Eviews虚拟变量实验报告
虚拟变量实验报告感想

通过本次虚拟变量实验,我对虚拟变量有了更加深入的理解和认识,感受到了其在计量经济学中的重要作用。
以下是我对本次实验的一些感想。
一、虚拟变量的重要性虚拟变量在计量经济学中具有举足轻重的地位。
它可以将定性变量转化为定量变量,使模型更加全面地反映经济现象。
在现实生活中,许多因素都是定性因素,如性别、民族、地区等,这些因素无法直接用数值表示,但它们对经济现象的影响却是客观存在的。
虚拟变量恰好能够将这些定性因素纳入模型,使模型更加准确、全面地反映经济现象。
二、虚拟变量的设定在本次实验中,我们学习了如何设定虚拟变量。
首先,要明确虚拟变量的含义和作用,然后根据研究目的和实际数据情况,确定虚拟变量的个数。
需要注意的是,当定性变量含有m个类别时,应引入m-1个虚拟变量,以避免多重共线性问题。
此外,虚拟变量的取值应遵循互斥和完备的原则,即每个样本只能属于一个类别。
三、虚拟变量的估计与检验在本次实验中,我们运用Eviews软件对虚拟变量模型进行了估计和检验。
通过观察模型的回归结果,我们可以了解虚拟变量对因变量的影响程度。
此外,我们还可以通过t检验、F检验等方法对虚拟变量的显著性进行检验。
在检验过程中,要注意控制其他变量的影响,以确保检验结果的可靠性。
四、虚拟变量的应用虚拟变量在实际应用中非常广泛。
以下是一些常见的应用场景:1. 时间序列分析:在时间序列分析中,虚拟变量可以用来表示季节性、节假日等因素对经济现象的影响。
2. 州际差异分析:在分析不同地区经济现象时,可以引入地区虚拟变量,以反映地区间的差异。
3. 政策效应分析:在分析政策对经济现象的影响时,可以引入政策虚拟变量,以观察政策实施前后经济现象的变化。
4. 模型设定:在构建计量经济模型时,可以引入虚拟变量来表示定性因素,使模型更加全面。
五、实验收获通过本次虚拟变量实验,我收获颇丰。
首先,我掌握了虚拟变量的基本原理和操作方法,为今后的研究奠定了基础。
其次,我学会了如何设定虚拟变量、估计模型和检验结果,提高了自己的实践能力。
eviews实验报告

图二 点击“view/ Multiple Graphs/XY line”得到下图。
图三 Xy line图中,横坐标表示表示EX出口额,纵坐标表示GDP生产总 值,从图中曲线的形状分析,EX与GDP的线性关系较强,有继续分析 的意义。 5、描述性统计 (1)、打开对象“EX”,点击“view/Descriptive statistics/Histogram and stats”,可得到EX的描述性统计量。 EX的描述性统计。 均值(mean)为1134213。 中位数(median)为429843。 最大值(maximum)为4673393、最小值(minimum)为2368,可 知EX序列数据跨度大。 标准差(std.dev)为1463811,说明Y序列数据离散程度大。
9、最终确定模型 综上所述,最终确定的模型为 LnEX = -7.756501 + 1.438620 LnGDP +0.574091AR(1) 该模型不仅与样本的拟合程度高,而且不存在自相关问题,具有对 显示经济现象进行解释与预测的意义。 经济分析:InGDP的系数为正,说明经济发展水平的提高的确可以 增加出口额,而这与现实经济现象也是一致的。 统计分析:R2 =0.995071,说明模型很好地拟合了样本,所有参数 的Prob(t-statistic) <0.05,说明显著性检验通过,D.W.= 1.898759, du <1.898759<4-du,说明模型不存在自相关问题。
图四 (2)、打开对象“GDP”,点击“view/Descriptive statistics/Histogram and stats”,可得到GDP的描述性统计量。
eviews实验报告总结(范本)

eviews实验报告总结eviews实验报告总结篇一:Evies实验报告实验报告一、实验数据:1994至201X年天津市城镇居民人均全年可支配收入数据 1994至201X年天津市城镇居民人均全年消费性支出数据 1994至201X年天津市居民消费价格总指数二、实验内容:对搜集的数据进行回归,研究天津市城镇居民人均消费和人均可支配收入的关系。
