按键消抖的原理和基于fpga的消抖设计

合集下载

按键消抖的原理和基于fpga的消抖设计

按键消抖的原理和基于fpga的消抖设计

按键消抖1功能概述按键开关是各种电子设备不可或缺的人机接口,如电脑的键盘等。

实际应用中,按键开关通常为机械式弹性开关。

当机械点断开、闭合时,由于机械触点的弹性作用,一个按键开关在闭合时不会马上稳定接通,断开时也不会马上断开,在闭合和断开的瞬间均伴随有一连串的抖动。

为保证系统及时正确识别,必须对这种情况作出相应处理。

我们称之为按键消抖。

按键消抖可分为硬件消抖和软件消抖。

硬件消抖的原理是在信号输入系统之前消除抖动干扰,在按键较少的情况下比较适宜。

如果按键较多,则使用软件消抖。

软件消抖的实质在于降低键盘输入端口的采样频率,将高频抖动略去。

需要注意的是,软件消抖需要占据一定的系统资源。

尽管硬件消抖和软件消抖能实现按键消抖功能,串行处理的方式都存在一定的局限性,显得不那么完美。

而硬件资源丰富的FPGA系统采用并行处理的模式,利用硬件来减轻软件工作量,通过硬件加速软件消抖处理,即可做到软件消抖并行化,因而在按键消抖处理方面具备非常明显的优势。

优秀的设计程序应该是用最简单的代码(架构、信号)实现功能。

在本例中,我们的只需要用4个信号界定,并用很短的代码即可。

下面我们先来看看功能要求:在系统设计中,消除按键抖动的方法五花八门,无论是硬件电路和软件设计都十分成熟。

在本项目中,我们将用Verilog语言给出具体实现过程,设计一个程序来检查键值,有效滤除按键抖动区间20 ms的毛刺脉冲。

2 设计思路一般按键所用开关为机械弹性开关,由于机械触点的弹性作用,每个按键开关在闭合时不会马上稳定地接通,在断开时也不会一下子断开。

因而在闭合及断开的瞬间均伴随有一连串的抖动,如下图。

抖动时间的长短由按键的机械特性决定,一般为5 ms~10 ms。

1图1 按键抖动过程示意当系统检测出按键闭合后,执行一个延时程序,产生5ms~10ms的延时;前沿抖动消失后,再一次检测键的状态;如果仍保持闭合状态电平,则确认为真正有键按下。

