按键消抖

合集下载

按键消除抖动的措施

按键消除抖动的措施

按键消除抖动的措施
按键消除抖动是指在使用电子设备中,当按下按键后可能会出
现的多次触发信号的问题。

为了解决这个问题,可以采取以下措施:
1. 软件滤波,在程序设计中,可以采用软件滤波的方法来消除
按键抖动。

软件滤波可以通过延时、状态机等方式来确保只有真正
的按键按下才会触发相应的操作,而忽略短暂的抖动信号。

2. 硬件滤波,在电路设计中,可以加入电容、电阻等元件来实
现硬件滤波,通过延长按键信号的上升沿或下降沿时间,从而消除
按键抖动带来的干扰。

3. 使用稳定的按键元件,选择质量好、稳定性高的按键元件,
可以减少按键抖动的发生。

4. 金属片设计,在按键设计中,可以添加金属片来增加按键的
稳定性,减少抖动。

5. 硬件消抖器,使用专门的硬件消抖器芯片,这些芯片可以自
动检测和消除按键抖动,提高按键的稳定性。

综上所述,消除按键抖动可以通过软件滤波、硬件滤波、选择稳定的按键元件、金属片设计以及使用硬件消抖器等多种措施来实现。

在实际应用中,可以根据具体情况选择合适的方法或者结合多种方法来解决按键抖动问题。

按键开关去抖动问题

按键开关去抖动问题
按键开关去抖动问
目录
• 引言 • 按键开关抖动的常见解决方法 • 按键开关去抖动的原理 • 去抖动效果的评估和测试 • 实际应用中的按键开关去抖动案例
01
引言
按键开关去抖动的背景和重要性
按键开关在电子设备中广泛应用,但在实际使用中,由 于机械或电气噪声的影响,按键开关可能会出现抖动现 象,即开关状态在短时间内的快速切换。
结合硬件去抖和软件去抖的优点,先通过硬件电路对按键信号进行初步处理,再通过软件算法 进一步去除抖动。
互补滤波法
采用硬件滤波和软件滤波两种方法对按键信号进行互补处理,提高去抖效果。
04
去抖动效果的评估和测试
去抖动效果的评估方法
实际使用评估
在实际使用场景中,观察 按键开关去抖动的表现, 评估其稳定性和可靠性。
在智能家居领域,按键开关被广泛应用于各种智 能设备的控制面板上。由于用户操作频繁,按键 开关容易出现机械疲劳和抖动现象,影响设备的 正常使用。
通过采用去抖动技术,可以有效消除按键开关的 抖动现象,提高设备的响应速度和稳定性,提升 用户的使用体验。
汽车电子中的按键开关去抖动应用
在汽车电子领域,按键开关广泛应用于车载信息娱乐系统、空调控制、车窗升降 等系统中。由于汽车环境的复杂性和使用频率高,按键开关的抖动问题尤为突出 。
实验过程
在实验中模拟按键开关的 抖动情况,记录去抖动电 路的表现和性能数据。
数据处理
对实验数据进行处理和分 析,提取关键性能指标, 如抖动抑制时间、抑制率 等。
结果分析
根据实验结果,分析去抖 动电路的性能表现,评估 其优缺点和适用场景。
实际应用中的按键开关去抖
05
动案例
工业控制中的按键开关去抖动应用

