植物生理学重点
植物生理学重点内容

一、水分代谢一、名词解释1.水势:每偏摩尔体积水的化学势。
即水溶液的化学势(μw)与纯水的化学势(μ0w)之差(△μw),除以水的偏摩尔体积所得的商。
2.渗透势:由于溶质颗粒的存在,降低了水的自由能,因而其水势低于纯水的水势。
3.自由水:距离胶粒较远而可以自由流动的水分。
4.束缚水:靠近胶粒而被胶粒束缚不易自由流动的水分。
5.渗透作用:水分子通过半透膜由水势高向低系统渗透6.根压:由于水势梯度引起水分进入中柱后产生的压力。
7.气孔蒸腾:通过气孔的蒸腾。
气孔是蒸腾过程中水蒸气由体内排到体外的主要出口。
8.蒸腾拉力:由于地上部分蒸腾作用产生的一系列水势梯度使导管中水分上升的力量。
9.蒸腾作用:是指水分以气体状态,通过植物体的表面(主要是叶子)从体内散失到体外的现象。
10.蒸腾速率:植物在单位时间内,单位面积通过蒸腾作用散失的水量。
11.蒸腾系数:植物制造1g干物质所需要消耗的水分量。
二、简述1.水分在根内的运输途径。
土壤水分→根毛→根皮层→根中柱→根导管→茎导管2.气孔运动的机理。
a)淀粉-糖互变学说:这个学说认为保卫细胞光合作用消耗CO2,细胞质内的ph增高,淀粉水解为可溶性糖,保卫细胞水势下降,从周围的细胞中吸收水分,气孔便张开,在黑暗中则相反,气孔关闭。
b)钾离子吸收学说:K+离子进入保卫细胞是由于ATP质子泵的作用。
促进此泵活化的壳梭孢素可以刺激气孔张开,抑制此泵活动的钒酸盐(VO3+)则抑制气孔张开。
c)苹果酸生成学说:细胞质中的淀粉通过糖酵解作用产生的磷酸烯醇式丙酮酸(PEP),在PEP羧化酶的作用下,与HCO3-作用,形成草酰乙酸,进一步还原为苹果酸进入液泡,降低液泡水势,水分进入保卫细胞,使气孔张开。
3.试述蒸腾作用的生理意义。
1)引起被动吸水,是水分吸收和运输的动力2)植物吸收和运输矿物盐类的动力(载体)3)能降低植物体和叶片温度4)蒸腾作用的正常进行,气孔开放,有利于光合作用CO2的固定二、矿质营养一、名词解释必需元素:维持正常生命活动不可缺少的元素。
植物生理学重点集锦

1、植物生理学的定义和内容定义:研究植物生命活动规律的科学.内容:植物的生命活动大致可分为生长发育与形态建成、物质与能量转化、信息传递和信号转导等几个方面。
2、信息传递:植物“感知”环境信息的部位与发生反应的部位可能不完全相同,从信息感受部位将信息传递到发生反应部位的过程。
信号转导:单个细胞水平上,信号与受体结合后,通过信号转导系统产生生理反应3、植物生理学发展的第一阶段是从探讨植物营养问题开始的。
第一个用柳条来探索植物养分来源的是荷兰人凡.海尔蒙。
植物生理学发展的第二阶段是以李比希的《化学在农业和生理学上的应用》一书于1840年问世为起始标志。
Sachs《植物生理学讲义》(1882年)的问世,Pfeffer巨著《植物生理学》的出版。
这两部著作标志着植物生理学成为一门独立的学科。
李继侗,罗宗洛,汤佩松.4、什么是水分代谢植物对水分的吸收、运输、利用和散失的过程。
植物体内的水分存在状态靠近胶粒并被紧密吸附而不易流动的水分,叫做束缚水;距胶粒较远,能自由移动的水分叫自由水。
