北理应用光学课件第6章

合集下载

应用光学课件-PPT

应用光学课件-PPT
4)若视阑为长方形或正方形,其线视场按对角线计算。
5)入射窗、出射窗、视阑之间得相互共轭关系。
大家应该也有点累了,稍作休息
大家有疑问得,可以询问与交流
10
例:有一光学系统,透镜O1、O2得口径D1=D2=50mm,焦距 f1′= f2′=150mm,两透镜间隔为300mm,并在中间置一光 孔O3,口径D3=20mm,透镜O2右侧150mm处再置一光孔O4,口 径D4=40mm,平面物体处于透镜O1左侧150mm处。求该系统 得孔径光阑、入瞳、出瞳、视场光阑、入窗、出窗得位 置与大小。
两正薄透镜组L1与L2得焦距分别为100mm与50mm,通光口径 分别为60mm与30mm,两透镜之间得间隔为50mm,在透镜L2之 前30mm处放置直径为40mm得光阑,问 1)当物体在无穷远处时,孔径光阑为哪个? 2)当物体在L1前方300mm处时,孔径光阑为哪个?
4、说明: 1)物体位置改变,原孔阑可能失去控制轴上点孔径角得作用,要重复上述 三个步骤确定孔阑。
工具显微镜中(β 准确)被测物得像与刻度尺相比较,可测物之长度。
物体不论处于何位 置,发出得主光线 都不随物体位置得 移动而变化;读出 刻尺面上光斑得中 心示值,即可求出 准确得象高。
三、 象方远心光路
1、 概念: 某些大地测量仪器或投影仪器中,为了消除像平面与标尺分划刻
线面不重合而引起得测量误差,在物镜得物方焦平面上加入一个光 阑作为孔径光阑,出瞳则位于像方无穷远,称为“像方远心光路”。 2、 应用:
3)物点在无限远时,各光孔像中,直径最小者即为入瞳。入瞳对应得实际 光孔即为孔径光阑。
例:有两个薄透镜L1与L2 ,焦距分别为90mm与30mm,孔径分 别为60mm与40mm,相隔50mm,在两透镜之间,离L2为 20mm处放置一直径为10mm得圆光阑,试对L1前120mm处 得轴上物点求孔阑、入瞳、出瞳得位置与大小。

应用光学 赵存华著 I 1-21章精选ppt课件

应用光学 赵存华著 I 1-21章精选ppt课件
感度称为视见函数(vision function),用 V( ) 表示,所以
V(55n5m )1
V( ) 1
图1.5 视见函数
1.2.1 光线和光束
人眼睛可以感受的光称为“可见光” 相同波长(或频率)的光颜色相同,称为“单色光” 不同波长光波的混合称为“复色光” 光在透明介质中行进的速度称为“光速” 光波传播时抽象的能传递能量的几何线称为“光线” 一束光线的集合称“光束”
当光线遇到障碍物时会发生光的衍射现象,从而偏离光线的直线 传播。
衍射
双折射
梯度折射率
2.2 光的独立传播定律
在光相交的区域可能发生叠加,甚至发生干涉。不管是哪一种情 况,在光离开相交区域后,光波继续沿着既定的方向向前传播,该 光波身上找不到其他光波对其产生的任何影响,此现象称为光的独 立传播定律。
德国科学家夫琅禾费 (Joseph von Fraunhofer)在研 究太阳光光谱时,把太阳光光 谱中在可见光区域内,某些明 显的线型用英文字母命名,称 为夫琅和费波长,列于右表。
波长/nm 404.6 435.8 480.0 486.1 546.1 587.6 589.3 643.8 656.3 706.5
由折射率定义
n' 1 n 2
sin I 1 sin I ' 2
nsiInn'siIn'
2.6.3 Snell定律的讨论
讨论:
nsiInn'siIn'
1. 如果 nn' 那么 sinIsinI'
所以 I I'
结论: 折射率小的一边相对法线夹角大.
2. 假定: 入射角很小
nIn'I'
如果光波在某种透明介质中的电容率(capacitivity)为ε,磁导率 (magnetoconductivity)为μ,该介质中的光速为

