全厂每天用煤量相等.〕解:〔45+5〕÷5=10 〔45+9〕÷9=6 45÷〔10+6-1〕=3〔天〕6、林子里有猴子喜欢吃的野果,23只猴子可在9周内吃光,21只猴子可在12周内吃光,问如果有33只猴子一起吃,则需要几周吃光?〔假定野果生长的速度不变〕[##2007]4解:〔21×12-23×9〕÷〔12-9〕=1523×9-15×9=7272÷〔33-15〕=4〔周〕7、一块草地,10头牛20天可以把草吃完,15头牛10天可以把草吃完.问多少头牛5天可以把草吃完?解:〔10×20-15×10〕÷〔20-10〕=510×20-20×5=100100÷5+5=25〔头〕例题二由于天气逐渐冷起来,牧场上的草不仅不长多,反而以固定的速度在减少,照这样计算,某牧场草地上的草可供20头牛吃5天,或可供15头牛吃6天,那么,可供多少头牛吃10天?解:5天时草地上共有草:5×20=1006天时草地上共有草:6×15=90每天草地上的草减少:〔100-90〕÷〔6-5〕=10原草量为:100+5×10=15010天后还剩下的草量:150-10×10=5050÷10=5〔头〕随堂练习:1、因天气渐冷,牧场上的草以固定的速度减少.已知牧场上的草可供33头牛吃5天,或可供24头牛吃6天.照这样计算,这个牧场可供多少头牛吃10天?解:5天时草地上共有草:33×5=1656天时草地上共有草:24×6=144每天减少:〔165-144〕÷〔6-5〕=21原有的草量为:165+5×21=27010共减少了:21×10=21010天后剩草量为:270-210=6060÷10=6〔头〕2、天气逐渐变冷,牧场上的草每天以均匀的速度减少.经计算,牧场上的草可供20头牛吃5天,或可供16头牛吃6天.那么可供11头牛吃几天?解:5天时共有草:20×5=1006天时共有草:16×6=96草减少的速度为:〔100-96〕÷〔6-5〕=4原有的草量为:100+4×5=120可供11头牛吃:120÷〔11+4〕=8〔天〕3、因为天气日渐寒冷,牧场上的草不但不生长,反而以固定的速度每天在减少.如果20头牛去吃20天可以吃完;如果30头牛去吃15天可以吃完.那么,如果10头牛去吃____天可以吃完.解:〔30×15-20×20〕÷〔20-15〕=1020×20+10×20=600600÷〔10+10〕=30〔天〕答:10头牛去吃30天可吃完.4、由于天气逐渐冷起来,牧场上的草不仅不长大,反而以固定速度在减少.已知某块草地上的草可供20头牛吃5天或可供12头牛吃7天.照此计算,可供6头牛吃几天?解:假设1头牛1天吃1份的草20头牛5天一共吃了:20×5=100 份的草12头牛7天一共吃了:12×7=84 份的草时间相差:7-5=2 〔天〕草量减少:100-84=16 份的草说明,一天减少:16÷2=8 份的草5天减少了:8×5=40 份的草原来牧场上有:100+40=140 份的草这140份的草,可供6头牛吃:140÷<6+8>=10<天>例题三自动扶梯以均匀速度由下往上行驶着,两位性急的孩子要从扶梯上楼,已知男孩每分钟走20级台阶,女孩每分钟走15台阶,结果男孩用5分钟到达楼上,女孩用了6分钟到达楼上.问该扶梯共有多少级台阶?解:5分钟时男孩共走了:20×5=100〔台阶〕6分钟时女孩共走了:15×6=90〔台阶〕自动扶梯的速度为:〔100-90〕÷〔6-5〕=10〔台阶〕自动扶梯共有:100+5×10=150〔台阶〕随堂练习:1、两位顽皮的孩子逆着自动扶梯的方向行走,在20秒里,男孩可走27级台阶,女孩可走24级台阶,男孩走了2分钟到另一端,女孩走了3分钟到达另一端,该扶梯共有多少级台阶?解:男孩共走了:2×60÷20×27=162女孩共走了:3×60÷20×24=216自动扶梯的速度:〔216-162〕÷〔3-2〕=54〔台阶〕162-54×2=542、自动扶梯以均匀的速度行驶着,小明和小红要从扶梯上楼.已知小明每分钟走25级台阶,小红每分钟走20级台阶,结果小明用5分钟,小红用了6分钟分别到达楼上.该扶梯共有多少级台阶?