石油化工换热设备的基础知识

合集下载

换热设备的分类

换热设备的分类

换热设备的分类一换热设备的种类炼油厂用换热设备的型式很多,将其常用的分类如下:1按用途分类(1)换热器两种温度不同的流体进行热量的交换,使一种流体降温而另一种流体升温,以满足各处的需要,经过换热就充分回收了热量,节省了成本。

(2)冷凝器在两种温度不同的流体进行热量交换中,有一种流体是从气态就冷凝成为液态,温度变化并不大,就称为冷凝器。

(3)蒸发器和上述相反,若有一种流体被加热而蒸发成为气体,就称为蒸发器。

(4)冷却器凡是热量不回收利用,单纯只要一种流体冷却的换热器,称为冷却器。

(5)加热器凡是利用废热而单纯只要一种流体加热升温的换热器,称为加热器。

2按换热方式分类(1)间壁式换热设备。

在冷、热两种流体间有一定形状的表面把流体分隔开,热量通过此种间隔表面而互相交换,两种流体不相混合。

这是炼油厂中普遍采用的方式。

(2)蓄热式换热设备。

冷、热两种流体依次先后通过蓄热器,分别和蓄热器内的固体填充物进行交换,例如高温气体先通过蓄热器,将热量传递给器内填料,使填料升温而积蓄热量;关闭高温气体通路,再切换通入冷气体,高温填料就又把热量放出给了冷气体,使冷气体升温;依次不断反复,称为蓄热式换热。

这种设备炼油厂内很少应用。

(3)混合式换热设备。

使冷、热两种流体直接混合,而交换热量,如炼油厂内常用的凉水塔,就是用空气直接吹过被分散的热水表面,使热水降温而循环使用,这种方式所用设备较简单,换热效率也高,但大多数情况下,不允许两种流体混合,所以应用也有限。

3 按结构型式分类间壁式换热设备的种类繁多,但从间壁表面的特征来看,可分为两大类:(1) 管式换热设备。

传热面是各种管子,冷、热两种流体分别在管内和管外通过,经管壁面交换热量,这是炼油厂内应用最普通的换热设备。

从具体结构上细分,它又可分为:A.管壳式换热设备。

这种设备的特点是在圆筒形外壳中装有管束,一种流体在管内流动称为管程,另一流体在管外流动,称为壳程,它又可分为:a.固定管板式,如图2.4.1所示,两块管板均固定在外壳圆筒上,其上胀接着许多小管子,称为管束。

炼油化工设备基础知识

炼油化工设备基础知识

炼油化工设备基础知识第一章液体输送设备第一节概述在石油和化工生产装置中,流体输送是必不可少的单元操作。

做功以完成输送任务的机械或设备称为“流体输送设备”。

流体输送设备是石油、化工和其它领域最常用的机械设备。

生产上对流体输送的要求差别很大,输送的流体流量和扬程各不相同;流体种类繁多、性质千差万别;温度、压力等操作条件也有较大的差别。

为了适应生产上各种不同的要求,所以输送设备的型式种类是多种多样的,规格更是十分广泛,常见的如泵、风机、压缩机等。

泵通常是指为液体提供能量的流体输送设备。

泵的种类很多,其中离心泵具有性能范围广泛、流量均匀、结构简单、运转可靠和维修方便等诸多优点,因此离心泵是工业生产中应用最为广泛的一种液体输送设备。

除了在高压小流量或计量时常用往复式泵,液体含气时常用旋涡泵和容积式泵,高粘度介质常用转子泵外,其余场合,绝大多数使用离心泵。

据统计,在石油、化工生产装置中,离心泵的使用量占泵总量的70%~80%。

第二节泵的分类及特点离心泵的类型很多:按叶轮数目可分为单级泵(只有一个叶轮)和多级泵(有两个以上的叶轮,级数越多,扬程越高);按叶轮进液方式可分为单吸式(液体从一侧进入叶轮)和双吸式(液体从叶轮两侧吸入,吸入性能较好,多见于大流量的离心泵);按泵壳剖分形式可分为水平剖分泵和垂直于泵轴剖分泵;按泵壳的结构还可分为蜗壳式泵(具有像蜗牛壳形状的泵壳)和透平式泵(在叶轮外围安装有几个固定叶片的泵,用于多级泵)。

此外,按泵扬程的大小分为低压泵(扬程小于20米水柱)、中压泵(20~160米水柱)和高压泵(高于160米水柱);按泵转速的高低分为普通离心泵和高速离心泵;桉输送介质不同又分为水泵、轻烃泵、油泵以及耐腐蚀泵等;按用途可以分为进料泵、循环泵、回流泵、塔底泵或重沸器泵、产品泵等;按密封形式分为屏蔽泵、磁力泵和外加密封泵等。