当检测到按键释放后,也要给5ms~10ms的延时,待后沿抖动消失后才能转入该键的处理程序。

【豆丁-精品】-基于FPGA的按键消抖动设计

【豆丁-精品】-基于FPGA的按键消抖动设计

2009年11月吉林师范大学学报(自然科学版)№.4第4期Journal of Jilin Normal University (Natural Science Edition )Nov.2009收稿日期:2009209222 基金项目:吉林省信息产业厅专项发展基金项目(2007042)作者简介:许德成(19772),男,吉林省辽源市人,现为吉林师范大学信息技术学院讲师,硕士.研究方向:基础电子技术,单片机及可编程逻辑器件技术.基于FPG A 的按键消抖动设计许德成(吉林师范大学信息技术学院,吉林四平136000)摘 要:在研制测量仪表、电子仪器及电子设计的过程中,按键是常用器件,而按键的弹跳现象是数字系统设计中存在的客观问题.这就要求电路具有消抖措施,即对于由于机械弹跳产生的噪声信号经过消抖电路滤除,保证电路能够正确的响应.本文介绍了基于FPG A 的两种消除按键抖动的方法,并给出了相应的VH D L 代码以及仿真图形,从而解决了按键的机械抖动影响,保证电路稳定工作.关键词:机械抖动;仿真图形;电路中图分类号:T N912 文献标识码:A 文章编号:1674238732(2009)04201542030 引言我们通常所用的按键都为机械触点开关.由于机械触点存在弹性作用,当我们按下按键或松开按键时,都不可避免的要在触点闭合及断开的瞬间产生有一连串的键抖动.其按键信号的实际波形如图1所示.图1 按键信号的实际波形 由图1可见,在按键闭合和断开时产生了多个边沿.而在实际中每按一次键,我们只需要一组稳定的上升或下降边沿.所以对于电路中的按键信号,如果我们不滤除抖动的话,还是简单的读取信号的边沿,会引起一次按键被误读多次.这样就会引起电路的误动作.为了保证按一次键电路只有一次正确的响应,即在键闭合稳定时读取键的状态,就要求电路中必须采取滤除抖动的措施.消除案件抖动的方法一般有硬件和软件两种方式.对于硬件方式一般可用RS 触发器作为常用的消抖电路,从根本上解决按键抖动问题.但对于按键较多且从节省硬件资源和易于修改的角度考虑,我们常应用软件滤抖.1 基于计数器模式消抖电路的设计方法应用计数器实现,即采用延时的方法.先正确设定计数的时钟脉冲.当判断到按键按下时计数器开始计数,等计数器计满后再一次判断键的状态.如果仍为按下状态,则认为是按键稳定闭合.这时再针对具体按键信号做相应的处理,否则认为是抖动信号,电路不做任何处理.应用这种方法消除按键抖动,其计数器模值的确定和计数时钟的频率是按键抖动消除的关键问题,因为它们共同决定了延时的时间.如果延时时间过长,就会使正确的按键信号得不到处理;如果延时时间过短,则会将抖动误认为是输入信号,从而导致后电路做出错误处理.一般人按键的时间大于100ms ,抖动时间一般·451·为5ms ~10ms.按这种常规处理,我们一般认为接收到的按键信号持续时间如果小于40ms 则其为抖动信号,如果时间大于40ms 则为正确的按键信号.即让计数器的模值和计数时钟周期的乘积略大于40ms 即可.这样就可以把按下的时间小于40ms 的抖动信号滤掉.其VH D L 代码为:library ieee ;use ieee.std -logic -1164.all ;entity anjian is port (clk ,input :in std -logic ;output :out std -logic );end anjian ;architecture one of anjian is signal a :std -logic ;signal count :integer range 0to 9;beginprocess (clk )beginif input =′0′then count <=0;elsif clk ’event and clk =′1′thenif count =9then count <=count ;else count <=count +1;end if ;end if ;if count =8then a <=′1′;else a <=′0′;end if ;end process ;output <=a ;end one; 由上仿真图可以看出:当信号维持时间小于八个计数时钟周期的时候,认为这时的信号是短时间的抖动信号,所以电路输出不做任何反应.保持原电平不变,后续电路也无需处理.当信号维持时间超过八个计数时钟周期,认为这时定稳定的按键信号,即键稳定的闭合.所以输出一个按键脉冲,以供后续电路处理.2 基于RS 触发器模式的消抖动电路设计在设计中用时钟信号进行采样.对于按键输入信号,当两次采样信号相同时,这是判定已经稳定的按下或放开了按键.触发器相应的被置成0态或1态.如两次采样结果不相同.则触发器维持原输出信号不变.由于直接由触发器输出的信号时间宽度可能过长,所以在触发器后再接一级同步化电路,保证每次输出的信号只占有一个时钟周期的宽度.