高一下数学解三角形训练案
下学期高一数学第一章解三角形全章教案 必修5

下学期高一数学第一章解三角形全章教案1.1第1课时 正弦定理(1)教学目标(1)要求学生掌握正弦定理及其证明;(2)会初步应用正弦定理解斜三角形,培养数学应用意识; (3)在问题解决中,培养学生的自主学习和自主探索能力. 教学重点,难点正弦定理的推导及其证明过程. 教学过程 一.问题情境在直角三角形中,由三角形内角和定理、勾股定理、锐角三角函数,可以由已知的边和角求出未知的边和角.那么斜三角形怎么办?我们能不能发现在三角形中还蕴涵着其他的边与角关系呢?探索1 我们前面学习过直角三角形中的边角关系,在Rt ABC ∆中,设90C =︒,则sin a A c =, sin b B c =, sin 1C =, 即:sin a c A =, sin b c B =, sin c c C =, sin sin sin a b cA B C==. 探索2 对于任意三角形,这个结论还成立吗? 二.学生活动学生通过画三角形、测量边长及角度,再进行计算,初步得出该结论对于锐角三角形和钝角三角形成立.教师再通过几何画板进行验证.引出课题——正弦定理. 三.建构数学探索3 这个结论对于任意三角形可以证明是成立的.不妨设C 为最大角,若C 为直角,我们已经证得结论成立,如何证明C 为锐角、钝角时结论也成立? 证法1 若C 为锐角(图(1)),过点A 作AD BC ⊥于D ,此时有sin AD B c =,sin ADC b=,所以sin sin c B b C =,即sin sin b c B C =.同理可得sin sin a cA C=, 所以sin sin sin a b cA B C ==. 若C 为钝角(图(2)),过点A 作AD BC ⊥,交BC 的延长线于D ,此时也有sin AD B c =,且sin sin(180)AD C C b =︒-=.同样可得sin sin sin a b cA B C==.综上可知,结论成立.证法 2 利用三角形的面积转换,先作出三边上的高AD 、BE 、CF ,则sin AD c B =,sin BE a C =,sin CF b A =.所以111sin sin sin 222ABC S ab C ac B bc A ∆===,每项同除以12abc 即得:sin sin sin a b cA B C==.探索4 充分挖掘三角形中的等量关系,可以探索出不同的证明方法.我们知道向量也是解决问题的重要工具,因此能否从向量的角度来证明这个结论呢?在ABC ∆中,有BC BA AC =+.设C 为最大角,过点A 作AD BC ⊥于D (图(3)),于是BC AD BA AD AC AD ⋅=⋅+⋅.设AC 与AD 的夹角为α,则0||||cos(90)||||cos BA AD B AC AD α=⋅⋅︒++⋅,其中 ,当C ∠为锐角或直角时,90C α=︒-; 当C ∠为钝角时,90C α=-︒. 故可得sin sin 0c B b C -=,即sin sin b cB C=. 同理可得sin sin a cA C =. 因此sin sin sin a b c A B C==. 四.数学运用 1.例题:例1.在ABC ∆中,30A =︒,105C =︒,10a =,求b ,c .解:因为30A =︒,105C =︒,所以45B =︒.因为sin sin sin a b cA B C==, 所以sin 10sin 45102sin sin 30a B b A ︒===︒,sin 10sin1055256sin sin 30a C c A ︒===+︒.因此, b ,c 的长分别为102和5256+.例2.根据下列条件解三角形: (1)3,60,1b B c ==︒=; (2)6,45,2c A a ==︒=.解:(1)sin sin b cB C =,∴sin 1sin 601sin 23c B C b ⨯︒===, ,60b c B >=,∴C B <,∴C 为锐角, ∴30,90C A ==,∴222a b c =+=.(2)sin sin a cA C=,∴sin 6sin 453sin 22c A C a ⨯===,∴60120C =或, ∴当sin 6sin 756075,31sin sin 60c B C B b C =====+时,; ∴当sin 6sin1512015,31sin sin 60c B C B b C =====-时,; 所以,31,75,60b B C =+==或31,15,120b B C =-==.