vivado按键消抖原理

vivado按键消抖原理

vivado按键消抖原理按键消抖是指在数字电路中,当按键按下或释放时,由于按键机械开关的特性,会导致电路出现不稳定的信号状态。

这种不稳定状态可能会导致错误的触发,例如出现多次触发或漏触发。

因此,为了确保按键信号的稳定性和可靠性,需要进行按键消抖处理。

按键消抖的原因主要有两个方面。

首先,按键机械开关的接触面存在微小的弹跳现象,当按键按下或释放时,接触面会在短时间内反复接触和分离,导致电路信号出现多次变化。

其次,由于电路中存在的噪声干扰,也会使得按键信号产生抖动。

为了解决按键消抖问题,可以采用硬件和软件两种方法。

硬件方法主要通过添加滤波电路或使用稳定的按键开关来消除按键弹跳现象。

滤波电路可以通过RC电路或者使用专用的按键消抖芯片来实现。

而软件方法主要通过在数字电路中添加按键消抖算法来处理按键信号。

在Vivado中,按键消抖可以通过使用状态机来实现。

状态机是一种用于描述系统行为的模型,可以根据输入信号的状态变化来改变系统的状态和输出。

在按键消抖中,可以使用状态机来检测按键信号的变化,并根据一定的状态转换规则来消除按键弹跳现象。

具体实现时,可以将按键信号作为输入,将按键状态和输出作为状态机的状态和输出。

当按键信号发生变化时,状态机会根据一定的状态转换规则进行状态转换,并输出消抖后的按键信号。

常用的状态转换规则包括按键按下时状态转换为按下状态,按键释放时状态转换为释放状态,以及连续按键时状态不变。

在Vivado中,可以使用Verilog或VHDL等硬件描述语言来编写状态机代码。

首先,需要定义状态机的输入、输出和状态变量,并初始化各个变量的初始值。

然后,需要编写状态转换规则和输出逻辑,根据输入信号的状态变化来改变状态和输出。

最后,需要将状态机代码综合生成对应的逻辑电路,并进行仿真和验证。

总结起来,按键消抖是数字电路设计中常见的问题,为了确保按键信号的稳定性和可靠性,需要进行按键消抖处理。

在Vivado中,可以使用状态机来实现按键消抖,通过定义状态转换规则和输出逻辑,消除按键弹跳现象。

按键消抖的原理

按键消抖的原理

按键消抖的原理一、引言在电子设备中,按键是常见的输入方式。

然而,由于按键的机械结构,当按下或松开按键时,会产生机械弹跳现象,导致信号出现多次跳变,这就是所谓的“按键抖动”现象。

为了避免这种现象对电路造成干扰,需要进行按键消抖处理。

二、什么是按键消抖?按键消抖是指在接收到按键信号后,在一定时间内只处理一次信号,并且保证该信号为有效信号。

其目的是消除因机械结构引起的多次跳变信号。

三、按键消抖的原理1. 机械弹跳原理在了解按键消抖原理之前,需要先了解机械弹跳原理。

当按下或松开一个开关时,由于接触面积有限和金属表面不完全平整等因素影响,开关触点会发生不稳定震荡,并在短时间内反复接通和断开。

这种现象称为“机械弹跳”。

2. 软件处理原理软件处理原理是通过程序来实现对按键状态进行检测和判断的方式。

具体实现方法包括:轮询法、中断法、计时法等。

(1)轮询法轮询法是指通过循环检测按键状态的方式来实现按键消抖。

具体实现方法为:在主程序中设置一个循环,不断检测按键状态,当检测到按键被按下时,进行一定的延时后再次检测按键状态,如果依然是按下状态,则判断为有效信号。

(2)中断法中断法是指通过外部中断来实现对按键状态进行检测和判断的方式。

具体实现方法为:将按键连接到微控制器的外部中断引脚上,在程序中设置好相应的中断服务程序,当检测到外部中断信号时,进入相应的中断服务程序进行处理。

(3)计时法计时法是指通过定时器来实现对按键状态进行检测和判断的方式。

具体实现方法为:当检测到按键被按下时,启动定时器并开始计数,在一定时间内只处理一次信号,并保证该信号为有效信号。

四、硬件处理原理硬件处理原理是通过使用电路元件来实现对按键消抖的方式。

具体包括RC滤波器、Schmitt触发器、反相器等。

1. RC滤波器RC滤波器是将电容和电阻组合在一起,利用电容的充放电特性实现对信号的滤波。

当按键被按下时,由于电容的充放电时间常数较长,可以使机械弹跳信号被滤除。

键盘抖动消除方法

键盘抖动消除方法

键盘抖动消除方法
键盘抖动是指在敲击键盘时手部或手臂的微小颤动,导致输入的文字不清晰或出现错别字等问题。

因此,很多用户都希望能够消除键盘抖动,提升打字的准确性和效率。