解:5分钟小明共走了:25×5=1256分钟小红共走了:20×6=120自动扶梯的速度为:〔125-120〕÷〔6-5〕=5该扶梯的台阶:125+5×5=150〔台阶〕3、自动扶梯以均匀的速度行驶着,小明和小红要从扶梯上楼.已知小明每分钟走20级台阶,小红每分钟走14级台阶,结果小明用4分钟,小红用了5分钟分别到达楼上.该扶梯共有多少级台阶?解:5分钟小明共走了:20×4=806分钟小红共走了:14×5=70自动扶梯的速度为:〔80-70〕÷〔6-5〕=10该扶梯的台阶:80+10×4=120〔台阶〕4、自动扶梯以匀速由下往上行驶,两个性急的孩子嫌扶梯走得慢,于是在行驶的扶梯上,男孩每秒钟向上走1梯级,女孩每3秒钟走2梯级.结果男孩用50秒到达楼上,女孩用60秒到达楼上.该扶梯共有多少级?解:〔50×1-60÷3×2〕÷〔60-50〕=150×1+50×1=100〔级〕例题四一只船有一个漏洞,水以均匀的速度进入舱内,发现漏洞时已经进了一些水,如果用12人舀水,3小时舀完.如果只有5个人舀水,要10小时才能舀完.现在要想2小时舀完水,需要多少人?解:把每个人每小时的舀水量看成单位‘1’3个小时后共有水:12×3=3610个小时后共用水:5×10=50每小时的进水量:〔50-36〕÷〔10-3〕=2发现时船舱内有水:36-3×2=30原水量舀完共需:30÷2=15〔人〕共需:15+2=17〔人〕随堂练习:1、一只船发现漏水时,已经进了一些水,现在水匀速进入船内,如果10人淘水,3小时可淘完;5人淘水8小时可淘完.如果要求2小时淘完,要安排多少人淘水?解:3小时后共有水:3×10=308小时后共有水:8×5=40进水速度为:〔40-30〕÷〔8-3〕=2原有水量为:30-3×2=2424÷2=12〔人〕12+2=14〔人〕2、有一个长方形的水箱,上面有一个注水孔,底面有个出水孔,两孔同时打开后,如果每小时注水30立方米,7小时可以注满水箱;如果每小时注水45立方米,注满水箱可少用2.5小时.那么每小时由底面小孔排水多少立方米?〔每小时排水量相同〕解:7小时共注水:7×30=210〔立方米〕4.5小时共注水:〔7-2.5〕×45=202.5〔立方米〕排水速度为:〔210-202.5〕÷〔7-4.5〕=3〔立方米〕3、一水池,池底有泉水不断涌出,用10部抽水机20小时可以把水抽干,用15部相同的抽水机10小时可以把水抽干.那么有25部这样的抽水机多少小时可以把水抽干?解:20小时共抽水:10×20=20010小时共抽水:15×10=150泉水涌出的速度为:〔200-150〕÷〔20-10〕=5原有水量为:200-20×5=10025部可以在:100÷〔25-5〕=5〔小时〕4、有一眼泉井,用功率一样的3台抽水机去抽井水,同时开机,40分钟可以抽干;用同样的6台抽水机去抽,则只需要16分钟就可以抽干,那么用同样的抽水机9台,几分钟可以抽干?解:〔3×40-6×16〕÷〔40-16〕=116×6-16×1=8080÷〔9-1〕=10〔分钟〕例题4 有一口水井,连续不断涌出泉水,每分钟涌出的水量相等.如果使用3台抽水机来抽水,36分钟可以抽完;如果使用5台抽水机来抽水,20分钟可抽完.现在12分钟内要抽完井水,需要抽水机多少台?解:36分钟时的总水量为:3×36=10820分钟时的总水量为:5×20=100涌水的速度为:〔108-100〕÷〔36-20〕=0.5原水量为:100-20×0.5=9090÷12=7.5 〔台〕7.5+0.5=8〔台〕随堂练习:1、一艘轮船发生漏水事故,船长立即安排两部抽水机同时向外抽水,当时已经漏了500桶水,一部抽水机每分钟抽水18桶,另一部每分钟抽水12桶,经过25分钟把水抽完,问每分钟漏进水多少桶?解:25分钟共抽水:〔18+12〕×25=750〔桶〕25分钟共漏水:750-500=250〔桶〕每分钟漏水:250÷25=10〔桶〕2、有一口井,连续不断涌出泉水,每分钟涌出的泉水量相等.如果用4台抽水机来抽水,40分钟可以抽完;如果用5台抽水机来抽水,30分钟可以抽完.现在要求24分钟内抽完井水,需要抽水机多少台?