说明:正弦定理也可用于解决已知两边及一边的对角,求其他边和角的问题. 练习:在ABC ∆中,30a =,26b =,30A =︒,求c 和,B C .说明:正弦定理可以用于解决已知两角和一边求另两边和一角的问题. 2.练习: (1)在ABC ∆中,已知8b c +=,30B ∠=︒,45C ∠=︒,则b = ,c = . (2)在ABC ∆中,如果30A ∠=︒,120B ∠=︒,12b =,那么a = ,ABC ∆的面积是 .(3)在ABC ∆中,30bc =,1532ABC S ∆=,则A ∠= . (4)课本第9页练习第1题. 五.回顾小结:1.用两种方法证明了正弦定理:(1)转化为直角三角形中的边角关系;(2)利用向量的数量积.2.初步应用正弦定理解斜三角形. 六.课外作业:课本第9页练习第2题;课本第11页习题1.1第1、6题§1.1.1第2课时 正弦定理(2)教学目标(1)掌握正弦定理和三角形面积公式,并能运用这两组公式求解斜三角形; (2)熟记正弦定理2sin sin sin a b cR A B C===(R 为ABC ∆的外接圆的半径)及其变形形式.教学重点,难点利用三角函数的定义和外接圆法证明正弦定理. 教学过程 一.问题情境上节课我们已经运用两种方法证明了正弦定理,还有没有其他方法可以证明正弦定理呢? 二.学生活动学生根据第5页的途径(2),(3)去思考. 三.建构数学证法1 建立如图(1)所示的平面直角坐标系,则有(cos ,sin )A c B c B ,(,0)C a ,所以ABC ∆的面积为1sin 2ABC S ac B ∆=.同理ABC ∆的面积还可以表示为1sin 2ABC S ab C ∆=及1sin 2ABC S bc A ∆=,所以111sin sin sin 222ab C ac B bc A ==. 所以sin sin sin a b c A B C==. 证法2 如下图,设O 是ABC ∆的外接圆,直径2BD R =.(1)如图(2),当A 为锐角时,连CD ,则90BCD ∠=︒,2sin a R D =.又D A ∠=∠,所以2sin a R A =.(2)如图(3),当A 为钝角时,连CD ,则90BCD ∠=︒,2sin a R D =.又180A D ∠+∠=︒,可得sin sin(180)sin D A A =︒-=,所以2sin a R A =.(3)当A 为直角时,2a R =,显然有2sin a R A =.所以不论A 是锐角、钝角、直角,总有2sin a R A =.同理可证2sin b R B =,2sin c R C =.所以2sin sin sin a b cR A B C===. 由此可知,三角形的各边与其所对角的正弦之比是一个定值,这个定值就是三角形外接圆的直径. 由此可得到正弦定理的变形形式:(1)2sin ,2sin ,2sin a R A b R B c R C ===; (2)sin ,sin ,sin 222a b cA B C R R R===;(3)sin sin sin ::::A B C a b c =. 四.数学运用1.例题:例1.根据下列条件,判断ABC ∆有没有解?若有解,判断解的个数. (1)5a =,4b =,120A =︒,求B ; (2)5a =,4b =,90A =︒,求B ;(3)106a =,203b =45A =︒,求B ; (4)202a =203b =45A =︒,求B ;(5)4a =,33b =,60A =︒,求B . 解:(1)∵120A =︒,∴B 只能是锐角,因此仅有一解. (2)∵90A =︒,∴B 只能是锐角,因此仅有一解.(3)由于A 为锐角,而210632=,即A b a sin =,因此仅有一解90B =︒.(4)由于A 为锐角,而22032022031062>>=,即sin b a b A >>,因此有两解,易解得60120B =︒︒或.(5)由于A 为锐角,又1034sin 605<︒=,即sin a b A <,∴B 无解. 例2.在ABC ∆中,已知,cos cos cos a b cA B C==判断ABC ∆的形状.解:令sin ak A=,由正弦定理,得sin a k A =,sin b k B =,sin c k C =.代入已知条件,得sin sin sin cos cos cos A B C A B C==,即tan tan tan A B C ==.又A ,B ,C (0,)π∈,所以A B C ==,从而ABC ∆为正三角形.