应用这种方法去滤除抖动,关键是确定采样时钟的频率.保证两次采样的时间间隔能够大于按键的抖动时间,且小于正常按键时的按键稳定闭合时间.其VH D L 代码和仿真如下:library ieee ;use ieee.std -logic -1164.all ;entity dou is port (din ,clk :in std -logic ;dout :out std -logic );end entity dou ;architecture one of dou issignal clr0,clr1,q0,q1,d1,d0:std -logic ;beginclr0<=din ;clr1<=q0;process (clk ,clr0,clr1)beginif clr0=′0′then q0<=′0′;elsif clk ′event and clk =′1′thenq0<=′1′;end if ;if clr1=′0′then q1<=′0′;elsif clk ′event and clk =′1′thenq1<=′1′;end if ;end process ;process (clk )beginif clk ′event and clk =′1′thend0<=q1;d1<=d0;end if ;end process ;dout <=d0and (not d1);end ;·551· 由上仿真图形可以看出:当两次的采样信号结果相同时,这时输出信号才可能发生变化,对应的按键的稳定闭合或断开,当两次的采样信号结果不同时,认为输入的信号定抖动信号.这时电路输出维持原状态不变,同时由于有同步化的处理,输出信号的高电平宽度只为采样时钟的一个周期.3 结束语通过以上的仿真图形可以看出,对于带有机械抖动的按键信号,当它经过消抖电路处理后其输出信号已经将抖动滤除,且输出信号只占有一个时钟信号的周期,从而能使后续电路能够正确的读取键值,做相应的响应,有效的避免了误动作.因此该设计有很大的实际应用意义.参 考 文 献[1]潘 松,黄继业.E DA 技术实用教程[M].北京:科学出版社,20051[2]谭会生,瞿遂春.E DA 技术综合应用实例与分析[M].西安:西安电子科技大学出版社,2004.[3]林明权等.VH D L 数字控制系统设计范例[M].北京:电子工业出版社,2003.[4]方 龙,肖献保,李 威.关于消除按键机械抖动的研究[J ].广西轻工业,2008,1:92.[5]潘永雄,泌河,刘向阳.电子线路CAD 实用教程[M].西安:西安电子科技大学出版社,2004.[6]杨 恒,李爱国,王辉,王新安.FPG A/CP LD 最新实用技术指南[M].北京:清华大学出版社,2005.[7][美]沃尔夫(W olr.w )基于FPG A 的系统设计(英语版)[M].北京:机械工业出版社,2005.[8]王强,曾繁泰,励娜.EPA 工程的理论与实践—S OC 系统蕊片设计[M].北京:电子工业出版社,2004.[9]李国洪,胡辉,沈阳山等.E DA 技术与实验[M].北京:电子工业出版社,2005.Shaking R elease Design on the K eys of FPGAXU De 2cheng(C ollege of In formation T echnology ,Jilin N ormal University ,S iping 136000,China )Abstract :K eys were the comm on elements during the research of measure instrument ,electronic apparatus ,and design of the electronic.The bounce phenomenon of keys was the objective problem in the digital system design.Therefore ,the shaking release measurement was necessary.That is to rem ove the noise signal at the engine bounce through the elimi 2nating the shaking circuit in order to ensure the right response of the circuit.The paper introduced tw o methods of elim 2inating shaking on FPG A and gave the relative VH D L code and the imitating picture.It res olved the in fluence of engine shaking on keys and ensurd the steady w orking of the circuit.K ey w ords :engine shaking ;imitating picture ;circuit·651·。