2.1 离心泵的分类按离心泵的结构分类,见表1.2.1表1.2.1 泵按结构分类图1.2.1 单级单吸卧式泵图1.2.2 双吸泵1-泵盖;2-泵壳;3-叶轮;4-轴;5-密封环;6-轴套;7-密封组件;8-轴承图1.2.3 多级泵1-吸入段;2-中段;3-平衡盘;4-轴;5-轴承;6-首级叶轮;7-密封环;8-末级叶轮;8-密封组件图1.2.4 液下泵按离心泵的工作介质分类,见表1.2.2。

换热器基础知识

换热器基础知识

四、管壳式换热器的总体结构
1、管壳式换热器的总体结构以及特点 1)浮头式换热器 • 浮头式换热器的一端管板是固定的。与壳体刚性 连接,另一端管板是活动的,与壳体之间并不相 连。活动管板一侧总称为浮头,浮头式换热器的 管束可从壳体中抽出,故管外壁清洗方便,管束 可在壳体中自由伸缩,所以无温差应力;但结构 复杂、造价高,且浮头处若密封不严会造成两种 流体混合。浮头式换热器适用于冷热流体温差较 大(一般冷流进口与热流进口温差可达110℃), 介质易结垢需要清洗的场合。在炼油厂中使用的 各类管壳式换热器中浮头式最多。
3、换热器型号的表示方法
级换热器 管 /壳 程 数 , 单 壳 程 时 写 -公称长度( 径( ) 公称换热面积( 管 /壳 程 设 计 压 力 ( ) ),压 力 相 等 时 只 写 ), -换热管外
公称直径( ),对于釜式重沸器用分数表示,分子为管 箱内直径,分母为圆筒内直径。 第一个字母代表前端管箱型式 第二个字母代表壳体型式 第三个字母代表后端结构型式

总体结构如图3
4)釜式换热器 • 这种换热器的壳体直径一般为管束直径的1.5~2.0 倍,管束偏置于壳体的下方,页面淹没管束,使 管束上部形成一定的汽液分离空间。此换热器多 用来做蒸发器、精馏塔的重沸器或简单的废热锅 炉。根据需要,管束可以是固定管板型、浮头型 或U型管型。
2、管壳式换热器的主要组合部件 管壳式换热器的主要组合部件有前端管箱,壳体 和后端结构(包括管束)三部分,详细分类以及 代号(英文字母)如下所示:
(一)换热管及在管板上的排列方式 换热管是管壳式换热器的传热元件,它直接与两 种介质接触,所以换热管的形状和尺寸对传热有 很大的影响。小管径利于承受压力,因而管壁较 薄且在相同的壳径内可以排列较多的管子,使换 热器单位体积的传热面积增大、结构紧凑,单位 传热面积金属耗量少,传热效率也稍高一些,但 制造麻烦,且小直径管子易结垢,不易清洗。所 以一般对清洁流体用小直径管子,粘性较大的或 污染的流体采用大直径管子。我国管壳式换热器 常用换热管为:碳钢、低合金钢管有Φ19×2、 Φ25×2.5、 Φ38×3、 Φ57×3.5;不锈钢管有 Φ25×2、 Φ38×2.5。

2024年HTRI培训教程板式换热器(多场合)

2024年HTRI培训教程板式换热器(多场合)