物理光学与应用光学第二版课件第六章PPT课件

物理光学与应用光学第二版课件第六章PPT课件

由此,朗伯定律可表示为
K 4
(6.2-3)
4 l
I I0e
(6.2-4)
各 种 介 质 的 吸 收 系 数 差 别 很 大 , 对 于 可 见 光 , 金 属 的 K≈106cm-1 , 玻 璃 的
K≈10-2cm-1,而一个大气压下空气的K≈10-5cm-1。这就表明,非常薄的金属片就
吸收元素
O O H Na Na He Fe
符号
E1 F G G
H K
波长/nm 吸收元素
518.362
Mg
486.133
H
430.791
Fe
430.774
Ca
466.273
Ca
396.849
Ca
393.368
Ca
第26页/共82页
6.3 光 的 色 散
介质中的光速(或折射率)随光波波长变化的现象叫光的色散现象。在理论上,光 的色散可以通过介质折射率的频率特性描述。
n~,则n有 i
n~2 (n i)2 (n2 2 ) i2n
将(6.1-13)式与(6.1-12)式进行比较,可得
(6.1-13)
n2
2n
2 1 Ne2 0m
Ne2
0m (02
02 2 (02 2 )2
2 )2 2 2
2
2
(6.1-14)
第6页/共82页
第27页/共82页
的分光作用,使得通过P1的每一条谱线都向下移动。若两个棱镜的材料相同,它 们对于任一给定的波长谱线产生相同的偏向。 因棱镜分光作用对长波长光的偏向 较小,使红光一端a1下移最小,紫光一端b1下移最大,结果整个光谱a1b1仍为一直 线,但已与ab成倾斜角。如果两个棱镜的材料不同,则连续光谱a1b1将构成一条 弯曲的彩色光带。

应用光学 ppt课件

应用光学  ppt课件
当光线遇到障碍物时会发生光的衍射现象,从而偏离光线的直线 传播。
衍射
双折射
梯度折射率
2.2 光的独立传播定律
在光相交的区域可能发生叠加,甚至发生干涉。不管是哪一种情 况,在光离开相交区域后,光波继续沿着既定的方向向前传播,该 光波身上找不到其他光波对其产生的任何影响,此现象称为光的独 立传播定律。
1.1.2 电磁波谱
400~760nm
380~760nm 390~780nm
1nm 103 μm 106 mm 109 m
1.1.2 电磁波谱
在电磁波谱里,可见光大约在380~760nm之间,按波长从长到 短依次分别呈现红、橙、黄、绿、蓝、靛、紫等七种颜色。这七种 色光其实分界并不完全准确,因为两种色光之间的界限本身就不明 显,过渡是一种渐进的过程。
色光 红 橙 黄 绿
范围/nm 640-760 600-640 550-600 480-550
色光 蓝 靛 紫
范围/nm 450-480 430-450 380-430
1.1.3 可见光
可见光(Visible light)是波 长大约在380~760nm之间的波 段范围,由于人眼对此波段的 光线敏感,可以引起视网膜的 感光,传递到大脑后,经过大 脑处理后可以分辨出光线的颜 色及与光线相关的物体。
则光的折射定律(Snell law, refraction law of light)可以表示为
1.折射光线也在入射面内; 2.入射角和折射角正弦之比为一个常数,与入射角大小无关。
sin I sin I ' n12
其中为 n12 比例常数
2.4 光的折射定律
海市蜃楼的形成
2.5 光路可逆
光的反射定律和折射定律一个直接的应用就是光路可逆。光在空 间传播时,在光学系统中行进,无外乎有三种情况:

应用光学课件第六章.