下面介绍几种实用的键盘抖动消除方法。

1. 改变坐姿和姿势
键盘抖动主要是由于手部和手臂的颤动引起的,因此改变打字时的坐姿和姿势可以有效减少颤动。

建议调整座椅和桌面的高度,使得手臂可以在自然状态下平放在桌面上,手腕和手臂之间的角度约为90度。

此外,保持良好的体姿和放松肌肉也有助于减少键盘抖动。

2. 练习手部稳定性
练习手部稳定性可以提高手部肌肉的控制力和协调性,从而减少键盘抖动。

可以通过一些简单的活动来锻炼手部稳定性,比如按摩手掌和手腕、做手部放松练习、在手心放一支笔并保持平衡等。

3. 使用键盘垫或鼠标垫
键盘垫和鼠标垫可以提供稳定的支撑,降低手部和手臂的抖动。

一些键盘垫还具有防滑和缓冲的功能,可以减少打字时的噪音和疲劳感。

4. 调整键盘反馈力度
键盘反馈力度较大时,敲击按键需要更大的力量,会增加手部和手臂的抖动。

因此,可以调整键盘反馈力度为轻按键。

这样不仅可以减少键盘抖动,还可以提高打字的速度和舒适度。

5. 使用语音输入
如果键盘抖动比较严重,可以尝试使用语音输入来代替打字。

语音输入可以通过输入语音指令来进行操作,不需要使用键盘进行输入,可以有效减少键盘抖动的问题。

总结起来,减少键盘抖动需要综合考虑多个方面,包括改变姿势、练习手部稳定性、使用适当的支撑工具、调整键盘反馈力度和使用语音输入等。

只要掌握了正确的方法,就可以提高打字的准确性和效率,避免键盘抖动的问题。

c语言按键消抖常用方法

c语言按键消抖常用方法

在C语言中,按键消抖是指处理物理按键在按下或释放时可能产生的抖动或不稳定信号的问题。

常用的方法包括软件延时消抖和状态机消抖。

1. 软件延时消抖:- 当检测到按键按下或释放时,可以通过在代码中添加一个短暂的延时来过滤掉按键可能产生的抖动信号。

例如,在按键检测到变化后,延时几毫秒以确保按键信号稳定后再进行状态读取。

```cvoid delay(unsigned int ms) {unsigned int i, j;for (i = 0; i < ms; i++)for (j = 0; j < 300; j++);}// 在按键检测中使用延时if (button_pressed && !last_button_state) {delay(10); // 等待10毫秒if (button_pressed) {// 执行按键按下后的操作last_button_state = button_pressed;}}```这种方法简单易行,但需要根据具体硬件和按键特性调整延时时间,且可能会造成按键响应速度变慢。

2. 状态机消抖:- 利用状态机来跟踪按键状态变化,并在一定持续时间内保持一致的状态才认定为有效按键按下或释放。

这可以通过一个状态变量和定时器结合实现。

```cenum ButtonState {IDLE, PRESSED, RELEASED};enum ButtonState current_state = IDLE;unsigned int debounce_timer = 0;// 在按键检测中使用状态机void button_check() {switch (current_state) {case IDLE:if (button_pressed) {current_state = PRESSED;debounce_timer = 10; // 设定10毫秒的延时}break;case PRESSED:if (!button_pressed) {current_state = RELEASED;debounce_timer = 10; // 设定10毫秒的延时}break;case RELEASED:if (button_pressed) {current_state = PRESSED;debounce_timer = 10; // 设定10毫秒的延时}break;}if (debounce_timer > 0) {debounce_timer--;} else {if (current_state == PRESSED) {// 执行按键按下后的操作} else if (current_state == RELEASED) {// 执行按键释放后的操作}current_state = IDLE; // 处理完毕后返回IDLE状态 }}```这种方法相对于延时消抖更加灵活,可以根据具体需求设置不同的延时时间,并且不会影响整体的按键响应速度。