解:40分钟抽水量为:40×4=16030分钟抽水量为:30×5=150泉水的速度为:〔160-150〕÷〔40-30〕=1原有的水量为:160-40×1=12024分钟抽完原水量需:120÷24=5〔台〕共需:5+1=6〔台〕3、有一口井,连续不断涌出泉水,每分钟涌出的水量相等,若用4台抽水机15分钟可抽完.若用8台抽水机7分钟可抽完,现用11台抽水机多少分钟可抽完?解:15分钟时抽出的水为:4×15=607分钟时抽出的水位:7×8=56泉水的速度为:〔60-56〕÷〔15-7〕=0.5原有的水为:60-15×0.5=52.552.5÷〔11-0.5〕=5〔分钟〕4、一个水池安装有排水量相等的排水管若干根,一根入水管不断地往池里放水,平均每分钟入水量相等.现在如果开放3根排水管45分钟可把池中水排完,如果开放5根排水管25分钟可把池中水排完.如果开放8根排水管,几分钟排完池中的水?解:45分钟时共排水:45×3=13525分钟时共排水:5×25=125每分钟进水速度为:〔135-125〕÷〔45-25〕=0.5原有水为:125-25×0.5=112.5112.5÷〔8-0.5〕=15〔分钟〕5、一个水库水量一定,河水匀速流入水库.5台抽水机连续20天可抽干,6台同样的抽水机15天可抽干.若要求6天抽干,需要多少台同样的抽水机?解:20天共抽水:20×5=10015天共抽水:15×6=90进水的速度为:〔100-90〕÷〔20-15〕=2原有水为:100-2×20=6060÷6=10〔台〕10+2=12〔台〕6、一个水池,池底有水流均匀涌出.若将满池水抽干,用10台水泵需2小时,用5台同样的水泵需7小时,现要在半小时内把满池水抽干,至少要这样的水泵多少台?解:设每台水泵每小时抽水量为一份.〔1〕水流每小时的流入量:〔5×7-10×2〕÷〔7-2〕=3〔份〕〔2〕水池原有水量:5×7-3×7=14〔份〕或 10×2-3×2=14〔份〕〔3〕半小时内把水抽干,至少需要水泵:〔14+3×0.5〕÷0.5=31〔台〕例题五 有三块草地,面积分别为5公顷、6公顷和8公顷.草地上的草一样厚,而且长的一样快.第一块草地可供11头牛吃10天,第二块草地可供12头牛吃14天.问第三块草地可供19头牛吃多少天?解:每公顷在第10天时共有草:11×10÷5=22每公顷在第14天时共有草:12×14÷6=28每公顷草每天生长的速度为:〔28-22〕÷〔14-10〕=1.58公顷每天生长的草为:1.5×8=12每公顷的原草量为:22-10×1.5=78公顷原草量为:8×7=56原草量可供吃:56÷〔19-12〕=8〔天〕1、有3个长满草的牧场,每块地每公亩草量相同而且都是匀速生长.第一牧场33公亩,可供22头牛吃54天;第二牧场28公亩,可供17头牛吃84天;第三牧场40公亩,可供多少头牛吃24天?解:54天时每亩有草量为:22×54÷33=3684天时每亩有草量为:17×84÷28=51每亩地草生长的速度为:〔51-36〕÷〔84-54〕=0.540亩地每天生长的草为:40×0.5=20每亩地的原草量为:36-54×0.5=940亩地的原草量为:40×9=360360÷24=15〔头〕15+20=35〔头〕2、一个农夫有2公顷、4公顷和6公顷三块牧场,三场牧场上的草长得一样密,而且长得一样快,农夫将8头牛赶到2公顷的牧场,5天吃完了,农夫又将这8头牛赶到4公顷的牧场,15天又吃完了;最后,这8头牛又被赶到6公顷的牧场,这块牧场够吃多少天?解:5×8÷2=2015×8÷4=30〔30-20〕÷〔15-5〕=11×6=620-5×1=1515×6=9090÷〔8-6〕=45〔天〕3、有3片牧场,场上的草长得一样密,而且长得一样快,它的面积为313公亩、10公亩和24公亩.12头牛4星期吃完第一片牧场原有的和4星期内新长出来的草;21头牛9星期吃完第二片牧场原有的和9星期内新长出来的草.多少头牛18星期才能吃完第三片牧场原有的和新长出来的草?