1.水的生理作用(简答)1)水是细胞的主要组成成分2)水是植物代谢过程中的重要原料3)水是各种生化反应和物质吸收、运输和介质4)水能使植物保持固有的姿态5)水分能保持植物体正常的体温水的生态作用1)水对可见光的通透性2)水对植物生存环境的调节渗透作用—水分通过选择透性膜从高水势向低水势移动的现象。
根系吸水的途径有3条.(1)、质外体途径(2)、跨膜途径(3)、共质体途径根压产生的原因:由于根部细胞生理活动的作用,皮层细胞中的离子会不断通过内皮层细胞进入中柱,中柱内细胞的离子浓度升高,水势降低,便向皮层吸收水分。
这种由于水势梯度引起水分进入中柱后产生的压力叫根压。
气孔运动的机制✧淀粉-糖互变、钾离子的吸收和苹果酸生成学说.✧淀粉-糖转化学说:✧认为保卫细胞在光照下进行光下进行光合作用,消耗CO2,细胞质内的PH增高,促使淀粉磷酸化酶水解淀粉为可溶性糖,保卫细胞水势下降,表皮细胞或副卫细胞的水分便进入保卫细胞,气孔张开。
(整理)植物生理学重点

1、FMN:黄素单核苷酸2、PAA:聚丙烯酸3、ET、ETH:乙烯4、BR:油菜素甾类物质5、RQ、呼吸商 6 IPP:异戊烯焦磷酸:7、SOD:超氧化物歧化酶8、PSI:聚苯乙烯9、RUBP:1,5-二磷酸核酮糖10、Cytf:细胞色素fTIBA:三碘苯甲酸ACC:1-氨基环丙烷-1-羧酸JA:茉莉酸PP333:多效唑或氯丁唑CAM:景天科酸代谢LDP:长日植物MH:马来酰肼或青鲜素1,GA:赤霉素2,ABA:脱落酸3,GPP:牻牛儿焦磷酸4,PGA:三磷酸甘油酸5,PEP:磷酸烯醇式丙酮酸6,CAMP:环磷酸腺苷1.IAA:生长素即吲哚乙酸CTK:细胞分裂素2.PA:聚酰胺即尼龙SDP:短日照植物3.APS:过硫酸铵PPP:戊糖磷酸途径名词解释:植物激素:指一些在植物体内合成,并从产生之处运送到别处,对生长发育产生显著作用的微量有机物。
春化作用:低温诱导植物开花的过程。
水分临界期:植物对水分不足特别敏感的时期,灌溉的最适时期。
光能利用率:是指植物光合作用所累积的有机物所含的能量,占照射在单位地面上的日光能量的比率。
巴斯德效应:在厌氧条件下,向高速发酵的培养基中通入氧气,则葡萄糖消耗减少,抑制发酵产物积累的现象称为巴斯德效应。
即呼吸抑制发酵的作用。
冷害:在零上低温时,虽无结冰现象,但能引喜温植物的生理障碍,使植物受伤甚至死亡,这种现象称为冷害自由水:距离胶粒较远而可以自由流动的水分光饱和点:在一定的光强范围内,植物的光合强度随光照度的上升而增加,当光照度上升到某一数值之后,光合强度不再继续提高时的光照度值。
呼吸商:植物组织在一定时间内,放出二氧化碳的物质的量与吸收氧气的物质的量的比率冻害:当温度下降到0度以下,植物体内发生冰冻,因而受伤甚至死亡的现象。
束缚水:靠近胶粒而被胶粒吸附束缚不易自由流动的水分。
光补偿点:同一叶子在同一时间内,光和过程中吸收的CO2与光呼吸和呼吸作用过程中放出的CO2等量时的光照强度。
植物生理学重点

一.成花诱导春化作用(vernalization):低温诱导促进植物开花的作用。