按键消抖原理

按键消抖原理

按键消抖原理
按键消抖原理是指通过某种方法在按键被按下或松开时,消除或减少按键的抖动现象,使输入信号得到稳定的识别和处理。

在实际应用中,按键在被按下或松开时,由于机械结构的原因,往往会引起按键的不稳定状态,表现为按键在短时间内多次触发开关。

这种按键抖动不仅会导致输入信号的波动,还可能对系统造成误操作或不良影响。

为了解决按键抖动问题,常用的按键消抖原理主要有以下几种:
1. 软件延时消抖:通过在程序中设定一个适当的延时时间,当按键被按下或松开后,延时一段时间再读取按键状态,以判断按键是否稳定。

如果经过延时后按键状态仍然相同,则可以认为按键已经稳定按下或松开,从而减少抖动的影响。

2. 硬件滤波消抖:通过在按键电路上设计滤波器或添加电容元件,可以对按键信号进行滤波处理,去除短时间内的干扰信号,使输入信号更加稳定。

常用的滤波电路包括RC滤波电路、OTA滤波电路等。

3. 状态改变检测消抖:在按键电路中,通过检测按键的状态变化来判断按键是否按下或松开。

当按键在短时间内发生多次状态变化时,只会认为按键状态发生了一次改变,从而忽略了抖动现象。

这种方式适用于按键状态改变的速度较慢的情况。

通过以上的按键消抖原理,可以有效地减少按键抖动现象,提
高按键输入的可靠性和稳定性。

在实际应用中,可以根据具体情况选择适合的原理和方法来实现按键消抖,以满足不同的需求。

verilog按键消抖原理

verilog按键消抖原理

verilog按键消抖原理(原创版)目录1.Verilog 简介2.按键消抖的概念3.按键消抖的实现原理4.实际应用中的按键消抖设计5.总结正文【1.Verilog 简介】Verilog 是一种硬件描述语言,主要用于数字系统硬件的描述、模拟和验证。

在数字电路设计和 FPGA 开发领域,Verilog 被广泛应用。

通过Verilog,设计人员可以对硬件电路进行建模、模拟和验证,以确保设计满足性能要求。

【2.按键消抖的概念】按键消抖,又称按键去抖,是一种在按键输入过程中消除误触发的技术。

在实际应用中,按键输入可能会受到噪声、抖动等因素的影响,导致误触发。

按键消抖的目的就是消除这些干扰,确保按键输入的准确性。

【3.按键消抖的实现原理】按键消抖的实现原理主要有两种:软件消抖和硬件消抖。

(1)软件消抖:软件消抖是通过程序算法实现的。

在按键触发时,程序会检测按键触发信号是否满足一定的条件,例如连续触发次数、触发时间间隔等。

如果满足条件,则认为这是一个有效的按键触发,否则不予响应。

(2)硬件消抖:硬件消抖是通过硬件电路实现的。

硬件消抖电路通常包括滤波器、延迟器等组件。

当按键触发信号输入时,滤波器会滤除噪声,延迟器会消除触发信号的抖动,从而保证输出信号的稳定性。

【4.实际应用中的按键消抖设计】在实际应用中,按键消抖设计需要考虑多种因素,如按键触发信号的噪声、抖动特性,系统的响应速度等。

为了实现高效、可靠的按键消抖,设计人员需要对这些因素进行综合考虑,选择合适的消抖方案。

【5.总结】按键消抖是一种重要的技术,可以有效消除按键输入中的误触发,提高系统的稳定性和可靠性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

在使用单片机搭建有人机交互的系统时需要用到键盘,因为单片机工作时间都是纳秒与毫秒级别,但是我们人体的反应时间最少要0.2秒,之间差距很大,现实过程中也会不小心碰到按键,正常的按下按键应该是持续数十秒的稳定。

一、按键电路常用的非编码键盘,每个在使用单片机搭建有人机交互的系统时需要用到键盘,因为单片机工作时间都是纳秒与毫秒级别,但是我们人体的反应时间最少要0.2秒,之间差距很大,现实过程中也会不小心碰到按键,正常的按下按键应该是持续数十秒的稳定。