HTRI培训教程板式换热器(多场合)HTRI培训教程:板式换热器1.概述板式换热器是一种高效、紧凑的换热设备,广泛应用于石油、化工、食品、制药等行业。

本教程旨在介绍板式换热器的工作原理、结构特点、选型计算、操作维护等方面的知识,帮助学员掌握板式换热器的设计、应用和维护技能。

2.工作原理(1)高效换热:波纹形板片增大了热交换面积,提高了换热效率。

(2)紧凑结构:板式换热器相较于壳管式换热器,具有体积小、重量轻的优势。

(3)灵活组合:板式换热器可根据工艺要求,增减板片数量,调整换热面积。

(4)易于清洗:板式换热器拆卸方便,可进行化学清洗或机械清洗。

3.结构特点(1)板片:波纹形板片是板式换热器的核心部件,常用材料有不锈钢、钛合金、铝等。

(2)夹紧装置:用于固定板片,保证板片在高温、高压下的密封性能。

(3)进出口接管:连接热介质和冷介质的管道,可实现多程布置。

(4)支架:用于支撑整个换热器,保证其稳定运行。

4.选型计算(1)确定工艺条件:明确热介质和冷介质的流量、温度、压力等参数。

(2)选择板片材料:根据介质性质、温度、压力等因素,选择合适的板片材料。

(3)计算换热面积:根据换热任务,计算所需换热面积。

(4)确定板片数量:根据换热面积和单张板片的换热面积,确定板片数量。

(5)校核压力降:确保换热器在设计工况下的压力降满足工艺要求。

5.操作维护(1)开机准备:检查设备各部件是否正常,确保管道畅通。

(2)运行监控:关注换热器进出口温度、压力等参数,及时调整工况。

(3)停机操作:按照工艺要求,缓慢降低热介质和冷介质的流量,直至设备停止运行。

(4)清洗保养:定期对板式换热器进行清洗,保持设备清洁,提高换热效率。

(5)故障排除:针对设备运行过程中出现的问题,及时分析原因,采取相应措施。

6.总结本教程介绍了板式换热器的工作原理、结构特点、选型计算、操作维护等方面的知识。

通过学习本教程,学员应掌握板式换热器的设计、应用和维护技能,为实际工程中的应用奠定基础。

导热油换热器工作原理

导热油换热器工作原理

导热油换热器工作原理导热油换热器是一种常见的换热设备,被广泛应用于化工、石油、天然气、电力等领域。

它通过导热油在设备内部循环流动,将热量从热源转移到热载体,实现换热的目的。

本文将从导热油换热器的工作原理、结构组成及应用领域等方面,详细介绍这一关键设备的工作原理。

一、导热油换热器的工作原理1. 热源传热在导热油换热器中,热源通过加热系统向换热器内部输送热能,导热油与热源之间进行热交换。

热源可以是蒸汽、燃气、燃油等形式的高温介质,通过换热器内部的管道,向导热油输送热能。

热源的温度高于导热油,使导热油接触到热源后迅速吸收热能,温度上升并成为热载体。

2. 导热油循环热载体的导热油在吸热后,通过换热器内部的管道系统,进行循环流动。

导热油的流动状态可以通过泵等设备来实现,确保导热油在换热器内部形成稳定的循环,以保证换热效果的稳定和高效。

导热油在循环过程中将吸收的热能带到需要换热的设备或系统中,完成热量传递操作。

3. 热载体换热通过导热油的循环流动,热载体将热量从热源处吸收,并在需要换热的设备或系统中释放热量。

这个过程可以是将热能传递到生产过程中需要加热的设备中,也可以是将热能输送到热水、蒸汽等介质中,以满足生产、供暖等需求。

4. 冷却在热载体完成换热传递后,导热油的温度会下降,成为冷却状态。

冷却的导热油将重新回流到换热器内部,迅速吸收热源输送的热能,完成一个完整的换热循环。

这样,导热油换热器就可以持续地完成热量的传递,保持设备或系统的温度稳定。

二、导热油换热器的结构组成导热油换热器通常由换热管束、外壳、隔热层、进出口管道、泵、阀门、控制系统等组成。

1. 换热管束换热管束是导热油换热器的核心部件,用于实现热载体与热源的热交换。

通常为螺纹管、螺旋管或板式换热器等形式,能够确保热源与热载体之间的高效热交换。

2. 外壳外壳是导热油换热器的外部保护结构,用于容纳换热管束和导热油。

外壳通常采用金属材料制成,保证设备的结构强度和密封性,同时具有良好的耐高温性能。

石化行业换热器的种类及用途原理阐述

石化行业换热器的种类及用途原理阐述

石化行业换热器的种类及用途原理阐述随着近代低碳工业的不断发展,在工业领域相继出现了越来越多的新型高效的换热器。

而在当今社会的石油化工行业中,换热器的应用更是十分广泛。

在此大的环境背景下,深入地研究在石油化工方面换热器的工作原理及种类是十分必要的,避免因为换热器的损坏从而造成严重的经济损失。

1.热换器的概念及其发展现状换热器是在石油化工、电力冶金、能源制备等行业中应用十分广泛的单元设备之一,但在石油化工方面应用最为广泛。

换热器是将温度进行交换,从而达到热量交换的目的。

也就是可以将低温的媒介对高温的介质进行降温或者预冷,将高温的介质对低温的介质进行加热,使流体温度达到工艺流程规定的指标的热量交换设备,又称热交换器。

世界上最早出现的是板式换热器,随机又出现了螺旋板式换热器和板翅式换热器。

由于科技的发展,换热器的需求急剧上升,进入二十一世纪以后,世界上的换热器产业的技术水平得到迅速提升。

我国的换热器发展起步较晚,1963年制造出了中国第一台管壳式换热器,随后又研制了第一台板式换热器,第一台螺旋板式换热器。

二十世纪80年代后,以折流杆换热器、双壳程换热器、板壳式换热器为代表的高效换热器的出现,是源于在国内掀起了自主开发传热技术的热潮,极大地促进了我国热换器的发展进步。