说明:(1)判断三角形的形状特征,必须深入研究边与边的大小关系:是否两边相等?是否三边相等?还要研究角与角的大小关系:是否两角相等?是否三角相等?有无直角?有无钝角? (2)此类问题常用正弦定理(或将学习的余弦定理)进行代换、转化、化简、运算,揭示出边与边,或角与角的关系,或求出角的大小,从而作出正确的判断.例3.某登山队在山脚A 处测得山顶B 的仰角为35︒,沿倾斜角为20︒的斜坡前进1000米后到达D 处,又测得山顶的仰角为65︒,求山的高度(精确到1米). 分析:要求BC ,只要求AB ,为此考虑解ABD ∆. 解:过点D 作//DE AC 交BC 于E ,因为20DAC ∠=︒, 所以160ADE ∠=︒,于是36016065135ADB ∠=︒-︒-︒=︒. 又352015BAD ∠=︒-︒=︒,所以30ABD ∠=︒. 在ABD ∆中,由正弦定理,得sin 1000sin13510002()sin sin 30AD ADB AB m ABD ∠︒===∠︒.在Rt ABC ∆中,sin 35235811()BC AB m =︒=︒≈. 答:山的高度约为811m .例4.如图所示,在等边三角形中,,AB a =O 为三角形的中心,过O 的直线交AB 于M ,交AC 于N ,求2211OM ON +的最大值和最小值. 解:由于O 为正三角形ABC 的中心,∴3AO =, 6MAO NAO π∠=∠=,设MOA α∠=,则233ππα≤≤,αβπβ-αACBD在AOM ∆中,由正弦定理得:sin sin[()]6OM OAMAO ππα=∠-+, ∴6sin()6OM πα=+,在AON ∆中,由正弦定理得:6sin()6ON πα=-,∴2211OM ON +22212[sin ()sin ()]66a ππαα=++-22121(sin )2a α=+, ∵233ππα≤≤,∴3sin 14α≤≤,故当2πα=时2211OM ON +取得最大值218a, 所以,当α=2,33or ππ时23sin 4α=,此时2211OM ON +取得最小值215a . 例5.在ABC ∆中,AD 是BAC ∠的平分线,用正弦定理证明:AB BDAC DC=. 证明:设BAD α∠=,BDA β∠=,则CAD α∠=,180CDA β∠=︒-.在ABD ∆和ACD ∆中分别运用正弦定理,得sin sin AB BD βα=,sin(180)sin AC DC βα︒-=, 又sin(180)sin ββ︒-=,所以AB AC BD DC =,即AB BDAC DC=. 2.练习:(1)在ABC ∆中,::4:1:1A B C =,则::a b c = ( D )A .4:1:1 B .2:1:1 CD(2)在ABC ∆中,若sin :sin :sin 4:5:6A B C =,且15a b c ++=,则a = , b = ,c = . 五.回顾小结:1.了解用三角函数的定义和外接圆证明正弦定理的方法; 2.理论上正弦定理可解决两类问题:(1)两角和任意一边,求其它两边和一角;(2)两边和其中一边对角,求另一边的对角,进而可求其它的边和角. 六.课外作业:课本第9页练习第3题;课本第11页习题1.1第2、8题.§1.1.2 第3课时 余弦定理(1)教学目标(1)掌握余弦定理及其证明;(2)使学生能初步运用余弦定理解斜三角形. 教学重点,难点(1)余弦定理的证明及其运用;(2)能灵活运用余弦定理解斜三角形. 教学过程 一.问题情境 1.情境:复习正弦定理及正弦定理能够解决的两类问题. 2.问题:在上节中,我们通过等式BC BA AC =+的两边与AD (AD 为ABC ∆中BC 边上的高)作数量积,将向量等式转化为数量关系,进而推出了正弦定理,还有其他途径将向量等式BC BA AC =+数量化吗?二.学生活动如图,在ABC ∆中,AB 、BC 、CA 的长分别为c 、a 、b . ∵BC AB AC +=∴()()AC AC AB BC AB BC ⋅=+⋅+22cos 2a B ac c +-=, 即B ac a c b cos 2222-+=;同理可证:A bc c b a cos 2222-+=, C ab b a c cos 2222-+=. 三.建构数学 1. 余弦定理上述等式表明,三角形任何一边的平方等于其他两边平方的和,减去这两边与它们夹角的余弦的积的两倍.这样,我们得到余弦定理. 2.思考:回顾正弦定理的证明,尝试用其他方法证明余弦定理.