一、按键电路常用的非编码键盘,每个键都是一个常开开关电路。

计数器输入脉冲最好不要直接接普通的按键开关,因为记数器的记数速度非常快,按键、触点等接触时会有多次接通和断开的现象。

我们感觉不到,可是记数器却都记录了下来。

例如,虽然只按了1下,记数器可能记了3下。

因此,使用按键的记数电路都会增加单稳态电路避免记数错误。

二、按键消抖通常的按键所用开关为机械弹性开关,当机械触点断开、闭合时,电压信号小型如下图。

由于机械触点的弹性作用,一个按键开关在闭合时不会马上稳定地接通,在断开时也不会一下子断开。

因而在闭合及断开的瞬间均伴随有一连串的抖动,如下图。

抖动时间的长短由按键的机械特性决定,一般为5ms~10ms。

这是一个很重要的时间参数,在很多场合都要用到。

按键稳定闭合时间的长短则是由操作人员的按键动作决定的,一般为零点几秒至数秒。

键抖动会引起一次按键被误读多次。

为确保CPU对键的一次闭合仅作一次处理,必须去除键抖动。

在键闭合稳定时读取键的状态,并且必须判别到键释放稳定后再作处理。

按键的抖动,可用硬件或软件两种方法。

三、硬件消抖在键数较少时可用硬件方法消除键抖动。

下图所示的RS触发器为常用的硬件去抖。

消抖电路如下图中两个“与非”门构成一个RS触发器。

当按键未按下时,输出为1;当键按下时,输出为0。

此时即使用按键的机械性能,使按键因弹性抖动而产生瞬时断开(抖动跳开B),中要按键不返回原始状态A,双稳态电路的状态不改变,输出保持为0,不会产生抖动的波形。

也就是说,即使B点的电压波形是抖动的,但经双稳态电路之后,其输出为正规的矩形波。

这一点通过分析RS触发器的工作过程很容易得到验证。

利用电容的放电延时,采用并联电容法,也可以实现硬件消抖:消抖电路如下四、软件延时消抖如果按键较多,常用软件方法去抖,即检测出键闭合后执行一个延时程序,产生5ms~10ms的延时,让前沿抖动消失后再一次检测键的状态,如果仍保持闭合状态电平,则确认为真正有键按下。

当检测到按键释放后,也要给5ms~10ms 的延时,待后沿抖动消失后才能转入该键的处理程序。

五、无延时的软件消抖/*********************************************名称:键盘扫描子函数功能:在按键稳定期内判断键值,并返回键值**********************************************/uchar keyscan(void){static char key_state = 0;static char key_value = 0;uchar key_press, key_return = 0;key_press=turn_left&turn_right; //读按键I/O电平switch (key_state){case 0 : // 按键初始态if (key_press==0) key_state = 1; // 键被按下,但需要确认是否是干扰break;case 1 : // 按键确认态if (key_press==0)//如有键按下则不是干扰,判断键值{if(turn_left==0) //判断是哪一个按键被按下key_value=1; //按键较多时可采用switch选择结构else if(turn_right==0)key_value=2;elsekey_value=0;key_state = 2; // 状态转换到键释放态}elsekey_state = 0; // 按键已抬起,属于干扰,转换到按键初始态break;case 2 :if (key_press==1){key_return=key_value;//按键释放后再输出键值,如果按下键就输出则可省略key_valuekey_value=0;key_state = 0; //如果按键释放,转换到按键初始态}break;}return key_return; //返回键值}/*********************************************名称:按键处理子函数功能:**********************************************/void key_operation(void){switch (keyscan()) //根据键值不同,执行不同的内容{case 1:hight_votage-=1;if(hight_votage<5)hight_votage=5;break;case 2:hight_votage+=1;if(hight_votage>25)hight_votage=25;break;default :break;}}系统的信号输入中,键盘因其结构简单而被广泛使用。