目前换热器从大的分类角度上可以分为混合式、蓄热式和间壁式三类。

2.换热器的种类及用途原理2.1板式换热器板式換热器是使用时间最早,也是最为典型的间壁换热器,可以分为焊接式和可拆式两种类型,在换热器应用领域中占据主要地位。

板式换热器形成的原理是按照固定的间隔把一系列的波纹状薄板通过垫片紧压而形成,应对较高的压力以及较高的温度的一种换热器是高效板式换热器。

具体来说,焊接式板式换热器具备较强的便捷性、不易泄漏、耐高温高压、传热性能良好、价格便宜的优点,不易清洗是最主要的缺点,因此只适用于不结垢介质的换热环境。

可拆式换热器的工作原理是利用橡胶垫对换热片进行密封,同时在不同的换热场合都能够对换热片的数量进行比较灵活的增减。

石油化工管式炉的基础知识

石油化工管式炉的基础知识

石油化工管式炉的基础知识管式加热炉是石油炼制、石油化工和化学、化纤工业使用的。

工业中使用的工艺加热炉,它具有其他工业炉所没有的若干特点。

1.工作原理石油化工管式炉是直接见火的加热设备,燃料在管式炉的辐射室内燃烧,释放出的热量主要通过辐射传热和对流传热传递给炉管,再经过传导传热和对流传热传热传递给管内的被加热介质,这就是管式炉的工作原理。

2.管式加热炉的特征是:(1)被加热物质的管内流动,故仅限于加热气体或液体。

而且,这些气体或液体通常都是易燃的烃类物质,同锅炉加热水或蒸汽相比,危险性大,操作条件要苛刻得多。

(2)加热方式为直接受火式。

(3)只烧液体或气体燃料。

(4)长周期连续运转,不间断操作。

3.管式加热炉的分类3.1 按功能分类;加热型管式炉和加热-反应型管式炉3.2 按炉型分类:圆筒炉、立式炉和大型箱式炉3.3 按工艺用途分类;加热炉和反应炉反应炉:炉管类被加热的物料在压力和催化剂作用下进行反应。

4.管式加热炉结构管式加热炉的一般结构:一般由辐射室、对流式、余热回流系统、燃烧器以及通风系统五部分组成。

4.1 辐射室辐射室是通过火焰或高温烟气进行辐射传热的部分。

这个部分直接受到火焰冲刷,温度最高,必须充分考虑说用材料的强度、耐热性能等。

这个部分是热交换的主要场所,全炉热负荷的70%-80%是由辐射室担负的,它是全炉最重要的部位。

烃蒸汽转化炉、乙烯裂解炉等,其反应和裂解过程全部都用辐射室来完成。

可以说,一个炉子是优是劣主要看它的辐射室性能如何。

4.2 对流室对流室是靠由辐射室出来的烟气进行对流换热的部分,但实际上它也是有一部分辐射热交换,而且有时辐射换热还占有破大的比例。

所谓对流室不过是指“对流传热起支配作用”的部位。

对流室内密布多排炉管,烟气比较大速度冲刷这些管子,进行有效的对流换热。

对流室一般担负全炉热负荷的20%~30%。

对流室吸热量的比例越大,全炉的热效率越高,但究竟占多少比例合适应根据管内流体同烟气的温度差和烟气通过对流管排的压力损失等,选择最经济合理的比值。

换热设备(换热器、热交换器)