温度:相对低温型:低温处理促进植物开花,如冬性一年生植物,种子吸涨后即可感受低温绝对低温型:若不经低温处理,植物绝对不能开花,如二年生植物,营养体达到一定大小才能感受低温。
低温及条件:各类植物通过春化时要求低温持续的时间不同,在一定时间内,春化的效应随低温处理时间的延长而增加。
(2)需要充足的氧气、适量的水分和作为呼吸底物的糖分(3)光照春化之前,充足的光照可促进二年生和多年生植物通过春化。
时期、部位和刺激传导(1)时期大多数一年生植物(冬小麦)在种子吸胀后即可接受低温诱导,在种子萌发和苗期均可进行。
而需低温的二年生植物(胡萝卜、月见草等)只有绿苗达到一定大小才能通过春化。
(2)部位感受低温的部位:茎尖端的生长点春化过程中的生理生化变化1)呼吸速率—春化处理的较高(2)核酸代谢在春化过程中核酸(特别是RNA)含量增加,代谢加速,而且RNA性质有所变化。
(3)蛋白质代谢可溶性Pr及游离AA含量(Pro)增加。
(4)GA含量增加一些需春化的植物(如天仙子、白菜、胡萝卜等)未经低温处理,若施用GA也能开花。
GA以某种方式部分代替低温的作用。
春化作用的机理前体物低温中间产物低温最终产物(完成春化)高温中间产物分解(解除春化)春化作用在农业生产中的应用A、人工春化,加速成花,提早成熟(1)“闷麦法” —春天补种冬小麦(2)春小麦低温处理—早熟,躲开干热风,利于后季作物的生长(3)加速育种过程—冬性作物的育种B、指导引种引种时应注意原产地所处的纬度,了解品种对低温的要求。
如北种南引,只进行营养生长而不开花结实。
C、控制花期如低温处理可使秋播的花卉改为春播,当年开花收获营养器官的植物,可高温处理解除春化光周期的发现某些植物在完成春化作用后,只有在高温和特定的光周期处理以后,花芽才能分化。
光周期(pho toperiod):—天之中白天和黑夜的相对长度。
植物生理学重点整理

² PSⅡ: • 反应中心 • 光收集复合物 • 放氧复合体
颗粒大,水裂解放氧,质体 kun 酉昆, ² PSⅠ:颗粒小,
光合电子传递链:非环式/环式/假环式/ 电子传递链 • 光合电子载体和它们的功能 • 光合磷酸化:化学渗透偶联假说,形成 ATP、NADPH 能量物质
ü 类胡萝卜素 不溶于水,溶于有机溶剂,胡萝卜素 :橙色,α-,β-,γ-叶黄素:黄色
功能:1. 收集和传递光能 2.防护叶绿素免受多余光照伤害
2.3 光合色素的光学特性 (1) 吸收光谱 : • 叶绿素:红光和蓝紫光; • 类胡萝卜素:蓝紫光
(2) 荧光现象和磷光现象 : ü 荧光现象:叶绿体色素溶液在透射光时呈绿色,反射光下呈红色的现象 ü 磷光现象:去掉光源后,叶绿素溶液还能继续辐射出微弱的红光。 (3) 叶片颜色 • 绿色:叶绿素多 • 黄色(秧苗变白):气温下降(衰老;矿质元素),叶绿素合成抑制,故类胡萝卜素多。 • 红色:花色素苷(红色)
5.2 光呼吸的生理功能 • 避免光抑制 • 回收碳,避免在有 O2 环境下丢失太多的 C
6 影响光合作用的因子 • 光合速率酸衡量光合作用的量的指标:指单位时间、单位叶面积吸收 CO2 的物质等量(或放出