按键消抖的原理

按键消抖的原理

按键消抖的原理一、引言在电子设备中,按键是常见的输入方式。

然而,由于按键的机械结构,当按下或松开按键时,会产生机械弹跳现象,导致信号出现多次跳变,这就是所谓的“按键抖动”现象。

为了避免这种现象对电路造成干扰,需要进行按键消抖处理。

二、什么是按键消抖?按键消抖是指在接收到按键信号后,在一定时间内只处理一次信号,并且保证该信号为有效信号。

其目的是消除因机械结构引起的多次跳变信号。

三、按键消抖的原理1. 机械弹跳原理在了解按键消抖原理之前,需要先了解机械弹跳原理。

当按下或松开一个开关时,由于接触面积有限和金属表面不完全平整等因素影响,开关触点会发生不稳定震荡,并在短时间内反复接通和断开。

这种现象称为“机械弹跳”。

2. 软件处理原理软件处理原理是通过程序来实现对按键状态进行检测和判断的方式。

具体实现方法包括:轮询法、中断法、计时法等。

(1)轮询法轮询法是指通过循环检测按键状态的方式来实现按键消抖。

具体实现方法为:在主程序中设置一个循环,不断检测按键状态,当检测到按键被按下时,进行一定的延时后再次检测按键状态,如果依然是按下状态,则判断为有效信号。

(2)中断法中断法是指通过外部中断来实现对按键状态进行检测和判断的方式。

具体实现方法为:将按键连接到微控制器的外部中断引脚上,在程序中设置好相应的中断服务程序,当检测到外部中断信号时,进入相应的中断服务程序进行处理。

(3)计时法计时法是指通过定时器来实现对按键状态进行检测和判断的方式。

具体实现方法为:当检测到按键被按下时,启动定时器并开始计数,在一定时间内只处理一次信号,并保证该信号为有效信号。

四、硬件处理原理硬件处理原理是通过使用电路元件来实现对按键消抖的方式。

具体包括RC滤波器、Schmitt触发器、反相器等。

1. RC滤波器RC滤波器是将电容和电阻组合在一起,利用电容的充放电特性实现对信号的滤波。

当按键被按下时,由于电容的充放电时间常数较长,可以使机械弹跳信号被滤除。

按键消抖的原理和基于verilog的消抖设计

按键消抖的原理和基于verilog的消抖设计

按键消抖的原理和基于verilog的消抖设计按键开关是各种电子设备不可或缺的人机接口。

在实际应用中,很大一部分的按键是机械按键。

在机械按键的触点闭合和断开时,都会产生抖动,为了保证系统能正确识别按键的开关,就必须对按键的抖动进行处理。

在系统设计中,有各种各样的消除按键抖动的设计方法,硬件电路和软件设计都很成熟。

不过我们这里要从另外一个角度来讨论按键的消抖,并给出一个用verilog给出一个具体的实现。

首先,看一个普通的机械按键的触点在闭合与断开时的波形(用示波器抓取)。

下面的四张图都是按键在闭合的时候抓到的波形。

可以看到两个明显的趋势:1. 按键在几个us之内就可以达到稳定状态,从高电平转换到底电平;2. 在高电平转换到低电平的过程中,触点有非常明显的抖动。

下面的两张图是按键在断开的时候抓到的波形。

也可以看到两个明显的趋势:1. 按键的变化趋势比较缓慢,从低电平变为高电平需要大概10~20ms的时间;2. 按键断开时没有闭合时那么大的抖动下面两张图是用手迅速闭合按键然后就断开时,按键的输出波形。

在处理按键抖动的程序中,必须同时考虑消除闭合和断开两种情况下的抖动。

所以,对于按键消抖的处理,必须按最差的情况来考虑。

我们从上面的图上可以看到,按键输出的信号的跳变时间(上升沿和下降沿)最大是在20ms左右。

按键一次闭合最短的时间大概是120ms 左右。

如果我们把按键的输出做为一个时钟域(时钟频率未知,但信号的slow rate是已知的,既最大20ms左右)的信号,用另外一个时钟来采集这个按键的输出,则就可以把按键的消抖归结为一个最基本的CDC问题来处理。

