聚合物的凝聚态结构
第2章《聚合物的凝聚态结构》习题

19、下列模型中,用来描述聚合物非晶态结构模型 的是:( D ) A、 缨状微束模型, B、折叠链模型, C、插线板模型, D、无规线团模型
20、某结晶性聚合物在偏光显微镜下呈现黑十字消 光图案,则其结晶形态是( C )。 A、 单晶, B、串晶, C、球晶, D、片晶 21、总体上,下列三类聚合物内聚能密度大小顺序 为:( A )>( C )>( B ) A、合成纤维;B、 合成橡胶;C、合成塑料
第三章
一、 概念
高分子聚集态结构习题
1. 内聚能密度 单位体积凝聚体汽化时所需要的能量。
CED E Vm
式中:Vm-摩尔体积,△E-内聚能。 2. 结晶度 实际晶态聚合物,是晶区和非晶区同时存在 的。结晶度即试样中结晶部分所占的质量分 数(质量结晶度xcm)或者体积分数(体积 结晶度xcv)。
8
16、在热塑性弹性体SBS的相态结构中,其相分离结 构为( B )。 A、 PS-连续相,PB-分散相; B、PB-连续相,PS-分散相; C、 PS和PB均为连续相;D、PS和PB均为分散相 17、下列说法,表述错误的是( B )。 A、HIPS树脂具有“海岛结构”。 B、SBS具有两相结构,PS相起化学交联作用。 C、HIPS基体是塑料,分散相是橡胶。 D、SBS具有两相结构,橡胶相为连续相。 18、下列聚合物内聚能密度最大的是( D )。 A、1,4-聚丁二烯, B、 聚苯乙烯, C、聚氯乙烯, D、聚丙烯腈 9
1
3. 液晶 是具有晶体的光学各向异性, 又具有液体的流 动性质的有序流体的总称。 4. 取向态结构 大分子链、链段或微晶在某些外场(如拉伸应 力或剪切应力)作用下,可以沿着外场方向有序 排列,这种有序的平行排列称为取向,所形成 的聚集态结构,称为取向态结构。 5. 高分子合金 指二种或多种聚合物组分通过物理或化学方法 形成的混合物,有时也称为多组分聚合物。
聚合物结构的三个层次

1.1 聚合物结构的三个层次近程结构——系指单个大分子链内部一个或几个结构单元的化学结构和立体化学结决定聚合物性能的根本性物质基础,亦是决定远程结构和凝聚态结构的重要因素。
远程结构——系指由数目众多的结构单元组成的单个大分子链的长短及其在空间存在的各种形态(是直链还是有支链?是刚性的还是柔性的?是折叠状,还是螺旋状的?)。
凝聚态结构——系指聚合物在宏观上所表现出的分子凝聚结构类型。
包括非晶态、结晶态、 取向态、液晶态、织态结构,前四个描述是聚合物的堆砌方式,织态为不同聚合物分子链或与添加剂间的结合和堆砌方式,以结晶态和非晶态最常见。
分子链结构是决定聚合物性质最基本、最重要的结构层次。
熔点、密度、溶解性、溶液或熔体的粘度、粘附性能很大程度上取决于分子结构;而凝聚态结构是决定聚合物材料和制品的使用性能,尤其是力学性能的重要因素。
关于化学结构与物理结构的确切划分,普遍认同的是 H.G.Elias 提出的界定原则:化学结构:除非通过化学键的断裂,即同时生成新的化学键才能够产生改变的分子结构。
聚合物结构中所包括的结构单元的组成及其空间构型属于化学结构。
物理结构:将大分子内部、之间或者基团与大分子之间的形态学表述。