氧气的物质的量,或积累干物质的质量,即 umol CO2/(m2*s)…… • 外部因素:光照、CO2、温度、矿质元素、水、(光合速率的)日变化
成 NH3,固氮酶只存在于原核生物细胞中 • 绿色植物: 非共生固氮微生物:好气性细菌;嫌气性细菌;蓝藻 共生固氮微生物:根瘤菌、放射菌
菌类固氮方式 • 通过在不同的细胞分别进行光合作用和生物固氮 • 通过形成特殊的结构进行生物固氮:异形胞 • 通过形成微氧环境进行生物固氮:蓝藻形成防氧进入的糖脂组成的外膜,从而避免氧对固氮
植物生理学重点内容

一、名词解释1.光合链:是在类囊体膜上的PSⅡ和PSⅠ之间几种排列紧密的电子传递体完成电子传递的总轨道。
2.光合作用反应中心:包括反应中心色素分子P、原始电子受体A和原初电子供体D 。
3.光合作用:指绿色植物吸收阳光的能量,同化CO2和H2O,制造有机物并释放O2的过程。
4.呼吸链:又称为电子传递链,是指呼吸代谢中间产物的电子和质子,沿着一定氧化还原电位顺序的呼吸传递体把电子传递到分子氧的总轨道。
5.伤呼吸:是指植物组织受伤后呼吸增强的现象。
6.无氧呼吸:是指生活细胞在无氧情况下,将淀粉、葡萄糖等有机物分解成为不彻底的氧化产物,同时释放出部分能量的过程。
7.有氧呼吸:是指生活细胞利用分子氧(O2),将淀粉、葡萄糖等有机物彻底氧化分解为CO2,并生成H2O,同时释放能量的过程。
8.抗氰呼吸:是指在氰化物存在的条件下仍进行的呼吸途径,是一条对氰化物不敏感的支路。
当植物体内存在与细胞色素氧化酶的铁结合的阴离子(如氰化物、叠氮化物)时,仍能继续进行的呼吸,即不受氰化物抑制的呼吸。
9.原初反应:指光合作用中从光合色素分子受光激发到引起第一个光化学反应为止的过程,即色素分子捕获光能后呈激发态,能量在色素分子之间传递,最终引起一个光化学反应,是由光能推动氧化还原反应的进行。
10.顶端优势:植物的顶芽长出主茎,侧芽长出侧枝,通常主茎生长快,侧枝或侧芽则生长较慢或潜伏不长,这种由植物顶芽生长占优势而抑制侧芽生长的现象称为顶端优势。
11.光补偿点:随着光强的增高,光合速率相应提高,当达到某一光强时,叶片的光合速率与呼吸速率相等,净光合作用速率为零,这时的光强称为光补偿点。
12.水通道蛋白(Water channel proteins):在许多动植物及微生物中发现的类似的专一性运输水的膜蛋白,是一种位于细胞膜上的蛋白质(内在膜蛋白),在细胞膜上组成“孔道”,可控制水在细胞的进出,它的一个显著特点是其活力可被汞抑制。
13.春化作用:低温诱导或促使植物花器官形成的作用。
植物生理学重点

源是库的同化物供应者,源是产量形成和充实的重要物质基础。
(2)库对源的影响
①库依赖于源而生存,
受源的同化效率及输出数量决定,两者是供求关系。
②库对源的大小,特别是对源的光合活性具有明显的反馈作用。
③库对源还可发挥“动员”和“征调”作用,迫使其内含物向库转移。
(3)源库对流的影响
此外,还有许多因子影响光能利用率,例如光饱和点的损失、叶片衰老、CO2供给不足、病虫危害、水分亏缺、矿质营养不良等都会影响植物对光能的利用。
5.源、库、流相互间有什么关系?了解这种关系对指导农业生产有什么意义?