而问题的核心是如何确定采集时钟的频率。

假设采集时钟的周期小于20ms,那么,采集时钟就有可能两次采到按键断开时的不。

按键去抖debounce FPGA设计

按键去抖debounce  FPGA设计

按键debounce何謂debounce,為何要debounce?當按下按鈕時,表面上只按了一下。

但是訊號的傳遞並不是很單純的由’1’直接跳到’0’。

實際上的訊號會如上圖所示,當我們按下按鈕後,訊號會在高低電位之間彈跳(bounce)。

則電路所收到的訊號可能會像111110110110000000,會和我們所預期的111111111000000000不同。

如此一來,雖然我們只按了一下按鈕,電路可能會解讀成按了好幾下按鈕。

debounce的目的就是為了要除去訊號在高低電位之間彈跳所造成的不正確輸入。

下面是之前开发板的一个按键程序:`timescale 1ns/1nsmodule sw_debounce(clk,rst_n,sw1,sw2,sw3,//outputled_d3,led_d4,led_d5);input clk;input rst_n;input sw1,sw2,sw3; //Active lowoutput led_d3;output led_d4;output led_d5;// ---------------------------------------------------------------------------// 通过降采样对sw1~sw3的输入做低通滤波,将其高频分量滤除,得到low_sw值// ---------------------------------------------------------------------------reg [19:0] cnt;always @ (posedge clk or negedge rst_n)if (!rst_n)cnt <= 20'd0;elsecnt <= cnt + 1'b1;reg [2:0] low_sw;always @(posedge clk or negedge rst_n)if (!rst_n)low_sw <= 3'b111;else if (cnt == 20'hfffff) //每隔20MS检测一次按键low_sw <= {sw3,sw2,sw1};// ---------------------------------------------------------------------------// ---------------------------------------------------------------------------reg [2:0] low_sw_r; //将low_sw信号锁存一个时钟周期,延时不是真的“锁存”always @ ( posedge clk or negedge rst_n )if (!rst_n)low_sw_r <= 3'b111;elselow_sw_r <= low_sw;wire [2:0] led_ctrl = low_sw_r[2:0] & ( ~low_sw[2:0]);//当检测到按键有下降沿变化时,代表该按键被按下,按键有效reg d1;reg d2;reg d3;always @ (posedge clk or negedge rst_n)if (!rst_n)begind1 <= 1'b0;d2 <= 1'b0;d3 <= 1'b0;endelsebeginif ( led_ctrl[0] ) d1 <= ~d1;if ( led_ctrl[1] ) d2 <= ~d2;if ( led_ctrl[2] ) d3 <= ~d3;endassign led_d5 = d1 ? 1'b1 : 1'b0;assign led_d3 = d2 ? 1'b1 : 1'b0;assign led_d4 = d3 ? 1'b1 : 1'b0;具体原理:通常,按键抖动会产生10--20MS的毛刺,因此要做的实际上就是在20MS中采样一次,当检测到按键下降沿的时候,就认定按下,其他状态忽略。

基于FPGA的抖动及消抖的方法

基于FPGA的抖动及消抖的方法

基于FPGA的抖动及消抖的方法抖动的产生通常的按键所用开关为机械弹性开关,当机械触点断开、闭合时,由于机械触点的弹性作用,一个按键开关在闭合时不会马上稳定地接通,在断开时也不会一下子断开。

因而在闭合及断开的瞬间均伴随有一连串的抖动,为了不产生这种现象而作的措施就是按键消抖。

抖动时间抖动时间的长短由按键的机械特性决定,一般为5ms~10ms。

这是一个很重要的时间参数,在很多场合都要用到按键稳定闭合时间的长短则是由操作人员的按键动作决定的,一般为零点几秒至数秒。

键抖动会引起一次按键被误读多次。

为确保FPGA对键的一次闭合仅作一次处理,必须去除键抖动。

在键闭合稳定时读取键的状态,并且必须判别到键释放稳定后再作处理。

FPGA内实现消抖的方法在FPGA内实现按键消抖的方法多种多样,但是最简单的是采用移位寄存器的方法进行消抖。

因为移位寄存器的方法不需要对时钟进行分频,也不需要进行延时等复杂操作,即可实现对按键边沿的检测。

假设未按下时键值=1.1、在无键按下时,移位寄存器samp[7:0]始终采集到高电平,即samp[7:0]=8b1111_1111;2、当键按下时,samp[7:0]将采集到低电平,数据的变化方式为samp[7:0]=8b1111_1110--8b1111_1100--8b1111_1000-- ........8b0000_0000;samp[7:0]=8b1111_ 1110即为按键下降沿。

3、当松开按键时,samp[7:0]将重新采集到高电平,数据变化方式为samp[7:0]=8b0000_0001--8b0000_0011-- ........--8b1111_1111;当samp[7:0]=8b0111_1111时,即为按键上升沿。