取向、结晶和分子链的构象则属于物理结构 1.2 大分子链的近程结构大分子链的近程结构包括结构单元的化学组成,连接方式、结构异构、立体异构、以及共聚物的序列结构等五个主要方面。
1.2.1 结构单元的化学组成结论1:聚合物的近程结构,即结构单元的化学组成和结构是决定其远程结构和凝聚态结构以及聚合物性能最重要的决定性因素。
尼龙-66、PET 、PBT ~缩聚物, PP 、PS 、PMMA 、PB ~加聚物 归纳表中三条主要规律:1)杂链聚合物(多为缩合聚合物)与碳链聚合物(多为加成聚合物)相比较,前者的各项物理性能均优于后者; 2)在碳链聚合物中,侧基带有极性基团的PVC 和带有苯基的PS 的相对密度和熔点均高于非极性和低位阻侧基的PE 和PP ; 3)缩聚物尼龙和涤纶等的相对密度、熔点、强度和使用温度均普遍高于一般加聚物。
聚合物的凝聚态结构

聚合物的非晶态结构模型
• 非晶态聚合物可以有玻璃态,高弹态和黏 流态三种力学状态。 • 共同的结构特征:分子排列远程无序,近 程有序。 • 玻璃态的非晶态聚合物属于过冷液体。 • 一种观点认为非晶态聚合物的结构是完全 无序的。 • 一种观点认为非晶态聚合物的结构是局部 有序的。
非晶态聚合物的分子运动和热转变 Nhomakorabea影响玻璃化温度的因素
• • • • • 分子链的柔性 分子链间的相互作用 相对分子质量 交联 其他如增塑,共聚,升温和降温速率等
聚合物熔体的粘性流动
• 粘性液体的流动分为牛顿流动和非牛顿流 动
影响聚合物黏流温度的因素
• 在黏流温度以上,在外力作用下,聚合物 不仅链段能够运动,而且整个分子链也能 发生相对移动,在宏观上聚合物表现为发 生粘性流动,产生不可逆的流动形变。 • 高分子链的柔性 • 高分子的极性 • 相对分子质量 • 外力大小和外力作用时间
结晶速度和测定方法
• 结晶速度常用的方法有:膨胀计法,解偏 振光强度法,DSC法,X射线衍射法,小角 激光光散射,热台偏光显微镜等。 • 膨胀计法:是一种测量物质的体积随时间 变化的方法。它是测量聚合物结晶速度的 经典方法。但目前使用很少了。 • 用膨胀计法跟踪聚合物试样的体积随时间 的减小值,可得聚合物的结晶速度。
液晶分子形成的条件
三种液晶的结构类型
高分子液晶的类型
高分子液晶的应用
液晶态聚合物
差示扫描量热法( 差示扫描量热法(DSC):根据晶体聚合物在 ) 熔融过程中吸收的热量来测定其结晶度,是目 前测定聚合物结晶度最常用的手段。
X射线衍射法 射线衍射法:原理是结晶部分 射线衍射法 和非结晶部分的X射线衍射强度 来确定结晶度
聚合物的结晶过程
聚合物的凝聚态结构

Z为单位晶胞中单体(即链构造单元)旳数目;
单位晶胞中所含链数
V为晶胞体积; NA为阿佛加德罗常数
PE:以z=2代入上式可得 ρc =1.00g/ml, 而实测旳聚乙烯密度, ρ= 0.92~0.96g/cm3。
2.2.2聚合物旳结晶形态
•结晶形态:由微观构造堆砌而成旳晶体外形,尺寸可达几十 微米旳。 •单晶:即结晶体内部旳微观粒子在三维空间呈有规律地、周 期性地排列。 特点:一定外形、长程有序。 •多晶:是由无数微小旳单晶体无规则地汇集而成旳晶体构造。
(2)球晶 Spherulite
• 球晶是聚合结晶旳一种常见旳特征形式; • 形成条件:从浓溶液析出,或从熔体冷结晶时,在不