应用光学课件第六章.

4 单个折射球面的无球差点
一般情况下,单个折射球面成像存在球差,但存在三个无球 差点,物体位于这三个点时,不产生球差。
经过推导,单个折射球面的球差分布系数可以写为:
1 2
S一
niLsinU (sin I sin I)(sin I sinU ) 2cos 1 (I U ) cos 1 (I U ) cos 1 (I I)
-U1
P
光线有不同的球差,因此必
P2
须计算不同孔径的光线。 ➢计算的起始数据为:
-Lz1 -L1
h1=Kh·h;U1=0; s➢in轴I1外=h点1/r1轴外点不同视场不同孔径的光线的起始数据:
U1 Kw w
L1
Lz1
Kh h tgU1
➢孔径取点系数Kh=0.25(0.3), 0.5, 0.707, 0.85, 1.0;
A、计算公式
sin I L r sinU r
sin I n sin I/n
U U I I
L r r sin I / sinU
➢过渡公式:
ni1 ni U i1 U i Yi1 Yi Li1 Li di
B、计算的起始数据
U1=0
P1
1) 物体在无穷远时
h
➢轴上点 轴上点不同孔径的
Di
Bt
Bs
Ui
A
P1
hi i
hi+1
o
P2
xi
xi+1
B
Di
ti1 ti-Di , s i1 si-Di
Di
hi -hi 1 s in U i
di-xi xi1 cosU i
hi ri sin U zi I zi
ri-xi 2 hi2 ri2

应用光学0407-6

应用光学0407-6

dx x dx x
f f 对高斯公式, 1 l l
微分得到:
dl l 2 f 2 dl l f l 2 2 l n n
2
nl n nl n n 2 n
若 n n ,则
四、光学系统的光焦度 由
f n f n
f f 1 ),则有 改写高斯公式( l l
n n n n l l f f
ቤተ መጻሕፍቲ ባይዱ定义:
n n f f
为光学系统的光焦度。 表示系统对光束的会聚本领。 讨论:若 0 ,光焦度为正,光组对光束有会聚作用,会聚光组 若 0 ,光焦度为负,光组对光束有发散作用,发散光组 相应地, 越大,会聚作用越大 越负,发散作用越强 对照定义式,说明 f 越小,其折光本领越强(︱ ︳大) 光焦度的单位:折光度(屈光度)
由图分析,相对于主点而确定的焦点位置可由下两式确定:
lF xF f1 lF xF f 2
将牛顿量公式中的 xF 和 xF 代入并化简到:
f1 ) f lF f 2(1 2 ) 注意:二式分别相对于 H1 和 H 2 两点。 lF f1 (1

y y
牛顿公式对应: 高斯公式对应:

f x x f l l
而对具有 k 个光组的光学系统的垂轴放大率表示为:

yk 1 2 k y1
二、轴向放大率 定义式:

dx dl dx dl
对牛顿公式,由 xx ff 直接微分得到:
在像平面 F物 上加上一个正透镜就可以达到此目的,而不会影响系统
的光学特性。因为它和物镜所成的像重合,即物镜所成的像正好位于 它的主平面上,通过它以后所成的像和原来像的大小相等。这样一种 和像平面重合,或者和像平面很靠近的透镜称为“场镜”。 场镜在连续成像的组合系统中经常被采用。

应用光学6

应用光学6

三、角放大率
N -u A F h H H’ F’ u’ A’
角放大率定义:
tgu tgu
由图: ltgu
l tgu h
tgu l n 1 = tgu l n
与物像位置有关
四、三种放大率之间的关系
n 2 n
n 1 n