三、实验步骤:1、百度进入“中华人民共和国国家统计局”中的“统计数据”,找到相关数据并输入Exc el,统计结果如下表1:表11994年--201X年天津市城镇居民消费支出与人均可支配收入数据2、先定义不变价格(1994=1)的人均消费性支出(Yt)和人均可支配收入(Xt)令:Yt=cn sum/priceXt=ine/pri ce 得出Yt与Xt的散点图,如图1.很明显,Yt和X t服从线性相关。
图1 Yt和Xt散点图3、应用统计软件EVies完成线性回归解:根据经济理论和对实际情况的分析也都可以知道,城镇居民人均全年耐用消费品支出Yt依赖于人均全年可支配收入Xt的变化,因此设定回归模型为 Yt=β0+β?Xt﹢μt(1)打开E Vies软件,首先建立工作文件, Fil e rkfile ,然后通过bject建立 Y、X系列,并得到相应数据。
(2)在工作文件窗口输入命令:l s y c x,按E nter键,回归结果如表2 :表2 回归结果根据输出结果,得到如下回归方程:Y t=977.908+0.670Xt s=(172.3797) (0.0122) t=(5.673) (54.950) R2=0.995385 Adjust ed R2=0.995055 F-sta tistic=3019.551 残差平方和Sum sq uared resi d =1254108回归标准差S.E.f regressi n=299.2978(3)根据回归方程进行统计检验:拟合优度检验由上表2中的数分别为0.995385和0.995055,计算结果表明,估计的样本回归方程较好地拟合了样本观测值。
Eviews虚拟变量实验报告

实验四虚拟变量【实验目的】掌握虚拟变量的基本原理,对虚拟变量的设定和模型的估计与检验,以及相关的Eviews操作方法。
【实验内容】试根据1998年我国城镇居民人均收入与彩电每百户拥有量的统计资料建立我国城镇居民彩电需求函数。
收入等级彩电拥有量Y(台/百户)人均收入X(元/年) iD困难户83.64 2198.88 0最低收入户87.01 2476.75 0低收入户96.75 3303.17 0中等偏下户100.9 4107.26 1中等收入户105.89 5118.99 1中等偏上户109.64 6370.59 1高收入户115.13 7877.69 1最高收入户122.54 10962.16 1【实验步骤】1、相关图分析根据表中数据建立人均收入X与彩电拥有量Y的相关图(SCAT X Y)。
从相关图可以看出,前3个样本点(即低收入家庭)与后5个样本点(中、高收入)的拥有量存在较大差异,因此,为了反映“收入层次”这一定性因素的影响,设置虚拟变量如下:⎩⎨⎧=低收入家庭中、高收入家庭1D2、构造虚拟变量构造虚拟变量 1D (DATA D1),并生成新变量序列:GENR XD=X*D13、估计虚拟变量模型LS Y C X D1 XD得到估计结果:我国城镇居民彩电需求函数的估计结果为:XD D X Y 009.0873.31012.0611.571-++=∧(16.25) (9.03) (8.32) (-6.59)366,066.1..,9937.02===F e s R再由t 检验值判断虚拟变量的引入方式,并写出各类家庭的需求函数。
虚拟变量的回归系数的t 检验都是显著的,且模型的拟合优度很高,说明我国城镇居民低收入家庭与中高收入家庭对彩电的消费需求,在截距和斜率上都存在着明显差异,所以以加法和乘法方式引入虚拟变量是合理的。
低收入家庭与中高收入家庭各自的需求函数为:低收入家庭:∧.57+=611XY012.0中高收入家庭:∧611.87331.57(+++-==012.0484)XX.Y003.0(.0009)89由此可见我国城镇居民家庭现阶段彩电消费需求的特点:对于人均年收入在3300元以下的低收入家庭,需求量随着收入水平的提高而快速上升,人均年收入每增加1000元,百户拥有量将平均增加12台;对于人均年收入在4100元以上的中高收入家庭,虽然需求量随着收入水平的提高也在增加,但增速趋缓,人均年收入每增加1000元,百户拥有量只增加3台。
计量经济学eviews实习报告.doc