存在应力或流动旳情况下形成。 • 特征:外形呈圆球形,直径0.5~100微米数量级。 • 在正交偏光显微镜下可呈现特有旳黑十字消光图像和
消光同心环现象。 • 黑十字消光图像是聚合物球晶旳双折射性质是对称性
2.2.4 结晶度旳测定
结晶聚合物旳物理和机械性能、电性能、光性能在相当旳程 度上受结晶程度旳影响。
实际晶态聚合物,是晶区和非晶区同步存在旳。
高分子结晶度旳概念缺乏明确旳物理意义,其数值随测定措 施不同而不同。
Buoyancy method 密度法
密度结晶度
X-ray diffraction X射线衍射法
(Vc Va ) cVc aVa
X
v c
Vc V
a c a
X
w c
Wc W
W cWc aWa W Wc Wa
(Wc Wa ) cWc aWa
X
w c
Wc W
c( a ) (c a )
(2) X射线衍射法 Wide-angle X-ray diffraction (WAXD)
聚合物的凝聚态结构

第2章聚合物的凝聚态结构凝聚态指物质的物理状态,通常包括固态、液态和气态。
(0注意与相态的区别。
)高分子的凝聚态是指高分子链之间的几何排列和堆砌状态。
对于柔性聚合物:包括晶态、非晶态。
刚性聚合物:包括晶态、液晶态、非晶态。
分子间作用力强弱的表征:内聚能密度。
内聚能:克服分子间作用力,1mol 的凝聚体汽化时所需的能量。
E=△HV-RT式中:△HV:摩尔蒸发热, RT:汽化时所做的膨胀功。
内聚能密度(cohesive energy density ,CED):单位体积凝聚体汽化时所需要的能量。
式中:Vm-摩尔体积。
聚合物的 CED 的测定:(1)最大溶胀比法;(2)最大特性粘度法。
一般 CED 300J/cm3 以下,橡胶;300-400 J/cm3,塑料;400 J/cm3 以上,纤维、工程塑料。
2.1晶态结构空间点阵、晶胞和晶系:在结晶学中,把组成晶体的质点抽象成为几何点,由这些等同点集合而成的点阵,称为空间点阵,或将这些集合所形成的格子叫做空间格子。
在空间格子中,可找出一个具有周期性排列的,大小与形状相等的,体积最小的平行六面体,这个最小单位格子用以表示晶体结构的基本单元,称为晶胞。
描述晶胞结构的六个参数:a,b,c,α,β,γ (平行六面体的三边的长度及它们之间的夹角)。
晶体七种类型:立方,四方,斜方(正交),单斜,三斜,六方,三方(菱形)。
图2-1晶面指数晶面的标记——密勒(Miller)指数或晶面指数。
一晶面与晶轴a,b,c分别相交于M1,M2,M3三点,相应的截距为OM1=3a,OM2=2b,OM3=1c,全为单位向量的整数倍。
如取三个截距的倒数1/3,1/2,1/1,通分后则得2/6,3/6,6/6,弃去共分母,取2,3,6作为M1,M2,M3晶面的指标,则(2,3,6)即为该晶面的密勒指数。
晶体:物质的重复单元在空间呈三维有序的周期性排列。
重复单元:原子、分子、离子、链节。
2.1.2聚合物的晶体结构几种典型的聚合物晶体结构:(一)平面锯齿形结构1、聚乙烯聚乙烯分子链具有锯齿形的反式构象。
高分子物理 第2章 聚合物的凝聚态结构资料

原因
聚合物没有气态的原因:
1)聚合物分子量很大,分子链很长; 2)聚合物中总范德华力超过化学键的键能; 3)消除所有的范德华力作用以前化学键断列而分解。
范德华力与化学键的区别 ?