答:源是指是产生或提供同化物的器官或组织,库是消耗或积累同化物的器官或组织。流则是指光合产物从源至库的运输,包括连接源、库两端的输导组织的结构及其性能。
34.质外体:是一个开放性的连续自由空间,包括细胞壁、细胞间隙及导管等。
35.代谢库:指植物接受有机物质用于生长、消耗或贮藏的组织,器官或部位。如正在发育的种子、果实等。
36.代谢源:指制造并输送有机物质到其他器官的组织、器官或部位。如成熟的叶片。
37.植物激素:是由植物本身合成的,数量很少的一些有机化合物。它们能从生成处运输到其他部位,在极低的浓度下即能产生明显的生理效应,可以对植物的生长发育产生很大的影响。
大量元素9种:C、H、O、N|、P、K、Ca、Mg、S
微量元素7种:Fe、Mn、B、Zn、Cn、Mo、Cl
3.碳三、碳四、CAM植物在谈代谢上的不同?
根据光合作用碳同化途径的不同,可以将高等植物区分为三个类群,即C3途径(卡尔文循环或光合碳循环)、C4—二羧酸途径及景天酸代谢途径。
C3途径是光合碳循环的基本途径,CO2的接受体为RuBp,在RuBp羧化酶催化下,形成两分子三碳化合物3-PGA。
高考生物中植物生理学的重点知识有哪些

高考生物中植物生理学的重点知识有哪些在高考生物中,植物生理学是一个重要的板块,掌握其重点知识对于取得好成绩至关重要。
接下来,咱们就来详细梳理一下这部分的重点内容。
首先,植物的水分代谢是基础且关键的知识点。
水对于植物的生命活动极其重要,植物细胞的吸水和失水原理需要我们深入理解。
当细胞处于高渗溶液中时,会发生质壁分离现象;而在低渗溶液中,则会出现质壁分离复原。
这里涉及到渗透压的概念,要明白渗透压的大小取决于溶液中溶质微粒的数目。
水在植物体内的运输途径也是重点,从根部的根毛细胞吸收水分,通过导管向上运输,最终到达叶片参与光合作用和蒸腾作用。
蒸腾作用在植物水分运输中起着“拉力”的作用,它能够促进根部对水分的吸收和运输。
其次,植物的矿质营养也是常考的内容。
植物需要从土壤中吸收各种矿质元素,这些元素对于植物的生长发育有着不同的作用。
比如氮元素是构成蛋白质、核酸等重要物质的成分,缺乏氮会导致植株矮小、叶片发黄;磷元素参与细胞的能量代谢和遗传物质的合成;钾元素有助于维持细胞的渗透压和增强植物的抗逆性。
了解植物对矿质元素的吸收方式,如主动运输和被动运输,以及矿质元素在植物体内的运输和利用,对于理解植物的生长和代谢过程十分重要。
光合作用是植物生理学中的核心知识点。
光合作用包括光反应和暗反应两个阶段。
光反应在叶绿体的类囊体薄膜上进行,光能被转化为活跃的化学能,形成 ATP 和 NADPH。
暗反应在叶绿体基质中进行,二氧化碳被固定和还原,形成有机物。
影响光合作用的因素众多,如光照强度、温度、二氧化碳浓度等。
了解这些因素如何影响光合作用的速率,对于解决实际问题和分析实验数据非常有用。
呼吸作用也是不容忽视的重点。
植物通过呼吸作用分解有机物,释放能量,为生命活动提供动力。
有氧呼吸和无氧呼吸的过程、场所和能量变化都要清楚。
有氧呼吸分为三个阶段,分别在细胞质基质和线粒体中进行,最终将有机物彻底氧化分解,产生大量的能量。
无氧呼吸在细胞质基质中进行,产物因植物种类而异,比如酒精和二氧化碳或者乳酸。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、植物的近况和展望1. 谈一下植物生理学的发展趋势。
植物生理学是研究植物生命活动的基本规律的科学。