计量经济学实验报告研究问题根据生产函数理论,生产函数的基本形式为:),,,(εK L t f Y =。
其中,L 、K 分别为生产过程中投入的劳动与资金,时间变量t 反映技术进步的影响。
表1列出了我国1994-2009年期间国有独立核算工业企业的有关统计资料;其中产出Y 为工业总产值(可比价),L 、K 分别为年末职工人数和固定资产净值(可比价)。
实验要求建立我国国有独立核算工业企业生产函数。
实验步骤一、模型筛选(一)建立多元线性回归方程回归结果如下:图1因此,我国国有独立工业企业的生产函数为:K L t Y 00998.171897.022674.90897.191+++-=∧(模型1)t =(-5.4) (0.862) (3.57) (40.44)999742.02=R 999677.02=R 57.15483=F模型的计算结果表明,我国国有独立核算工业企业的劳动力边际产出为0.71897,资金的边际产出为1.00998,技术进步的影响使工业总产值平均每年递增9.22674亿元。
回归系数的符号和数值是较为合理的。
999742.02=R ,说明模型有很高的拟合优度,F 检验也是高度显著的,说明职工人数L 、资金K 和时间变量t 对工业总产值的总影响是显著的。
从图1看出,解释变量资金K 的t 统计量值为40.44,表明资金对企业产出的影响是显著的。
但是,模型中时间变量T 的t 统计量值都较小,未通过检验。
因此,需要对以上三元线性回归模型做适当的调整,按照统计检验程序,一般应先剔除t 统计量较小的变量(即时间变量)而重新建立模型。
(二)建立剔除时间变量的二元线性回归模型回归结果如下:图2因此,我国国有独立工业企业的生产函数为:K L Y 026137.1669964.02778.176++-=∧(模型2)t =(-5.76) (3.5) (62.79)999726.02=R 999684.02=R 95.23692=F(三)建立非线性回归模型——C-D 生产函数C-D 生产函数为:εβαe K AL Y =。
计量虚拟变量实验报告

一、实验背景虚拟变量(也称为哑变量)在计量经济学中是一种重要的工具,用于处理分类变量对模型的影响。
在许多实际的经济和社会问题中,变量往往不是连续的,而是具有分类属性。
例如,企业的盈利状况、消费者的收入水平等。
这些分类变量不能直接进入线性回归模型,因为它们不具备数值特征。
虚拟变量则可以有效地将这些分类变量纳入模型,从而分析不同类别对因变量的影响。
本实验旨在通过Eviews软件,对虚拟变量在计量经济学模型中的应用进行探究,并通过实际数据进行分析,以验证虚拟变量的有效性。
二、实验目的1. 理解虚拟变量的基本概念和原理。
2. 掌握虚拟变量的构造方法。
3. 学会使用Eviews软件进行虚拟变量的估计和分析。
4. 通过实际数据验证虚拟变量在模型中的作用。
三、实验内容1. 数据来源选取某地区1990-2020年的居民消费数据作为实验数据,包括居民人均可支配收入(X1)、消费支出(Y)以及居民收入水平(X2,分为低收入、中低收入、中等、中高收入和高收入五个类别)。
2. 模型设定根据实验目的,构建以下线性回归模型:Y = β0 + β1X1 + β2X2 + ε其中,Y为消费支出,X1为居民人均可支配收入,X2为居民收入水平虚拟变量,ε为误差项。
3. 虚拟变量的构造根据居民收入水平,构造以下虚拟变量:D1:低收入(X2=1)D2:中低收入(X2=2)D3:中等(X2=3)D4:中高收入(X2=4)D5:高收入(X2=5)4. 模型估计使用Eviews软件对上述模型进行估计,得到回归结果如下:Dependent Variable: YMethod: Least SquaresDate: 2021-10-10Time: 14:30Sample: 1990 2020Variable Coefficient Standard Error t-Statistic Prob.-------------------------------------------------------------------------Constant 0.0000 0.0000 0.0000 1.0000 X1 0.5000 0.1000 5.0000 0.0000 D1 0.1000 0.0500 2.0000 0.0520 D2 0.2000 0.0500 4.0000 0.0000 D3 0.3000 0.0500 6.0000 0.0000 D4 0.4000 0.0500 8.0000 0.0000 D5 0.5000 0.0500 10.0000 0.0000 5. 结果分析根据回归结果,我们可以得出以下结论:(1)居民人均可支配收入(X1)对消费支出(Y)有显著的正向影响,即收入越高,消费支出越高。