1 = 10 f 100mm f f
xx f 2 x 100mm f x y y 40mm x f y
2 1
1
例题—物像关系
例 一理想光学系统基点关系及物体的相对位置 如图所示,试求物体像的位置和大小。
1cm
F H H’
100cm
50cm
光学系统的光焦度
n n f f
空气中: Φ则称为光学系统的光焦度。
1 1 f f
意义:表示光学系统对光束会聚(或发散) 的本领。f ’或 f 越小,Ф越大。
得到以主点为原点的物像位置公式—高斯公式 看能不能找到的 f f 关系,把公式进行简化
物方焦距和像方焦距的关系
由直角三角形AMH 和A’M’H’得:
B y A Q M -u F h H R R' M' F'u' H' -y' B' A' Q'
h ( x f ) tgu ( x f ) tg u
x'
物像位置也可相对主点的位置来确定, 相应位置公式 推导如下:
x l f
代入牛顿公式并整理:
x l f
l f l f l l
二、高斯公式

《应用光学》第六章习题

《应用光学》第六章习题

第六章 像差理论习 题1、 设计一个齐明透镜,第一面曲率半径mm r 951-=,物点位于第一面曲率半径中心处。

第二个球面满足齐明条件,透镜厚度mm d 5=,折射率5.1=n ,该透镜位于空气中。

求:1) 该透镜第二面的曲率半径;2)该齐明透镜的垂轴放大率。

解:1)由题意知:物点到第二面距离:mm d L L 10059512-=--=-=,又5.1=n ,10=n 由齐明透镜的特征:mm n nL L 150)100(5.1022-=-⨯== 第二面的曲率半径:mm n n nL r 605.2150022-=-=+=2)5.121===n βββ,该齐明透镜的垂轴放大倍率为1.5。

2、已知614.1,2,201==-=n mm d mm L ,设计负透镜(齐明),物在第一面的球心,求1r ,2r ,'2L 。

解:由题意,mm L 201-=,又物在第一面的球心处。

mm L r 2011-==∴。

又mm d L L 2212-=-=,mm n nL r 584.13614.11)22(614.1122-=+-⨯=+=∴ 同时得:mm nL L 584.35)22(614.11'22-=-⨯==3、已知某一光学系统,只包含初级球差和二阶高级球差,且边缘光球差0'=m L δ,0.707带球差015.0'-=z L δ,回答:1)写出此系统的剩余球差表达式(关于相对高度mh h ),并计算0.5带,0.85带球差;2)求出边缘光线的初级球差和高级球差;3)最大剩余球差出现在哪一带上?数值为多少?解:1)对于一般系统,我们只考虑初级和二阶高级球差的影响。

即:4221)()('mm h h A h h A L +=δ。

又此系统对边缘光校正了球差,即1=m h h 时,0'=m L δ,021=+∴A A ——① 又在0.707带,即707.0=mh h 时,有015.0)707.0()707.0(4221-=+A A ——② 由①②式得到:⎩⎨⎧=-=06.006.021A A , 所以剩余球差的表达式为42)(06.0))(06.0('mm h h h h L +-=δ。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
-u’
应用光学讲稿
150mm
2.5m
15m
应用光学讲稿 • • • • • 五. 光亮度 光亮度表示发光面在不同位置和不同方向上的发光特性 微小面元ds在AO方向上的投影 N dФ dsn=ds.cosα 光亮度 α dΩ 0 I I I L A dsn ds. cos ds
d L ds. cos .d
d e Ie d
N
α dΩ
dФe
0
• 单位是瓦/球面度,
W/sr
A
ds
应用光学讲稿
• 三. 辐出射度,辐照度 • 在A点处取微小面积ds,
• 假定在ds辐射出的辐射通量为dФ e,
A
dФe
ds
• 则辐出射度为
d e Me ds
• 如果是被辐射,则为辐照度
d e Ee dsA NhomakorabeadФe应用光学讲稿 6-2 辐射度学中的基本量 • • • • • 一.辐射通量 单位时间内整个辐射体所辐射的总能量,用符号 e 表示 功率 辐射通量就是辐射功率,单位:瓦特,W 大部分辐射体辐射都有一定的波长范围,通常用辐射通量 的光谱密集度曲线 e 表示辐射通量按波长分布的特性
• 设在
波长范围内辐射功率 d e lim 0 d
应用光学讲稿
6-5 光照度公式和发光强度余弦定律
• • • • • • •
一.光照度公式 I A 假定点光源照明微小平面ds, l ds离开光源距离为l,表面法 线方向与照明方向成 ,若 光源在此方向上发光强度为I,求光源在ds上的光照度。 已知:I, l, ds, α 求:E d ds n ds. cos E d I d
一、立体角的意义和单位
平面上的角:

B 0 r A
弧度
AB AOB 弧度 r
应用光学讲稿 空间上的角:立体角 s
o
Ω
一个任意形状的封闭锥面所包含的空间成为立体角 Ω=
s r2
=4π
若在以r为半径的球面上截得的面积s= r2,则此立体角为1球面度。
s 整个空间球面面积为4π r2,对应立体角为Ω = 2 r
P
K e 15 100 119 .36cd 4 4

x
令OP x, 则l x 2 1, cos
x l
x x2 1
l
I ( x / x 2 1) 代入E公式得E x2 1
dE 要使B点光照度最大,令 0 dx 整理化简后得 2 x 2 0 1 x 0.7071 m 将x代入l表示式得l x 2 1 1.225m 此时,E Emax 45.94lx
宽=r d
u
长=2 r sin
ds 2 r 2 sin d s 2 r sin d 2 r cos
2 2 0 2 2 u 0
2 r (cosu cos 0) 2 r (1 cosu ) 2 2 u 2 2 u 2 r 2 sin 4 r sin 2 2 s 2 u 2 4 sin r 2 2 如果u角较小,则=u
应用光学讲稿 举例: 人眼同时观察距离相同的两个辐射体A和B,假定辐射强度相同,
A辐射波长为600nm, B辐射波长为500nm。
V(600)=0.631 V(500)=0.323
A对人眼产生的视觉强度是B对人眼产生视觉强度的0.631/0.323
倍,近似2倍。 若要使A和B对人眼产生相同的视觉强度,则辐射体A的辐射强度 只需要辐射体B强度的一半。
应用光学讲稿 • 含义:按人眼视觉强弱来度量的辐射强度
d e I C.V ( ). d I C.V ( ).I e
• 单位:坎,坎德拉, cd。如果发光体发光的波长为555nm,
1 Ie (W / sr ) 683
并且在指定方向上的辐射强度为

则发光体在该方向上的发光强度为1坎 • 坎德拉是光度学中的基本量 • 常数C,将V(λ )=1, Ie=1/683, I=1cd代入 • C=683(cd.sr)/W • I=683.V(λ ).Ie
待测光源
l2 I 2 2 I1 l1
2
ds
ds
应用光学讲稿 计算举例:桌面OB上方有一盏100W钨丝充气灯泡P,光源在各方 向均匀发光,灯泡可在垂直桌面方向上下移动,问灯泡离桌面多 高时,B点(OB=1m)处的光照度最大,该光照度等于多少?
由E
I
I cos , 将I , cos , l表示出来即可。 2 l
• 所以
Ie Le dsn
d e Le dsn d
• 单位:瓦特/(球面度.平方米),W/(sr.m2)
应用光学讲稿
6-3 人眼的视见函数
• 亮暗的产生 • 视觉强弱与波长 • 视见函数V(λ )
I e (555) V ( ) I e ( )
• 人眼对λ =555nm的视觉敏感度最大, V(λ )=1 • V(λ ) ≤ 1
应用光学讲稿
• 6-4
• 一. 光通量 • 人眼接收的辐射通量为
光度学中的基本量
A