换热设备(换热器、热交换器)
换热设备(换热器、热交换器) ?1. 简介
换热设备(换热器、热交换 器)
作用:用来实现热量的传递, 使热量由高温流体传递给低 温流体。
换热设备(换热器、热交换器)
地位:在炼油厂,用于换热设 备 的 费 用 约 占 总 费 用 的 35 % ~40 %,在化工厂约占总费用 的10%~20%。
应用
蓄热式换热器(或回热式换热器)
这种蓄热式换热器主要用于废气 温度很高而需要预热空气的场合, 石油化工厂也有用其作为裂解炉的。 由此难免存在着一小部分流体相互 掺和的现象,必须注意可能造成流 体的“污染”问题,由此而可能带 来的安全问题必须有相应的技术措 施。图 8—2为蓄热式换热器示意图。
蓄热式换热器图
应用
? 在完成热量传递的同 时.换热设备还可以在生产 工艺流程中起到不同的作用。
? 例如控制介质的温度 (加 热器、冷却器、余热锅炉等 );
应用
? 控制介质的压力 (冷凝器、 再沸器、蒸发器等);
? 控制介质汽化的流量 (蒸 发器、再沸器等 );控制介质 冷凝的流量 (冷凝器、冷凝冷 却器等)。
? 优点:管外流体的传热系数大,且便于 检修和清洗。
? 缺点:体积庞大,冷却水用量较大,有 时喷淋效果不够理想。
发展趋势
?(2)种类繁多:随着石油 化学工业的迅速发展,换 热设各种类繁多,而且新 型结构也不断出现。
发展趋势
?(3)随着石油、化工装置 的大型化,换热设备正朝 着强化传热、高效紧凑、 降低热阻以及防止流体诱 导振动等方向发展。
换热器主要介绍内容
? 主要介绍目前广泛应 用且量多面广的钢制管壳 式换热器,而对其它型式 的换热器只作一定篇幅的 介绍。
2.换热设备的分类及特点
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

石油化工换热设备的基础知识
换热设备是石油、化工等广泛应用的主要设备之一,约占工艺设备总台数的30~70%,占工艺设备总重量的25~50%,占工艺设备总投资的12~20%,在工艺生产操作中对工艺参数的调节,生产稳定性起着重要的作用。

1. 分类
1.1 按用途分类:换热器、冷凝器、蒸发器、冷却器、加热器
1.1.1 换热器:两种温度不同的流体进行热量的交换,使一种流体降温而另一种流体升温,以满足各自的需要,充分回收热量。

1、1、2冷凝器:在两种温度不同的流体进行热量的交换中,有一种流体是从气态被冷凝成为液态,温度变化不大,为冷凝器。

1、1、3冷却器:凡是热量不回收利用,单纯只要一种流体冷却的换热器,为冷却器。

1.2 按结构型式分类:管式换热设备、板式式换热设备
1.2.1 管式换热设备:管壳式换热设备、套管式换热设备、水浸式冷却器、空气冷却器。

1.2.2 管壳式换热设备特点:在圆筒形外壳中装有管束,一种流体在管内流动,另一种流体在管外流动。

可分为:固定管板式、带膨胀节的固定管板式、浮头式、u形管式、填函式。

天然气制氢装置换热设备结构型式主要为固定管板式(131-C、1110-C、1109-C等)、带膨胀节的固定管板式(105-UC2)、u形管式(1111-C、130-CA/CB、1105-C等)。

2. 主要参数
压力
除注明者外,压力均指表压力。

2.1.1 工作压力
工作压力指在正常工作情况下,换热器管、壳程顶部可能达到的最高压力。

2.1.2 设计压力
设计压力指设定的换热器管、壳程顶部的最高压力,与
相应的设计温度一起作为设计载荷条件,其值不得低于工作压力。

2.1.3 试验压力
试验压力指在压力试验时,换热器管、壳程顶部的压力。

2.2 温度
2.2.1 设计温度
设计温度指换热器在正常工作情况下,设定的元件金属温度(沿元件金属横截面的温度平均值),设计温度与设计压力一起作为设计载荷条件。

在任何情况下,元件金属的表面温度不得超过材料的允许使用温度。

设计温度不得低于元件金属在工作状态可能达到的最高温度。

对于0℃以下的金属温度,设计温度不得高于元件金属可能达到的最低温度。

标志在铭牌上的管、壳程设计温度,分别为管程管箱和壳程壳体的设计温度。

2.2.2 试验温度
试验温度指压力试验时,管箱和壳体的金属温度。

2.3 管程和壳程
管程系指介质流经换热管内的通道及与其相贯通部分。

壳程系指介质流经换热管外的通道及与其相贯通部分。

管程数系指介质沿换热管长度方向往、返的次数。

壳程数系指介质在壳程内沿壳体轴向往、返的次数。

3. 换热器的零、部件名称见表1和图1至图6。

表一:
换热器结构示意图:
4、换热器安装、试车和维护
4.1 安装
4.1.1 场地和基础。

4.1.1.1 应根据换热器的结构型式,在换热器的两端留有足够的空间来满足拆装、维修的需要。

4.1.1.2 活动支座的基础面上应预埋滑板。

4.1.2 安装前的准备。

4.1.2.1 可抽管束换热器安装前应抽芯检查、清扫。

抽管束时,应注意保护密封面和折流板。

移动和起吊管束时,。

相关文档
最新文档