Eviews实验报告4

【实验目的及要求】● 深刻理解平稳性的要求和arima 建模的思想。
● 学会如何通过观察自相关系数和偏相关系数,确定并建立模型。
● 学会如何利用模型进行预测。
● 熟练掌握EVIEWS 的结果,看懂eviews 的输出结果。
【实验原理】ARIMA(p, q )过程的平稳域和可逆域对于非平稳序列的时变均值函数,最简单的处理方法就是考虑均值函数可以由一个时间的确定性函数来描述,这时,可以用回归模型来描述。
假如均值函数服从于线性趋势我们可以利用确定性的线性趋势模型如果均值函数服从二次函数则我们可以用假如均值函数服从k 次多项式我们可以使用下列模型建模()22012,~0,t t t X t t WN αααεεσ=+++()201,~0,k t k t t X t t WN αααεεσ=++++【实验方案设计】4.2数据和指标的选取我们的模型估计选取了我国1990年1月到2008年12月的CPI月度数据附表(1))作为研究的对象。
度量通货膨胀的指标通常有CPI(消费者价格指生产者物价指数(PPI)、批发物价指数(wholesale price index)、GDP平减指数(deflator)等。
消费者物价指数(CPI)(consumer price index)是用来度量一期内居民所支付消费商品和劳务价格变化程度的相对数指标,它是反映通货水平的重要指标。
CPI指数作为生活成本指数,不仅能够及时和明确地反映子商品和服务价格的变化,而且是定期公布,广为人知,易于获取和明了,被公众理解。
选取CPI作为通货膨胀的指标有利于合理引导公众和市场对经预期,有利于政府综合运用价格和其他经济手段,实现宏观经济调控目标。
为了研究这些问题,笔者搜集了1985-2007年的年度中国消费者物价指数的相关数据,利用EVIEWS软件,将这几个指标数据进行了相关分析。
对于ARIMA(p q)模型,可以利用其样本的自相关函数和样本的偏自相关函数的截尾性判定模型的阶数,若平稳时间序列的偏相而自相关函数是截尾的则可断定此序列适合MA 模型; 若平稳时间序列的偏相关函数和自相关函数均是拖尾的则此序列适合模型。
(完整word版)实验一Eviews软件的基本操作-学生实验报告

实验报告课程名称: 计量经济学实验项目:实验一EViews软件的基本操作实验类型:综合性□设计性□验证性专业班别:姓名:学号:实验课室:指导教师:石立实验日期:广东商学院华商学院教务处制一、实验项目训练方案小组合作:是□否小组成员:无实验目的:了解熟悉EViews软件的基本操作对象,掌握软件的基本操作。
实验场地及仪器、设备和材料实验室:普通配置的计算机,Eviews软件及常用办公软件。
实验训练内容(包括实验原理和操作步骤):【实验内容】1.打开运行并认识Eviews软件;2.EViews软件的数据输入、编辑与序列生成;3.图形分析与描述统计分析;4.数据文件的存储与调用。
【实验数据】实验以附件“数据”所列出数据资料为例进行操作。
【实验步骤】一、打开运行软件实验中采用Eviews软件6.0版本绿色版,实验计算机上已安装,请找到图标,点击即可打开软件的操作界面.【注意:FTP中上传了软件的压缩包,同学们可以拷贝到自己的电脑,将压缩包解压后,打开文件夹,双击注册表,进行注册,注册成功后即可使用。
】二、认识软件界面Eviews软件窗口有无部分组成:标题栏、主菜单、命令窗口、状态栏、工作区.三、输入数据1.创建工作文件(1)菜单方式在主菜单上依次点击File/New/Workfile,即选择新建对象的类型为工作文件,将弹出一个对话框,由用户选择数据的时间频率(frequency)、起始期和终止期。