参考Verilog代码//模块名:EdgeDetect,边沿检测//button:按键,无键按下时为高电平//clk:10M时钟//rst:复位按钮,低电平有效//rise:检测到上升沿,高电平有效,宽度为1个clk//fall:检测到下降沿,高电平有效,宽度为1个clkmodule EdgeDetect(input clk,input rst,input button,output reg rise,output reg fall);。

按键消抖原理

按键消抖原理

按键消抖原理
按键消抖原理是指通过某种方法在按键被按下或松开时,消除或减少按键的抖动现象,使输入信号得到稳定的识别和处理。

在实际应用中,按键在被按下或松开时,由于机械结构的原因,往往会引起按键的不稳定状态,表现为按键在短时间内多次触发开关。

这种按键抖动不仅会导致输入信号的波动,还可能对系统造成误操作或不良影响。

为了解决按键抖动问题,常用的按键消抖原理主要有以下几种:
1. 软件延时消抖:通过在程序中设定一个适当的延时时间,当按键被按下或松开后,延时一段时间再读取按键状态,以判断按键是否稳定。

如果经过延时后按键状态仍然相同,则可以认为按键已经稳定按下或松开,从而减少抖动的影响。

2. 硬件滤波消抖:通过在按键电路上设计滤波器或添加电容元件,可以对按键信号进行滤波处理,去除短时间内的干扰信号,使输入信号更加稳定。

常用的滤波电路包括RC滤波电路、OTA滤波电路等。

3. 状态改变检测消抖:在按键电路中,通过检测按键的状态变化来判断按键是否按下或松开。

当按键在短时间内发生多次状态变化时,只会认为按键状态发生了一次改变,从而忽略了抖动现象。

这种方式适用于按键状态改变的速度较慢的情况。

通过以上的按键消抖原理,可以有效地减少按键抖动现象,提
高按键输入的可靠性和稳定性。

在实际应用中,可以根据具体情况选择适合的原理和方法来实现按键消抖,以满足不同的需求。

按键消抖动电路的原理

按键消抖动电路的原理

按键消抖动电路的原理
按键消抖电路的原理是通过添加一个延时电路来消除按键开关接通和断开时产生的抖动信号。

当按键按下时,开关接通,导致电流流过该开关。

但由于机械结构和接触电阻等原因,按键可能会在被按下或断开的瞬间反复接通和断开,产生多个开关状态变化的短暂信号。

这样的信号可能会对数字电路产生误操作或干扰。

为了解决这个问题,可以通过添加一个简单的延时电路来实现按键消抖。

延时电路可以使用稳压二极管和电容器等元件来构建。

当按键被按下时,电容器开始充电,此时可以认为开关已经稳定接通。

当按键被断开时,电容器开始放电,此时可以认为开关已经稳定断开。

通过延时电路,可以过滤掉按键状态变化的短暂信号,只保留稳定的按键状态信号。

简单的按键消抖电路可以是一个RC电路,其中R代表电阻,C代表电容。

如果按键被按下,电容器开始充电,充电时间取决于RC时间常数(τ)。

常见的RC 时间常数可以设置在10ms到50ms之间。

当充电时间超过设定的时间后,电容器被认为已经充电完成,此时可以确定开关已经接通,可以将稳定的开关状态传递到数字电路中。

同样,当按键被释放,电容器开始放电,放电时间也取决于RC时间常数。

当放电时间超过设定的时间后,电容器被认为已经放电完成,此时可以确定开关已经断开,可以将稳定的开关状态传递到数字电路中。

通过添加延时电路,按键消抖电路可以有效地稳定按键的开关状态,减少误操作和干扰对数字电路的影响。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