解:4星期时每公亩共有草:12×4÷313=14.4 9星期时每公亩共有草:21×9÷10=18.9每星期新长出的草为:〔18.9-14.4〕÷〔9-4〕=0.9每公亩原有的草量为:14.4-4×0.9=10.824公亩每星期长出的草为:24×0.9=21.624公亩原有的草量为:24×10.8=259.2259.2÷18=14.4〔头〕 14.4+21.6=36〔头〕4、12头牛28天可吃完10公亩牧场上全部牧草,21头牛63天可吃完30公亩牧场上全部牧草.多少头牛126天可吃完72公亩牧场上全部牧草?〔每公亩牧场上原有草量相等,且生长量也相等〕解:28天时每公亩草地上有草:28×12÷10=33.663天时每公亩草地上有草:63×21÷30=44.1每天每公亩草生长的速度为:〔44.1-33.6〕÷〔63-28〕=0.372公亩草地每天生长的草为:72×0.3=21.6每公亩原有草为:33.6-28×0.3=25.272公亩原有草为:72×25.2=1814.41814.4÷126=14.4〔头〕14.4+21.6=36〔头〕5、有三块草地,面积分别是5、15、25亩.草地上的草一样厚,而且长得一样快.第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天,则第三块草地可供多少头牛吃60天?解:30×10÷5=6028×45÷15=84〔84-60〕÷〔45-30〕=1.61.6×25=4060-1.6×30=1212×25=300300÷60=5〔头〕40+5=45〔头〕6、12头牛4周吃完6公顷的牧草,20头牛6周吃完12公顷的牧草.假设每公顷原有草量相等,草的生长速度不变.问多少头牛8周吃完16公顷的牧草?解:设1头牛吃一周的草量为一份.〔1〕每公顷每周新长的草量:〔20×6÷12-12×4÷6〕÷〔6-4〕=1〔份〕〔2〕每公顷原有草量:12×4÷6-1×4=4〔份〕〔3〕16公顷原有草量:4×16=64〔份〕〔4〕16公顷8周新长的草量:1×16×8=128〔份〕〔5〕8周吃完16公顷的牧草需要牛数:〔128+64〕÷8=24〔只〕1、在一片牧场里,放养4头牛,吃6亩草,18天可以吃完:放养6头牛,吃10亩草,30天可以吃完,请问放入多少头牛,吃8亩草,24天可以吃完?〔假定这片牧场每亩中的原草量相同,且每天草的生长两相等〕解:4×18÷6=12 6×30÷10=18〔18-12〕÷〔30-18〕=0.5 8×0.5=412-18×0.5=3 3×8=2424÷24+4=5〔头〕例题六某火车站的检票口,在检票开始前已有一些人排队,检票开始后每分钟有10人前来排队检票,,一个检票口每分钟能让25人检票进站,如果只有一个检票口,检票开始8分钟后就没有人排队;如果有两个检票口,那么检票后多少分钟就没有人排队?解:8分钟共检票:25×8=200〔人〕原有人数位:200-8×10=120〔人〕开两个窗口需时:120÷〔25×2-10〕=3〔分钟〕随堂练习:1、车站开始检票时,有a名旅客排队等候进站,检票开始后,仍有旅客陆续前来,设旅客按固定的速度增加,检票的速度也是固定的,若开放一个检票口,则需要30分钟才可以将排队的旅客全部检票完毕,若开放两个检票口,则需要10分钟便可将排队的旅客全部检票完毕,如果要在5分钟内将排队的旅客全部检票完毕,使后来到站的旅客能随到随检,至少要同时开放几个检票口?解:〔1×30-2×10〕÷〔30-10〕=0.51×30-0.5×30=1515÷5+0.5=3.5〔个〕要开4个检票口.2、某车站在检票前若干分钟就开始排队,每分钟来的旅客人数一样多.从开始检票到等候检票的队伍消失,同时开4个检票口需要30分钟,同时开5个检票口需20分钟.如果同时打开7个检票口,那么需多少分钟?解:30分钟共检票:30×4=12020分钟共检票:20×5=100人来的速度为:〔120-100〕÷〔30-20〕=2原有人数:120-30×2=6060÷〔7-2〕=12〔分钟〕3、某火车站检票前开始排队,假若前来排队检票的人数均匀增加,若开一个检票口,需要20分钟可以检完;若开两个检票口,需要8分钟可以检完;若开三个检票口,需要多少多少分钟可以检完?