化学键: 是构成分子的原子键的作用力吸引力和排斥 力达到平衡时形成的稳定的键。
共价键,离子键,金属键
范德华力: 是存在于分子间或者分子内非键合原子 间的相互作用力。
PE球晶的微光显微镜照片
PE球晶的电子显微镜照片
研究球晶的结构、形成条件、影响因素和变形 破坏,有着十分重要的实际意义:
◆ 球晶的大小直接影响聚合物的力学性能,球晶越大,材 料的冲击强度越小,越容易破裂。
◆ 球晶的大小对聚合物的透明性也有很大影响,通常非晶 聚合物是透明的,而结晶聚合物由于存在晶相和非晶 相,两相折射率不同,使得物质呈现乳白色而不透明。
★ CED=300 — 400J/cm3聚合物,为塑料。
192 4
例1 : 根据高聚物的分子结构和分子间作用能,定性地讨 论表中所列各高聚物的性能。
高聚物 聚乙烯 聚异丁烯 天然橡胶 聚丁二烯 丁苯橡胶 聚苯乙烯
内聚能密度 高聚物
259
聚甲基丙烯酸甲酯
272
聚醋酸乙烯酯
280
聚氯乙烯276源自聚对苯二甲酸乙二酯由晶体结构(十分之几纳米)堆砌而成的晶体外形, 尺寸一般可达到几十微米,有时可以达到几厘米。
聚合物的结晶形态有几种
按结晶条件不同可以分为以下几种类型:
结晶形态
单晶 树枝状晶
柱晶
球晶 纤维状晶和串晶
伸直链晶
第二节 结晶聚合物
3、聚合物的结晶形态 1)单晶 单晶的结构特点: ◆ 只能在极稀的溶液中(0.01~0.1%)缓慢结晶时生成的; ◆ 聚合物单晶的横向尺寸可以从几微米到几十微米,
高分子物理名词解释1

一、概念与名词第一章高分子链的结构高聚物的结构指组成高分子的不同尺度的结构单元在空间相对排列,包括高分子的链结构和聚集态结构。
高分子链结构表明一个高分子链中原子或基团的几何排列情况。
聚集态结构指高分子整体的内部结构,包括晶态结构、非晶态结构、取向态结构、液晶态结构和织态结构。
近程结构指单个大分子内一个或几个结构单元的化学结构和立体化学结构。
远程结构指单个高分子的大小和在空间所存在的各种形状称为远程结构化学结构除非通过化学键的断裂和生成新的化学键才能改变的分子结构为化学结构。
物理结构而一个分子或其基团对另一个分子的相互作用构型分子中各原子在空间的相对位置和排列叫做构型,这种化学结构不经过键的破坏或生成是不能改变的。
旋光异构结构单元-CH2--C*HR-型的高分子,由于每一个结构单元含有一个C*,因此,它们在高分子链中有三中键接方式,即全同、间同、无规立构,此即为旋光异构。
全同立构结构单元-CH2--C*HR-型的高分子,由于每一个结构单元含有一个C*,因此,它们在高分子链中有三种键接方式,若高分子链中C*的异构体是相同的,此即为全同立构。
间同立构结构单元-CH2--C*HR-型的高分子,由于每一个结构单元含有一个C*,因此,它们在高分子链中有三种键接方式,若高分子链中C*的两种异构体是交替出现的,此即为间同立构。
无规立构结构单元-CH2--C*HR-型的高分子,由于每一个结构单元含有一个C*,因此,它们在高分子链中有三种键接方式,若高分子链中C*的两种异构体是无规则出现的,此即为无规立构。
有规立构全同和间同立构高分子统称为有规立构。
等规度全同立构高分子或全同立构高分子和间同立构高分子在高聚物中的百分含量。
几何异构当主链上存在双键时,而组成双键的两个碳原子同时被两个不同的原子或基团取代时,即可形成顺反异构,此即为几何异构。
顺反异构当主链上存在双键时,而组成双键的两个碳原子同时被两个不同的原子或基团取代时,即可形成顺反异构,此即为几何异构。
第2章 聚合物的凝聚态结构

次价力的影响
CED<70 cal/cm3 (290J/cm3 ) 分子链间相互作用小 分子链柔软、宏观为橡胶材料 分子链柔软、 CED>100 cal/cm3 (400J/cm3 ) 分子链间相互作用大 分子链刚硬、 分子链刚硬、宏观为纤维材料 CED 介于之间、宏观为塑料 介于之间、