按键消抖
1功能概述
按键开关是各种电子设备不可或缺的人机接口,如电脑的键盘等。

实际应用中,按键开关通常为机械式弹性开关。

当机械点断开、闭合时,由于机械触点的弹性作用,一个按键开关在闭合时不会马上稳定接通,断开时也不会马上断开,在闭合和断开的瞬间均伴随有一连串的抖动。

为保证系统及时正确识别,必须对这种情况作出相应处理。

我们称之为按键消抖。

按键消抖可分为硬件消抖和软件消抖。

硬件消抖的原理是在信号输入系统之前消除抖动干扰,在按键较少的情况下比较适宜。

如果按键较多,则使用软件消抖。

软件消抖的实质在于降低键盘输入端口的采样频率,将高频抖动略去。

需要注意的是,软件消抖需要占据一定的系统资源。

尽管硬件消抖和软件消抖能实现按键消抖功能,串行处理的方式都存在一定的局限性,显得不那么完美。

而硬件资源丰富的FPGA系统采用并行处理的模式,利用硬件来减轻软件工作量,通过硬件加速软件消抖处理,即可做到软件消抖并行化,因而在按键消抖处理方面具备非常明显的优势。

优秀的设计程序应该是用最简单的代码(架构、信号)实现功能。

在本例中,我们的只需要用4个信号界定,并用很短的代码即可。

下面我们先来看看功能要求:
在系统设计中,消除按键抖动的方法五花八门,无论是硬件电路和软件设计都十分成熟。

在本项目中,我们将用Verilog语言给出具体实现过程,设计一个程序来检查键值,有效滤除按键抖动区间20 ms的毛刺脉冲。

2 设计思路
一般按键所用开关为机械弹性开关,由于机械触点的弹性作用,每个按键开关在闭合时不会马上稳定地接通,在断开时也不会一下子断开。

因而在闭合及断开的瞬间均伴随有一连串的抖动,如下图。

抖动时间的长短由按键的机械特性决定,一般为5 ms~10 ms。

1
图1 按键抖动过程示意
当系统检测出按键闭合后,执行一个延时程序,产生5ms~10ms的延时;前沿抖动消失后,再一次检测键的状态;如果仍保持闭合状态电平,则确认为真正有键按下。

当检测到按键释放后,也要给5ms~10ms的延时,待后沿抖动消失后才能转入该键的处理程序。

本案例我们设置经过20 ms后的高电平才是真正的按键功能。

信号列表如下:
3 程序设计
模块代码
1 2 3 4 5 6 7 8 9
10
11
12
13
14
15
16
17
18 module key_module(
clk ,
rst_n ,
key_in ,
key_vld
);
parameter DATA_W = 20 ;
parameter KEY_W = 4 ;
parameter TIME_20MS= 1_000_000 ;
input clk ;
input rst_n ;
input [KEY_W-1 :0] key_in ;
output [KEY_W-1 :0] key_vld ;
reg [KEY_W-1 :0] key_vld ;
reg [DATA_W-1:0] cnt ;
wire add_cnt ;
wire end_cnt ;
2
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
reg flag ;
reg [KEY_W-1 :0] key_in_ff1 ;
reg [KEY_W-1 :0] key_in_ff0 ;
always @(posedge clk or negedge rst_n)begin
if(rst_n==1'b0)begin
cnt <= 20'b0;
end
else if(add_cnt)begin
if(end_cnt)
cnt <= 20'b0;
else
cnt <= cnt + 1'b1;
end
else begin
cnt <= 0;
end
end
assign add_cnt = flag==1'b0 && (key_in_ff1!=0);
assign end_cnt = add_cnt && cnt == TIME_20MS - 1;
always @(posedge clk or negedge rst_n)begin
if(rst_n==1'b0)begin
flag <= 1'b0;
end
else if(end_cnt)begin
flag <= 1'b1;
end
else if(key_in_ff1==0)begin
flag <= 1'b0;
end
end
always @(posedge clk or negedge rst_n)begin
if(rst_n==1'b0)begin
key_in_ff0 <= 0;
key_in_ff1 <= 0;
end
else begin
key_in_ff0 <= key_in ;
key_in_ff1 <= key_in_ff0;
end
end
always @(posedge clk or negedge rst_n)begin
if(rst_n==1'b0)begin
key_vld <= 0;
end
else if(end_cnt)begin
key_vld <= key_in_ff1;
end
else begin
key_vld <= 0;
end
end
endmodule
3。

相关文档
最新文档