主要研究内容有物质代谢、能量转化、信息传递、形态建成。
殷宏章先生指出:近年来随着研究的不断深入和与其他学科的交叉渗透,植物生理学的研究,有向两端发展的趋势。
(1)一方面随着现代生物化学、生物物理学、细胞生理学的发展,特别是分子遗传学的突跃,已将一些生理的机理研究深入到分子水平,或亚分子水平,这是微观方向的发展(2)另一方面由于环境的破坏和人为的污染,人与生物圈的关系逐渐受到重视,农林生产自然生态系统的环境生理对植物生理提出了大量基本的问题,需要向宏观方面发展。
2. 植物生理学与现代农业可持续发展的关系和看法?世界面临着人口、食物、能源、环境和资源问题的挑战,解决这些问题植物生理学占有突出地位。
农业是通过绿色植物“加工”太阳能的产业,植物的生长发育既是生产过程,又是产品本身。
植物生理学是研究绿色植物生命活动规律的科学,是合理农业的基础。
农作物生产不外乎要抓好两件事,一是改造植物遗传性,二是改善栽培技术,而要做好这两件事必须基于对植物生命活动规律的认识。
高等绿色植物具有多种特殊生理功能:自养营养、全能性、“四固”能力,即固定碳素、固定氮素、分解水释放出氧气和制造氢气的能力;具有合成橡胶、香料、药物等特殊代谢物质的能力,有很强的适应性和抗逆能力等等。
深刻揭露绿色植物这些特殊本领并加以利用,可以开辟植物生产的应用新领域,提高人们驾驭自然、利用植物资源的能力,为振兴农业不断提供新方法、新途径。
应用植物生理学是植物生理学与农业现代化关系的一个缩影。
如提高光合作用效率与光呼吸问题、间作套种和合理密植、合理用水和经济用水、合理施肥和经济施肥等都是应用植物生理学研究的课题。
二.细胞生理1.细胞程序性死亡(概念):程序性死亡(programmed cell death,PCD),这是一种主动的、为了生物的自身发育及抵抗不良环境的需要而按照一定的程序结束细胞生命的过程特点:PCD与通常意义上的衰老死亡不同它是多细胞生物中一些细胞所采取的一种自身基因调控的主动死亡方式。
在形态上,发生PCD的细胞先以细胞质和细胞核浓缩、染色质边缘化为特征,随后由膜包围DNA片段而形成凋亡小体。
在生化上,PCD与信号传导有关,信号分子可能是蛋白质、激素、过氧化物、无机离子等化学成分,发生PCD的细胞表现为被诱导产生核酸内切酶,核DNA从核小体间降解断裂,产生带有3’-OH端的、大小不同的寡聚核小体片段,这些片段在凝胶电泳上可以见到以140 bp倍增的“梯形”DNA条带(DNA ladder)。
在遗传上,PCD受基因有序活动的控制,需要特定基因的转录和蛋白质合成,并可被特定基因表达所控制。
植物PCD主要发生在细胞分化过程中,最主要的特点是主动性。
与植物生理抗性的关系:1)细胞程序性死亡与抗病性,植物感病后,抵抗病原物进一步侵染的最典型的例子就是超敏反应(hypersensitive response,HR)2) 细胞程序性死亡与缺氧胁迫,通气组织(aerenchyma)是植物薄壁组织内一些气室或空腔的集合。
是氧气运入根内的通道,是对淹水缺氧逆境的良好适应。
感受缺氧逆境后,皮层薄壁组织中只有部分细胞选择性地发生解体死亡,而周围的细胞还保持完整的现象.通气组织的形成,包括感受氧的缺乏、信号的产生、原初信号传递,进而诱导乙烯的合成,通过乙烯浓度变化引起级联反应,最终诱导细胞死亡,是一系列联系紧密而有序的过程。