因此,对键盘的输入(逻辑0或1)进行准确采样,避免错误输入是非常有必要的。

理想的键盘输入特性如图1所示:按键没有按下时,输入为逻辑1,一旦按下则输入立刻变为逻辑0,松开时输入则立刻变为逻辑1。

图 1理想键盘输入特性然而实际的键盘受制造工艺等影响,其输入特性不可能如图1完美。

当按键按下时,在触点即将接触到完全接触这段时间里,键盘的通断状态很可能已经改变了多次。

即在这段时间里,键盘输入了多次逻辑0和1,也就是输入处于失控状态。

如果这些输入被系统响应,则系统暂时也将处于失控状态,这是我们要尽量避免的。

在触点即将分离到完全分离这段时间也是一样的。

实际键盘的输入特性如图2所示:图 2实际键盘输入特性我们可以看到:键盘在输入逻辑转换时,实际上是产生了瞬时的高频干扰脉冲。

按键消抖的目的在于消除此干扰,以达到接近图1所示的理想输入特性。

有两个阶段可以设法消除此干扰:1.在键盘信号输入系统之前(系统外);2.键盘信号输入系统以后(系统内)。

在信号输入系统之前将抖动干扰消除,可以节省系统资源,提高系统对其他信号的响应能力,也就是硬件消抖。

一种比较巧妙的硬件消抖电路结构如图3所示:图 3用基本SR锁存器构成的消抖电路该电路利用基本SR锁存器的记忆作用消除开关触点振动所产生的影响。

开关S 每切换一次,输出端只有一次翻转,不存在抖动波形(读者可以根据SR锁存器功能自行分析,此处略)。

但是使用SR锁存器消抖只适用于单刀双掷开关,实际应用当中常用的键盘多是两个接线端的按键。

对此类按键的常用硬件消抖电路如图4所示:图 4常用键盘硬件消抖电路此电路利用电容平波,再经过施密特反相器整形之后就得到了没有毛刺的脉冲波。

软件消抖要占用系统资源,在系统资源充足的情况下使用软件消抖更加简单。

软件消抖的实质在于降低键盘输入端口的采样频率,将高频抖动略去。

实际应用中通常采用延时跳过高频抖动区间,然后再检测输入做出相应处理。

一般程序代码如下:if(value == 0) //一旦检测到键值{Delay(); //延时20ms,有效滤除按键的抖动if(value == 0) //再次确定键值是否有效{…… //执行相应处理这段软消抖程序从机理上看不会有什么问题,通常在软件程序不太"繁忙"的情况下也能够很好的消抖并做相应处理。

但是如果在延时期间产生了中断,则此中断可能无法得到响应。

对于硬件资源丰富的FPGA系统,可以使用硬件来减轻软件工作量,通常称之为"硬件加速"。

在按键信号输入到软件系统前用逻辑对其进行一下简单的处理即可实现所谓的"硬件消抖",verilog代码如下:该程序中设置了一个20ms计数器,通过间隔20ms对输入信号inpio采样两次,两次相同则认为键盘输入稳定,得到用硬件逻辑处理后的inpio_swin信号则是消抖处理过的信号。

软件程序就不再需要delay()来滤波了,也不会出现使用纯软件处理出现的"中断失去响应"的情况了,这就是"硬件加速"的效果。

上述verilog代码采用间隔采样来达到消抖的目的,对于不同物理特性的键盘,最佳的间隔时间采样时间也不同,因此还存在一些不稳定因素。

下面介绍一种更好的软消抖程序,同样采用"硬件加速",不同之处在于使用了有限状态机来实现,其VHDL代码如下:SIGNAL pre_s, next_s: state; BEGINP0:PROCESS( reset, clk )BEGINif reset = '0' thenpre_s <= s0;elsif rising_edge( clk ) thenpre_s <= next_s;elsenull;end if;END PROCESS P0;P1:PROCESS( pre_s, next_s, din ) BEGINcase pre_s iswhen s0 =>dout <= '1';if din = '1' thennext_s <= s0;elsenext_s <= s1;end if;when s1 =>dout <= '1';if din = '1' then next_s <= s0;elsenext_s <= s2;end if;when s2 =>dout <= '1';if din = '1' then next_s <= s0;elsenext_s <= s3;end if;when s3 =>dout <= '0';if din = '1' then next_s <= s0;elsenext_s <= s1;end if;end case;END PROCESS P1;END RTL;该VHDL代码描述了一个状态机,其状态转换图如图所示:图 5状态转换图该状态机有4个状态:S0、S1、S2、S3,其中前3个状态输出高电平,最后一个状态输出低电平。

初始状态为S0,设按键未按下时为高电平,按下则为低电平。

相关文档
最新文档