方法1:如图1建立直角坐标系,则(0,0),(cos ,sin ),(,0)A B c A c A C b .所以2222222222(cos )(sin )cos sin 2cos 2cos a c A b c A c A c A bc A b b c bc A=-+=+-+=+-同理可证B ac a c b cos 2222-+=,C ab b a c cos 2222-+=注:此法的优点在于不必对A 是锐角、直角、钝角进行分类讨论.方法2:若A 是锐角,如图2,由B 作BD AC ⊥,垂足为D ,则cos AD c A =,所以即A bc c b a cos 2222-+=,类似地,可以证明当A 是钝角时,结论也成立,而当A 是直角时,结论显 然成立.同理可证B ac a c b cos 2222-+=,C ab b a c cos 2222-+=.图1 图2 3.余弦定理也可以写成如下形式:bc a c b A 2cos 222-+= , ac b c a B 2cos 222-+=, acc b a C 2cos 222-+=.4.余弦定理的应用范围:利用余弦定理,可以解决以下两类有关三角形的问题: (1)已知三边,求三个角;(2)已知两边和它们的夹角,求第三边和其他两个角. 四.数学运用 1.例题:例1.在ABC ∆中,(1) 已知3b =,1c =,060A =,求a ;A BCcab(2) 已知4a =,5b =,6=c ,求A (精确到00.1).解:(1)由余弦定理,得2222202cos 31231cos607a b c bc A =+-=+-⨯⨯⨯=,所以 a =(2)由余弦定理,得222222564cos 0.752256b c a A bc +-+-===⨯⨯, 所以,041.4A ≈.例2. ,A B 两地之间隔着一个水塘,现选择另一点C ,测得182,CA m =126,CB m =063ACB ∠=,求,A B 两地之间的距离(精确到1m ). 解:由余弦定理,得所以,168()AB m ≈答:,A B 两地之间的距离约为168m .例3.用余弦定理证明:在ABC ∆中,当C 为锐角时,222a b c +>;当C 为钝角时,222a b c +<.证:当C 为锐角时,cos 0C >,由余弦定理,得222222cos c a b ab C a b =+-<+,即 222a b c +>.同理可证,当C 为钝角时,222a b c +<.2.练习:书第15页 练习1,2,3,4 五.回顾小结:1.余弦定理及其应用2.正弦定理和余弦定理是解三角形的两个有力工具,要区别两个定理的不同作用,在解题时正确选用;六.课外作业:书第16页1,2,3,4,6,7题§1.1.2 第4课时 余弦定理(2)教学目标(1)能熟练应用正弦定理、余弦定理及相关公式解决三角形的有关问题;(2)能把一些简单的实际问题转化为数学问题,并能应用正弦定理、余弦定理及相关的三角公式解决这些问题. 教学重点,难点能熟练应用正弦定理、余弦定理及相关公式解决三角形的有关问题,牢固掌握两个定理,应用自如. 教学过程 一.问题情境1.正弦定理及其解决的三角形问题(1)已知两角和任一边,求其它两边和一角;(2)已知两边和其中一边的对角,求另一边的对角,从而进一步其它的边和角. 2.余弦定理及其解决的三角形问题 (1)已知三边,求三个角;(2)已知两边和他们的夹角,求第三边和其他两个角. 四.数学运用 1.例题:例1.在长江某渡口处,江水以5/km h 的速度向东流,一渡船在江南岸的A 码头出发,预定要在0.1h 后到达江北岸B 码头,设AN 为正北方向,已知B 码头在A 码头的北偏东015,并与A 码头相距1.2km .该渡船应按什么方向航行?速度是多少(角度精确到00.1,速度精确到0.1/km h )?解:如图,船按AD 方向开出,AC 方向为水流方向,以AC 为一边、AB 为对角线作平行四边形ABCD ,其中 1.2(),50.10.5()AB km AC km ==⨯=.在ABC ∆中,由余弦定理,得2221.20.52 1.20.5cos(9015) 1.38BC =+-⨯⨯-≈, 所以 1.17()AD BC km =≈. 因此,船的航行速度为1.170.111.7(/)km h ÷=.在ABC ∆中,由正弦定理,得 0sin 0.5sin 75sin 0.41281.17AC BAC ABC BC ∠∠==≈, 所以 024.4ABC ∠≈所以 00159.4DAN DAB NAB ABC ∠=∠-∠=∠-≈.