线型高聚物的内聚能密度
等规聚丙烯的的结晶结构
---分子链呈螺旋状结构 ---分子链呈螺旋状结构
等规聚丙烯的等同周期为0 65nm 且每个等同周期中含有3 nm, 等规聚丙烯的等同周期为 0 . 65 nm, 且每个等同周期中含有 3 个单 体单元。 体单元。 665nm nm, 096nm nm, 90° 99. a=0.665nm,b=2.096nm,α=γ=90°,β=99.2°, 单 位 晶 胞属于单斜晶系。 胞属于单斜晶系。 由图2 12可知,单位晶胞中单体数目为12 据此, 12可知 12。 由图2—12可知,单位晶胞中单体数目为12。据此,可以计算出等 规聚丙烯的密度ρc ρc。 规聚丙烯的密度ρc
X射线衍射实验证明,在很多结晶聚合物中高分子链确 射线衍射实验证明, 实堆砌成具有三维远程有序的点阵结构,即晶格。 实堆砌成具有三维远程有序的点阵结构,即晶格。 结晶聚合物的晶体结构、结晶程度、 结晶聚合物的晶体结构 、 结晶程度 、 结晶形态等对其 力学性能、电学性能、光学性质都有很大影响, 力学性能 、 电学性能 、 光学性质都有很大影响 , 研究 晶态结构具有重要理论和实际意义。 晶态结构具有重要理论和实际意义。 晶胞的类型一共有7 其中,立方、六方为高级晶系, 晶胞的类型一共有7种,其中,立方、六方为高级晶系, 正方(四方) 斜方为中级晶系,三斜、 正方 ( 四方) 、 斜方为中级晶系 , 三斜 、 单斜为初级晶 系。 在高分子晶系中, 在高分子晶系中 , 由于长链造成各向异性而不出现立 方晶系,而且,属于高级晶系的也很少, 方晶系 , 而且 , 属于高级晶系的也很少 , 多数属于初 中级晶系。 级、中级晶系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
晶格缺陷
其他在结晶中分子链取平面锯齿形构象的聚合物还有脂 肪族聚酯、聚酰胺、聚乙烯醇等。
实验证明,等规PP的分子链呈螺旋状结构,
2.1.2 聚合物的晶体结构和研究方法
(2)晶胞密度的计算
M是结构单元分子量; Z为单位晶胞中单体(即链结构单元)的数目; V为晶胞体积; NA为阿佛加德罗常数
2.1.2 聚合物的晶体结构和研究方法
液体 固体
晶态
非晶态 液晶态 取向态 织态结构
物质为什么会形成凝聚态?
分子间作用力 范德华力和氢键 静电力 诱导力 色散力 表征分子间作用力大小的物理量——内聚能或 内聚能密度
聚合物内聚能:克服分子间作用力,1mol凝聚体汽化时 所需要的能量E。
E HV RT
HV 摩尔蒸发热
RT 汽化时所做的膨胀功
2.1 晶态聚合物结构
结晶聚合物 的重要实验
证据
X射线衍射花样
Intensity (cps)
X射线衍射曲线
1000
500
0
10
20
30
40
50
Polar angle (degree)
2.1 晶态聚合物结构
多晶样品的衍射花样
衍射线
照 相
入射线
底 片
试样
上 的德照相来自拜底片环
2.1 晶态聚合物结构
完善晶体
2.1.1 晶体结构的基本概念
四方晶系
简单四方
体心四方
c
c
a a
a a
a = b c, a = b = g = 90
2.1.1 晶体结构的基本概念
斜方晶系
简单斜方
底心斜方
面心斜方
体心斜方
c
a b
a b c, a = b = g = 90
2.1.1 晶体结构的基本概念
三方(菱形)晶系
a a
a a
a a = b = c, a b g 90
2.1.1 晶体结构的基本概念
单斜晶系
简单单斜
底心单斜
c
a
a
c
a
a
b
b
a b c, b = g = 90 a
2.1.1 晶体结构的基本概念
三斜晶系
c ba
g
b
a
a b c, a b g 90
2.1.1 晶体结构的基本概念
在高分子晶系中,由于长链造成各向异性而不出现 立方晶系,而且属于高级晶系(六方、立方)的也 很少,多数属于初级(三斜,单斜)、中级晶系 (四方,斜方)。