解:〔1×20-2×8〕÷〔20-8〕=错误!1×20-20×错误!=错误!错误!÷〔3-错误!〕=5〔分钟〕4、某天##世博会中国馆的入口处已有945名游客开始等候检票进馆.此时每分钟还有若干人前来入口处准备进馆.如果打开4个检票口,15分钟游客可以全部进馆;如果打开8个检票口,7分钟游客可以全部进馆.现在要求在5分钟内所有游客全部进馆,需要打开几个检票口?〔第九届希望杯培训题〕解:〔4×15-8×7〕÷〔15-7〕=0.58×7-7×0.5=52.552.5÷5+0.5=11〔个〕5、某个游乐场在开门前400人排队等候,开门后每分钟来的人数是固定的,一个入口每分钟可以进入10个游客,如果开放4个入口,20分钟就没有人来排队.现在开放6个入口,那么开门后多少分钟就没有人排队?解:〔10×4×20-400〕÷20=20400÷〔6×10-20〕=10〔分〕6、物美超市的收银台平均每小时有60名顾客前来排队付款,每一个收银台每小时能应付80名顾客付款.某天某时刻,超市如果只开设一个收银台,付款开始4小时就没有顾客排队了,问如果当时开设两个收银台,则付款开始几小时就没有顾客排队了[##2006]dA.2小时B.1.8小时C.1.6小时D.0.8小时解:〔80-60〕×4=80〔人〕80÷〔80×2-60〕=0.8〔小时〕7、某车站在检票前若干分钟就开始排队,每分钟来的旅客人数一样多.从开始检票到等候检票的队伍消失,若同时开5个检票口则需要30分钟,若同时开6个检票口则需要20分钟.如果要使队伍10分钟消失,那么需要同时开几个检票口解:〔5×30-6×20〕÷〔30-20〕=35×30-3×30=6060÷10+3=9〔个〕8、禁毒图片展8点开门,但很早便有人排队等候入场.从第一个观众到达时起,每分钟来的观众人数一样多.如果开3个入场口,8点9分就不再有人排队;如果开5个入场口,8点5分就没有人排队.第一个观众到达时距离8点还有多少分钟?解:〔3×9-5×5〕÷〔9-5〕=0.53×9-0.5×9=22.522.5÷0.5=45〔分〕9点-45分=8点15分例题7、有一个牧场长满牧草,每天牧草匀速生长.这个牧场可供17头牛吃30天,可供19头牛吃24天.现有牛若干头在吃草,6天后,4头牛死亡,余下的牛吃了2天将草吃完.原来有牛多少头?解:30天时牧场上共有草:30×17=51024天时牧场上共有草:19×24=456草生长的速度为:〔510-456〕÷〔30-24〕=9原有草量为:510-30×9=240〔240+4×2〕÷〔6+2〕=3131+9=40〔头〕1、有一片草地,草每天草生长的速度相同,这片草地可供5头牛吃40天;或者供6头牛吃30天,如果4头牛吃了30天以后,又增加2头牛一起吃,这片草地还可以再吃几天?解:〔5×40-6×30〕÷〔40-30〕=25×40-40×2=120120-30×〔4-2〕=6060÷〔4+2-2〕=15〔天〕2、一片牧草,可供9头牛吃12天,也可供8头牛吃16天,现在开始只有4头牛吃,从第7天起又增加了若干头牛吃草,再吃6天吃完了所有的草,问从第7天起增加了多少头牛?解:〔8×16-9×12〕÷〔16-12〕=59×12-12×5=4848+〔5-1〕×6=5454÷6=9〔头〕9+5-4=10〔头〕3.有一片草地,可供8只羊吃20天,或供14只羊吃10天.假设草的每天生长速度不变.现有羊若干只,吃了4天后又增加了6只,这样又吃了2天便将草吃完,问有羊多少只?解:设一只羊吃一天的草量为一份.〔1〕每天新长的草量:〔8×20-14×10〕÷〔20-10〕=2〔份〕〔2〕原有的草量:8×20-2×20=120〔份〕〔3〕若不增加6只羊,这若干只羊吃6天的草量,等于原有草量加上4+2=6天新长草量再减去6只羊2天吃的草量:120+2×〔4+2〕-1×2×6=120〔份〕〔4〕羊的只数:120÷6=20〔只〕例题8、有一片牧草,每天生长的速度相同,现有这片牧草可供16头大牛吃20天,或者供80头小牛吃10天.如果1头大牛的吃草量等于3头小牛的吃草量,那么12头大牛与60头小牛一起吃草可以吃多少天?