注:根据数据的不同类型,应创建不同的工作文件,Eviews提供的数据工作文件可分为三种:a、无结构数据/截面数据:Unstructured/Undatedb、时间序列数据:Dated-regular frequency具体有:年度数据(Annual)、半年数据(Semi-annual)、季度数据(Quarterly)、月度数据(Monthly)、周数据(Weekly)、一周五天的数据(Daily-5days week)、一周七天的数据(Daily-7days week)、每日数据(Daily/integer date)c、面板数据Balanced Panel在本例中,按照下图的方式选取选项和填写数据:(2)命令方式在EViews软件的命令窗口中直接键入CREATE命令,也可以建立工作文件.命令格式为:CREATE 时间频率类型起始期终止期(时间频率类型以该类型英文首字母标记)则本例实验中的程序可写为:CREATE A 1978 2005在创建的工作文件中,一开始其就包含了两个对象:(如图)*系数向量C(保存估计系数用)*残差序列RESID(实际值与拟合值之差)2.输入数据并命名(1)添加新序列..点击Objects/New Object(或在工作区右击鼠标,选取New Object),对象类型选择Series,并给定序列名,一次只能创建一个新序列。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验四虚拟变量
【实验目的】
掌握虚拟变量的基本原理,对虚拟变量的设定和模型的估计与检验,以及相关的Eviews操作方法。
【实验内容】
试根据1998年我国城镇居民人均收入与彩电每百户拥有量的统计资料建立
我国城镇居民彩电需求函数。
收入等级彩电拥有量Y
(台/百户)
人均收入X
(元/年) i
D
困难户83.64 2198.88 0
最低收入户87.01 2476.75 0
低收入户96.75 3303.17 0
中等偏下户100.9 4107.26 1
中等收入户105.89 5118.99 1
中等偏上户109.64 6370.59 1
高收入户115.13 7877.69 1
最高收入户122.54 10962.16 1
【实验步骤】
1、相关图分析
根据表中数据建立人均收入X与彩电拥有量Y的相关图(SCAT X Y)。
从相关图可以看出,前3个样本点(即低收入家庭)与后5个样本点(中、高收入)的拥有量存在较大差异,
因此,为了反映“收入层次”这一定性因素的影响,设置虚拟变量如下:
⎩⎨
⎧=低收入家庭
中、高收入家庭
1D
2、构造虚拟变量
构造虚拟变量 1D (DATA D1),并生成新变量序列:
GENR XD=X*D1
3、估计虚拟变量模型
LS Y C X D1 XD
得到估计结果:
我国城镇居民彩电需求函数的估计结果为:
XD D X Y 009.0873.31012.0611.571-++=∧
(16.25) (9.03) (8.32) (-6.59)
366,066.1..,9937.02===F e s R
再由t 检验值判断虚拟变量的引入方式,并写出各类家庭的需求函数。
虚拟变量的回归系数的t 检验都是显著的,且模型的拟合优度很高,说明我国城镇居民低收入家庭与中高收入家庭对彩电的消费需求,在截距和斜率上都存在着明显差异,所以以加法和乘法方式引入虚拟变量是合理的。
低收入家庭与中高收入家庭各自的需求函数为:
低收入家庭:
∧
.
57+
=
611
X
Y012
.0
中高收入家庭:
∧
611
.
873
31
.
57
(+
+
+
-
=
=
012
.0
484
)
X
X
.
Y003
.0(
.0
009
)
89
由此可见我国城镇居民家庭现阶段彩电消费需求的特点:
对于人均年收入在3300元以下的低收入家庭,需求量随着收入水平的提高而快速上升,人均年收入每增加1000元,百户拥有量将平均增加12台;对于人均年收入在4100元以上的中高收入家庭,虽然需求量随着收入水平的提高也在增加,但增速趋缓,人均年收入每增加1000元,百户拥有量只增加3台。
事实上,现阶段我国城镇居民中国收入家庭的彩电普及率已达到百分之百,所以对彩电的消费需求处于更新换代阶段。