3)细胞程序性死亡与干旱胁迫;4)细胞程序性死亡与抗盐性,许多植物在盐浓度达到一定值时,会破坏根尖细胞的正常生命活动,部分细胞甚至死亡,使根尖乃至植株整体的生长受到抑制,这是一种常见的生理现象.PCD是植物抗盐的一种普遍的生理机制,其主要功能是根尖细胞通过局部细胞死亡而主动形成一道死细胞屏障,阻止了盐离子进入植物体的其他组织;5)细胞程序性死亡与温度胁迫,5~6℃低温胁迫可以诱导产生PCD,引起烟草BY-2细胞内染色质发生特殊的变化;6)细胞程序性死亡与营养胁迫, 在氮磷胁迫条件下,植物根系的相对生长量增加,叶丛生长变缓,器官间对同化物的竞争趋于更加激烈2.伸展蛋白(概念):是植物初生细胞壁中一类富含羟脯氨酸的糖蛋白,于1960年首次被发现。
因猜测这种蛋白质可能与细胞生长时的细胞壁伸展性有关,故命名为伸展蛋白,它是细胞壁中起结构作用的一种组分,伸展蛋白在组成细胞壁结构、防御和抗病抗逆方面有重要功能。
功能:A.伸展蛋白的结构功能,前述伸展蛋白的结构特点与动物结缔组织中富含羟脯氨酸的结构糖蛋白——胶原的特点极其相似。
所以,人们认为伸展蛋白是细胞壁中起结构作用的一种组分。
Lamport和Epstein提出的经纬模型(Warp and weft model)较好地解释了伸展蛋白的结构作用。
B.伸展蛋白的防御和抗病抗逆功能,Esquerre-Tugaye和Lamport 发现引起炭疽病的瓜类炭疽刺盘孢菌(Colletotrichum lagenarium)感染黄瓜植株后,后者细胞壁中的HRGP增加约10倍。
C、伸展蛋白的其它生理作用,大豆种皮中羟脯氨酸的含量可能与种子发育有一定关系。
生长素诱导的伸长生长与伸展蛋白的合成、积累、转运之间也可能有某种联系。
光敏色素调控细胞壁中羟脯氨酸的含量又使人认为伸展蛋白可能与光形态建成有关。
伸展蛋白可能是将多糖从细胞质运输到细胞壁的载体。
3.细胞壁的主要生理生化作用:1.)支持作用:细胞壁可增加植物的机械强度,充当植物的骨架。
2)运输通道:细胞壁允许离子、低分子量的蛋白质和多糖等小分子通过,而大分子或微生物等被屏蔽于其外,对细胞间物质的运输具有调节作用。
3)保护作用:初生细胞壁中的寡糖素能诱导植物抗毒素形成,还对其它生理过程有调节作用,在植物抵抗病虫害中起作用。
可使植物产生过敏性死亡,使得病原物不能进一步扩散。
还有防御和抗病抗逆的功能。
4)参与各种代谢活动:细胞壁中的酶类参与细胞壁高分子合成,转移及水解,细胞外物质输送到细胞内以及防御作用等。
另外,细胞之间存在的胞间连丝可使相邻细胞的原生质及其内溶物相互交换,也可进行信息传递;细胞壁参与了植物与根瘤菌共生固氮的相互识别以及共同完成侵染作用;细胞壁中的多聚半乳糖醛酸酶可能参与了砧木和接穗之间嫁接过程中的识别反应。
总之,高等植物细胞壁积极参与各种代谢活动包括细胞的生长、分化、细胞识别及抗病抗逆机制等方面。
4.叶绿体基因表达特点:1)叶绿体基因组也叫叶绿体DNA(cpDNA),其大小差异在120 000~217 000个碱基对。
cpDNA一般周长为40~60μm,分子量约为3.8×107,叶绿体中DNA的含量大体在10-14g水平上,每个叶绿体中约含12个cpDNA分子。
2)大部分叶绿体DNA都是共价闭合的双链环状分子,少数为线状分子。
不同种的植物中环状叶绿体DNA分子所占的比例不同3)同一个种的不同亚种叶绿体基因组序列可有部分不同,例如水稻种的野生稻、粳稻和籼稻3个亚种之间的部分不同,反映了它们之间在进化方面存在差异。
4)大多数植物的叶绿体DNA都有一个突出的特点,即存在着两个反向重复序列,其长度一般为6~76 kb。