解:〔16×3×20-80〕÷〔20-10〕=1680×10-16×10=640640÷〔12×3+60-16〕=8〔天〕1、一块牧草地,每天生长的速度相同,现在这片牧草可供16头牛吃20天,或者供80只羊吃12天,如果一头牛一天的吃草量等于4只羊一天的吃草量,那么10头牛与60只羊一起吃可以吃多少天?解:80只羊吃的草相当于:80÷4=20〔头牛〕吃的草20天时草的总量为:16×20=32012天时草的总量为:12×20=240草生长的速度为:〔320-240〕÷〔20-12〕=10原有草量为:240-10×12=12060只羊所吃的草量相当于60÷4=15头牛所吃的草120÷〔10+15-10〕=8〔天〕2、有一片青草,每天生长的速度相同,已知这片青草可供15头牛吃20天,或者供76只羊吃12天.如果一头牛的吃草量等于4只羊的吃草量,那么8头牛与64只羊一起吃,可以吃多少天?解:76÷4=19〔牛〕〔15×20-19×12〕÷〔20-12〕=915×20-20×9=12064÷4=16〔牛〕120÷〔8+16-9〕=8〔天〕3、一片牧草,每天生长的速度相同.现在这片牧草可供20头牛吃12天,或可供60只羊吃24天.如果1头牛的吃草量等于4只羊的吃草量,那么12头牛与88只羊一起吃可以吃多少天?解:设1头牛吃一天的草量为一份. 60只羊相当于60÷4=15头牛〔1〕每天新长的草量:〔15×24-20×12〕÷〔24-12〕=10〔份〕〔2〕原有草量:20×12-10×12=120〔份〕或 15×24-10×24=120〔份〕〔3〕12头牛与88只羊吃的天数:120÷〔12+88÷4-10〕=5〔天〕例题9、快、中、慢三车同时从A地出发,追赶一辆正在行驶的自行车,三车的速度分别是每小时24千米、20千米、19千米.快车追上自行车用了6小时,中车追上自行车用了10小时,慢车追上自行车用多少小时?解:6小时时自行车共走了:6×24=144〔千米〕10小时时自行车共走了:20×10=200〔千米〕自行车的速度为:〔200-144〕÷〔10-6〕=14〔千米〕三车出发时自行车已经走了:144-14÷6=60〔千米〕慢车追上的时间为:60÷〔19-14〕=12〔小时〕1、有快、中、慢三辆车同时从同一地点出发,沿同一条公路追赶前面的一个骑车人,这三辆车分别用6分钟、10分钟、12分钟追上骑车人.现在知道快车每小时行24千米,中车每小时行20千米,那么慢车每小时行多少千米?解:24×6=144〔千米〕10×20=200〔千米〕〔200-144〕÷〔10-6〕=14〔千米〕200-10×14=60〔千米〕60÷12+14=19〔千米〕2、甲、乙、丙三人同时从同一地点出发,沿同一路线追赶前面的小明,他们三人分别用9分钟、15分钟、20分钟追上小明,已知甲每小时行24千米,乙每小时行20千米,求丙每小时行多少千米?解:〔15×20-24×9〕÷〔15-9〕=14〔千米〕15×20-14×15=90〔千米〕90÷20+14=18.5〔千米〕3、甲、乙、丙三辆车同时从A地出发,出发后6分钟甲车超过了一名长跑运动员,过了2分钟后乙车也超过去了,又过了2分钟丙车也超了过去.已知甲车每分钟走1000米,乙车每分钟走800米,求丙车的速度. 解:〔1〕长跑运动员的速度:[800×〔6+2〕-1000×6]÷2=200〔米/分〕〔2〕三车出发时,长跑运动员与A地的距离:1000×6-200×6=4800〔米〕〔3〕丙车行的路程:4800+200×〔6+2+2〕=6800〔米〕〔4〕丙车的速度:6800÷10=680〔米/分〕例题10、有一个水池,池内已存有一定的水,这个水池上装有一根进水管和若干根相同的排水管.进水管和其中的5根排水管同时开放8分钟,能将池内的水全部排完.若进水管和其中的8根排水管同时开放4分钟,也能将池内的水全部排完.现在进水管和全部排水管同时开放,2分钟后,关掉其中的6根排水管再过1分钟,池内也空了,求这个水池上装有几根排水管.