2.1.1 晶体结构的基本概念
(3)晶面和晶面指数
• 晶面:结晶格子内所有的格子点全部集中在相互 平行的等间距的平面群上,这些平面叫做晶面。
• 晶面间距:晶面与晶面之间的距离。
• 晶面指数:一般常以Miller指数来标记某个晶面。
2.1.1 晶体结构的基本概念
晶面指数( h k l )
c
c/2
a/3
结晶聚合物
无定形物质
2.1.1 晶体结构的基本概念
(1)空间点阵
将晶体中重复出现的最小单元作为结构基元(各结 构基元相互之间必须是化学组成相同、空间结构相 同、排列取向相同、周围环境相同),用一个数学 上的点来代表,称为点阵点。整个晶体被抽象成一 组点,称为点阵。
晶体结构= 点阵+结构基元
2.1.1 晶体结构的基本概念
c
三晶轴的长度 三边长度的夹角
ba
g
b
a
7个晶系:立方、六方、四方、三方、斜方、单斜、三斜
2.1.1 晶体结构的基本概念
立方晶系 简单立方
面心立方
体心立方
a
a
a
a a
a a
a a
a = b = c, a = b = g = 90
2.1.1 晶体结构的基本概念
六方晶系
c
a a = b c, a = b = 90, g 120
第2章 高分子的凝聚态结构
分子的聚集状态
凝聚态为物质的物理状态
根据物质的分子运 动在宏观力学性能 上的表现来区分的
固体 液体 气体
玻璃例外,过冷液体
相态为物质的 热力学状态
晶态(固态) 液态
根据物质的结构 特征和热力学性 质来区别的
气态 液晶态
高分子凝聚态
是指高分子链之 间的几何排列和 堆砌状态
小分子晶体与高分子晶体质点不同 • 小分子晶体的质点:分子、原子、离子 • 高分子晶体的质点:大分子链中的结构单元链节
2.1.1 晶体结构的基本概念
2.1.1 晶体结构的基本概念
(2)晶胞与晶系 晶格的最小单位均为平行六面体,称为晶胞.
2.1.1 晶体结构的基本概念
描述晶胞结构的六个参数
a、b、c、 α、β、γ。
平面锯齿或螺旋构象。
聚乙烯的构象
PE的晶胞结构
通过实验和计算PE的等 同周期c=0.253nm,即每个 等同周期中含有一个结构 单元(排入到格子中的质 点就是单体的重复单元)
每一个晶胞中含有单 体单元的数目是2
正交晶系
2.1.2 聚合物的晶体结构和研究方法
注意
由于结晶条件的变化,引起分子链构象的变化或者链堆 积方式的改变,则一种聚合物可以形成几种不同的晶体。 聚乙烯的稳定晶型是正交晶系,拉伸时则可形成三斜或 单斜晶系。
• E>400Jcm-3 :分子链上有强的极性基团或分子间能 形成氢键,相互作用强,有较好的力学强度和耐热性, 易于结晶和取向,可作为合成纤维使用
2.1 晶态聚合物结构
条件?
高分子链本身具有 必要的规整结构
适宜的温度,外力 等条件
熔体结晶 方法?
高分子链规整 堆砌形成结晶
玻璃体结晶
溶液结晶
晶态聚合物结构和X射线衍射(第2版),莫志深等,科 学出版社。
a
2b/3
b
(1) 晶面在三晶轴上的截距 1 a, 2 b, 1 c 332
(2) 去单位向量,求倒数并通分
3, 3, 2 6, 3, 4
121
222
(3) 除分母,用圆括号括起来
6, 3, 4 6 3 4
2.1.2 聚合物的晶体结构和研究方法
1. 能量最低原则 2. 周期最短原则
等同周期(或称纤维周期):高分子晶体中,在c轴方向化学结 构和几何结构重复单元的距离。一般将分子链的方向定义为c 轴, 又称为主轴
聚合物内聚能密度(CED):单位体积凝聚体汽化时所需
要的能量
CED E Vm
Vm 摩尔体积
聚合物内聚能测定方法
最大溶胀比法 根据聚合物在不同溶剂 中的溶解能力间接估计 最大特性粘数法
• E<300Jcm-3 :非极性聚合物,分子间作用力弱,分 子链属于柔性链,具有高弹性,可作橡胶使用
• 300<E<400Jcm-3 :作为塑料使用