在两个反向重复序列之间有一个大单拷贝区和一个小单拷贝区,前者一般长约80 kb,后者长约20 kb。
不同植物的叶绿体基因组大小不同,这些不同首先表现在两个大单拷贝区区上,其次是小单拷贝区。
5)在叶绿体中有复制叶绿体DNA的机构。
6)叶绿体作为细胞内的重要细胞器,其基因组与核基因组之间既相对独立,又相互依存。
转运肽(概念):叶绿体中的大部分多肽是由核基因编码并在细胞质的核糖体上合成的。
细胞质中所合成的叶绿体中多肽的前体几乎都带有一段含几十个氨基酸序列的转运肽(transit peptide),这些前体由转运肽引导进入叶绿体后,转运肽被蛋白酶切去,同时相应的多肽到达预定部位。
三.信号与自由基1.信号转导基本概念:植物感受到各种物理或化学的信号,然后将相关信息传递到细胞内,调节植物的基因表达或酶活性的变化,或其它代谢变化,从而做出反应,这种信息的传递和反应过程称为植物的信号转导(signal transduction)。
特点:(1)信号分子较小且易于移动:作为一个有效的、可传递信息的信号分子,首先要求它产生之后容易转移到作用靶位,因此一般来说信号分子都是小分子物质而且可溶性较好,易于扩散。
如果需要跨膜转移,它们要通过特殊通道或载体。
2)信号分子应快速产生和灭活:生物细胞为了对环境刺激尽快产生反应而且适可而止,就要求信号分子快速产生和灭活。
(3)信号传递途径的级联放大作用:信号通路有连贯性,各个反应相互衔接,有序地依次进行,直至完成。
其间,任何步骤的中断或者出错,都将给细胞,乃至机体带来重大的灾难性后果。
细胞信号传递途径由信号分子及其一系列传递组分组成,它形成一个级联(cascades)反应将原初信号放大。
一个激素信号分子结合到其受体之后,决不会只引起胞内一个酶分子活性的增加,它可能通过G蛋白激活多个效应酶(4)信号传递是一个网络系统:信号系统之间的相互关系及时空性并不是一种简单因果事件的线形链,实际上是一种信息网络。
多种信号相互联系和平衡决定一定特异的细胞反应。
2.自由基基本概念:自由基指在原子或分子轨道中含有未成对电子的分子或分子片段,可以是不带电的原子或分子,也可以使带电离子。
活性氧基本概念:从氧衍生出来的自由基及其产物称为活性氧(ROS),活性氧有时也叫做氧自由基。
特点:寿命短和活泼性强就是自由基的两大特点,它们是互相依存的。
活跃、强氧化性、不稳定,瞬时存在、能持续进行连锁反应。
自由基具有很强的氧化能力,对许多生物功能分子有破坏作用,但在正常情况下,由于细胞内自由基水平很低,所以不会引起伤害。
细胞为了维持正常的生命活动,自由基必须处于一个低水平,细胞内存在着自由基清除系统,在正常情况下细胞内自由基的产生与清除是处于一种动态平衡状态,一旦这种平衡受到破坏,就可能产生伤害作用清除自由基系统的特点:1)在正常情况下,细胞内自由基的产生和清除处于动态平衡状态,自由基水平很低,不会伤害细胞。
当植物受到胁迫时,自由基累积过多,这个平衡就被打破。
2)自由基不仅具有使膜脂过氧化的作用,而且存在使膜脂脱酯化的作用3)自由基除了对膜具有破坏作用外,对含有不饱和双键的生物功能分子也有破坏作用。
3.渗透调节物质的概念:有些植物在遭受逆境时,可在体内积累各种有机和无机物质,通过调节体内的渗透势来保持水分,适应水分胁迫环境,这种现象称为渗透调节。
相应的物质称为渗透调节物质。
渗透调节物质的种类很多,大致可分为两大类。
一类是由外界进入细胞的无机离子,一类是在细胞内合成的有机物质。