解:8分钟时共排水:5×8=404分钟时共排水:4×8=32进水速度为:〔40-32〕÷〔8-4〕=2原水量为:32-4×2=24〔24+6×1〕÷〔2+1〕=10〔根〕10+2=12〔根〕1、一个水池安装有排水量相等的排水管若干根,一根进水管不断地往水池里放水,平均每分钟进水量是相等的.如果开放三根排水管的话,45分钟就可把池中的水放完;如果开放5根排水管,25分钟就可以把池水排完.如果开放八根排水管的话,那么几分钟排完池中的水?解:〔3×45-5×25〕÷〔45-25〕=0.53×45-0.5×45=112.5112.5÷〔8-0.5〕=15〔根〕例题11、经测算,地球上的资源可供100亿人生活100年或者是可供80亿人生活300年,假设地球每年新生长的资源是一定的,为了使资源不致减少,地球上最多生活多少人?解:〔300×80-100×100〕÷〔300-100〕=70〔亿〕1、有一草场,假设每天草##匀生长,这片草场经过测算可供100只羊吃200天,或可供150只羊吃100天;问:如果放牧250只羊可以吃多少天?放牧这么多羊对吗?为防止草场沙化,这片草场最多可以放牧多少只羊?解:200天时共有草:100×200=20000100天时共有草:100×150=15000草生长的速度为:〔20000-15000〕÷〔200-100〕=50原有的草量为:15000-100×50=10000可供250只吃:10000÷〔250-50〕=50〔天〕为了不让草场沙化,最多可以放50只羊.2、假设地球上新生成的资源的增长速度是一定的,照此测算,地球上的资源可供110亿人生活90年,或可供90亿人生活210年,为使人类能够不断繁衍,那么地球最多能养活多少亿人?解:110×90=990090×210=18900〔18900-9900〕÷〔210-90〕=75〔亿〕3、有一片牧场,24头牛6天可以将草吃完,或21头牛8天可以吃完.要使牧草永远吃不完,至多可以放牧几头牛?解:〔21×8-24×6〕÷〔8-6〕=12"姐弟两人打印一批稿件,姐姐单独打印需要的时间是弟弟所需时间的3/8,姐姐先打印了这批稿件的2/5后,接着由弟弟单独打印,共用24小时打印完,问姐姐打印了多少小时?时间比为:姐姐∶弟弟=3∶8效率比为:姐姐∶弟弟=8∶3姐姐的时间为:24÷〔错误!+错误!〕×错误!=4.8〔时〕六年级上学期有学生750人,本学期男生增加6分之一,女生减少5分之一,共有710人,本学期男女生共有多少人? 〔750-5×40〕÷〔6+5〕=50 6×50=300〔人〕……男750-300=350〔人〕……女。

(完整版)小学五年级奥数:牛吃草问题(题目+答案)

(完整版)小学五年级奥数:牛吃草问题(题目+答案)

精心整理精心整理牛吃草问题例:有一片牧草,草每天匀速的生长,这片牧草可供100头牛吃3周,可供50头牛吃8周,那么可供多少头牛吃两周?设每头牛每周吃草一份,100头牛3周吃的草:100×3=300(份)50头牛8周吃的草:50×8=400(份)草的生长速度:(400-300)÷(8-3)=20(份)原有牧草的份数:100×3-3×20=240(份)(240+20×2)÷2=140(头)① 一个牧场,19头牛只需要24天就将草吃完。

问没有卖掉4设一头牛一天吃一份草.17头牛30天吃的草:17×30=510(份)19头牛24天吃的草:19×24=456(份)每天长草数:(510-456)÷(30-24)=9牧场原有草数:510-9×30=240(份)8天可吃草数:240+8×9=312(份)设卖牛前有x 头:6x+2(x-4)=312x=40② 一片牧草,可供9头牛12干头牛来吃草,再吃67天起增加了多少头牛?设一头牛一天吃一份草.9头牛12天吃的草:9×128头牛)=5(份)从开始46天可知前后共计12天,这片草地共有草量:48+5×12=108(份)开始的44×12=48(份)(头)③ 有一片草地,可供8只羊吃20天,或供14只羊吃10天。

假设草每天的生长速度不变,现有羊若干只,吃了4天后又增加了6只,这样又吃了2天,便将草吃完。