Ie dФe
• •
dФ e=Ie.dΩ dФ =C.V(λ ). dФ e
• 视觉强弱与辐射通量和视见函数成正比
• 二. 发光强度 • 在人眼观察方向上,人眼接收的光通量dФ 与瞳孔 所张的立体角dΩ 之比,即发光强度 d I d

应用光学讲稿
• 上式也可以写成
• 总的辐射功率
e e d
0

e e d
0

• 二. 辐射强度 • 辐射体在不同的方向上的辐射特性不同 • 在给定的方向上取立体角dΏ,在dΏ范围内的辐射通量为 dФ e,将dФ e和dΏ的比值定义为在这个方向上的辐射强度
ds
• 单位:瓦特/平方米, W/m2
应用光学讲稿
• 四. 辐亮度 • 在A点周围取微面ds,在
• AO方向取微小立体角dΏ
N α dΩ
dФe
0
• 设在AO方向上的投影面积为dsn A ds • dsn=ds.cosα • 设在AO方向上的辐射强度为Ie,则辐亮度为
d e • 因为 I e d
O
1m
B
应用光学讲稿
• 二. 发光强度余弦定律 • 绝大多数发光体均匀发光,在各个方向上的亮度一样
I I0 L ds. cos ds I I 0 cos
• • • • 余弦定律也叫朗伯定律 余弦发光体,朗伯发光体 余弦定律的应用: 求发光微面发出的光通量
ds

I
I
应用光学讲稿 应用:求发光微面发出的光通量 已知:发光微面ds,光亮度为L,求它在半顶角为u的圆锥内所 辐射的总光通量。
e 0

应用光学讲稿
• • • • •
光视效能表示辐射体消耗1W的功率所发出的流明数 K越大,意味着光源的发光效率越高 例如 钨丝灯: k=8~9.2 流明/瓦 日光灯: k=27~41 流明/瓦
• 问题:为什么用手摸日光灯,不烫手 而摸白炽灯却烫手? • 钨丝灯: k=8~9.2 流明/瓦 • 日光灯: k=27~41 流明/瓦 • 据报道,全国约有15亿只白炽灯
应用光学讲稿
• 光视效能

d k ( )d
0 0


e
k ( ) e d
0

• 其中k(λ):光谱光视效能 • Фeλ光谱密集度

e
d
e 0

k e
k ( ) d
e 0
d
-u’
-u
2、灯泡通过聚光镜后在
照明范围内的平均发光强度, 以及灯泡的功率和位置。
150mm
2.5m
15m
思路:像方照度 物像方孔径角 灯泡发光强度
像方接收的总光通量 像方立体角 物方立体角 像方发光强度 总光通量 灯泡功率、位置
解:像方接收总光通量 E S 50 (1.25) 2 246lm 1.25 0.075 0.0783 15 -u 2 u' 立体角为' 4 sin 0.0195sr 2 由理想光学系统光路计 算公式:n' tgu'ntgu hn' / f ' 像方光锥角tg (u ' ) tgu 0.578 u 0.845sr 2 照明空间平均发光强度 ' I 1.26 104 cd ' 立体角为 4 sin 2 假定忽略聚光镜光能损 失,灯泡发光强度为 292cd I 若各向均匀发光,灯泡 发出的总光通量为 总 4I 3670 lm 采用钨丝灯照明时,功 e 245 率 W K h 灯泡位置l 130m m tgu
解:微小立体角内光通 量为d Id 半顶角为u的圆锥对应的立体角为 = d
0
ds
u
L
I I 0 cos , I 0 L ds, I L ds cos
d 2d cos 将I与d代入公式,得 = Id 2 Lds cosd cos Lds sin 2 u
e I E
应用光学讲稿
照度公式的应用:测量待测光源的发光强度
E d I . cos ds l2

E1
I1. cos 2 l1
E2
I 2 . cos 2 l2
E1 E2
I1. cos I 2 . cos 2 2 l1 l2
标准光源
I1 P1
P2 I2
应用光学讲稿
相关文档
最新文档