问:原有羊多少只? 设一只羊吃一天的草量为一份.每天新长的草量:(8×20-14×10)÷(20-10)=2(份)原有的草量:8×20-2×20=120(份)若不增加6只羊,这若干只羊吃6天的草量,等于原有草量加上4+2=6天新长草量再减去6只羊2天吃的草量:120+2×(4+2)-1×2×6=120(份)羊的只数:120÷6=20(只)④ 某牧场长满了草,若用17人去割,30天可割尽;若用19人去割,则只要24天便可割尽.假设草每天匀速生长,每人每天割草量相同.问49人几天可割尽?青草的生长速度:(17×30-19×24)÷(30-24)=9(份)精心整理精心整理原有的草的份数:17×30-9×30=240(份)让49人中的9人割生长的草,剩下的40人割草地原有的240份草,可割:240÷40=6(天)⑤由于天气逐渐变冷,牧场上的草每天以均匀的速度减少.牧场上的草可供20头牛吃5天,或可供16头牛吃6天,那么,可供11头牛吃几天?每天草减少的量:(20×5-16×6)÷(6-5)=4(份)牧场上原有的草:(20+4)×5=120(份)可供11头牛吃:120÷(11+4)=8(天)⑥由于天气逐渐变冷,牧场上的草每天以固定的速度减少.牧场上的草可供20头牛吃5天,或可供12头牛吃7天,那么可供6头牛吃几天?每天草减少的量:(20×5-12×7)÷(7-5)=8(份)牧场上原有的草:(20+8)×5=140(份)可供6头牛吃:140÷(6+8)=10(天)⑦牧场上的一片牧草,可供24头牛吃6,那么可以供19头牛吃几周?每周新生草量:(18×10-24×6)÷(10-6)原来有草:24×6-9×6=90(份)设19头牛吃完这片牧草用了x周:19x=90+9xX=9。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.牧场上一片青草,每天牧草都匀速生长.这片牧草可供10头牛吃20天,或者可供15头牛吃10天.问:可供25头牛吃几天?
解答:解:设1头牛1天吃的草为“1“,由条件可知,前后两次青草的问题相差为10×20-15×10=50.
为什么会多出这50呢?这是第二次比第一次多的那(20-10)=10天生长出来的,所以每天生长的青草为50÷10=5.
现从另一个角度去理解,这个牧场每天生长的青草正好可以满足5头牛吃.由此,我们可以把每次来吃草的牛分为两组,一组是抽出的15头牛来吃当天长出的青草,另一组来吃是原来牧场上的青草,那么在这批牛开始吃草之前,牧场上有多少青草呢?(10-5)×20=100.那么:第一次吃草量20×10=200,第二次吃草量,15×10=150;
每天生长草量50÷10=5.
原有草量(10-5)×20=100或200-5×20=100.
25头牛分两组,5头去吃生长的草,其余20头去吃原有的草那么100÷20=5(天).
答:可供25头牛吃5天.
2. 1.平均数应用题
某工厂运来一批苹果平分给了两个车间,然后再由各车间平分给每个工人.由于分派出错,一车间的48斤苹果误送到了二车间,结果使得两车间苹果平分到人后,一车间每人比二车间每人少分了8斤苹果,已知一车间31人,二车间23人,那么工厂运来的苹果一共多少斤?
3. 一个农夫有面积为2公顷、4公顷和6公顷的三块牧场.三块牧场上的草长得一样密,而且长得一样快.农夫将8头牛赶到2公顷的牧场,牛5天吃完了草;如果农夫将8头牛赶到4公顷的牧场,牛15天可吃完草.问:若农夫将这8头牛赶到6公顷的牧场,这块牧场可供这些牛吃几天?
4.牧场上一片牧草,可供27头牛吃6周,或者供23头牛吃9周。

如果牧草每周匀速生长,可供21头牛吃几周?
答案:可供21头牛吃12周
27头牛6周吃的草可供多少头牛吃一周?27×6=162
23头牛9周吃的草可供多少头牛吃一周?23×9=207
(9-6)周新长的草可供多少头牛吃一周?207-162=45
一周新长的草可供多少头牛吃一周?45÷3=15
原有的草可供多少头牛吃一
周?162-15×6=72 或207-15×9=72 21头牛中的15头牛专吃新长的草,余下的(21-15=)6头牛去吃原有的草几周吃完?
72÷(21-15)=12。

相关文档
最新文档