答:渡船应按北偏西09.4的方向,并以11.7/km h 的速度航行.例2. 在ABC ∆中,已知sin 2sin cos A B C =,试判断该三角形的形状.解:由正弦定理及余弦定理,得222sin ,cos sin 2A a a b c C B b ab+-==, 所以 22222a a b c b ab+-=,整理得 22b c =因为0,0b c >>,所以b c =.因此,ABC ∆为等腰三角形.例3.如图,AM 是ABC ∆中BC 边上的中线,求证:22212()2AM AB AC BC =+-.证:设AMB α∠=,则0180AMC α∠=-.在ABM ∆中,由余弦定理,得2222cos AB AM BM AM BM α=+-.在ACM ∆中,由余弦定理,得22202cos(180)AC AM MC AM MC α=+--.因为01cos(180)cos ,2BM MC BC αα-=-==, 所以2222122AB AC AM BC +=+,因此, 22212()2AM AB AC BC =+-. 例4.在ABC ∆中,BC a =,AC b =,,a b 是方程02322=+-x x 的两个根,且2cos()1A B +=,求:①角C 的度数; ②AB 的长度; ③ABC S ∆.解:①1cos cos(())cos()2C A B A B π=-+=-+=- ∴120C =;②由题设:232a b ab ⎧+=⎪⎨=⎪⎩,∴2222cos AB AC BC AC BC C =+-⋅⋅120cos 222ab b a -+=ab b a ++=22102)32()(22=-=-+=ab b a , 即10AB =;③ABC S ∆11133sin sin120222222ab C ab ===⋅⋅=.2.练习:(1)书第16页 练习1,2,3,4DCBA(2)如图,在四边形ABCD 中,已知AD CD ⊥,10AD =,14AB =, 60BDA ∠=, 135BCD ∠=, 求BC 的长.(3)在ABC ∆中,已知()()()456::::b c c a a b +++=,求ABC ∆的最大内角;(4)已知ABC ∆的两边,b c 是方程2400x kx -+=的两个根,的面积是2cm ,周长是20cm ,试求A 及k 的值; 五.回顾小结:1.正弦、余弦定理是解三角形的有力工具,要区别两个定理的不同作用,在解题时正确选用;2.应用正弦、余弦定理可以实现将“边、角相混合”的等式转化为“边和角的单一”形式; 3.应用余弦定理不仅可以进行三角形中边、角间的计算,还可以判断三角形的形状. 六.课外作业:书第17页5,8,9,10,11题§1.3正弦定理、余弦定理的应用(1)教学目标(1)综合运用正弦定理、余弦定理等知识和方法解决与测量学、航海问题等有关的实际问题;(2)体会数学建摸的基本思想,掌握求解实际问题的一般步骤;(3)能够从阅读理解、信息迁移、数学化方法、创造性思维等方面,多角度培养学生分析问题和解决问题的能力. 教学重点,难点(1)综合运用正弦定理、余弦定理等知识和方法解决一些实际问题; (2)掌握求解实际问题的一般步骤. 教学过程 一.问题情境 1.复习引入复习:正弦定理、余弦定理及其变形形式, (1)正弦定理、三角形面积公式:R CcB b A a 2sin sin sin ===; B acC ab A bc S ABC sin 21sin 21sin 21===∆.(2)正弦定理的变形:①C R c B R b A R a sin 2,sin 2,sin 2===;②RcC R b B R a A 2sin ,2sin ,2sin ===; ③sin sin sin ::::A B C a b c =.(3)余弦定理:bca cb A A bc c b a 2cos ,cos 2222222-+=-+=.二.学生活动引导学生复习回顾上两节所学内容,然后思考生活中有那些问题会用到这两个定理,举例说明.三.建构数学正弦定理、余弦定理体现了三角形中边角之间的相互关系,在测量学、运动学、力学、电学等许多领域有着广泛的应用.1.下面给出测量问题中的一些术语的解释:(1)朝上看时,视线与水平面夹角为仰角;朝下看时,视线与水平面夹角为俯角. (2)从某点的指北方向线起,依顺时针方向到目标方向线之间的水平夹角,叫方位角.(3)坡度是指路线纵断面上同一坡段两点间的高度差与其水平距离的比值的百分率.道路坡度100%所表示的可以这样理解:坡面与水平面的夹角为45度.45度几乎跟墙壁一样的感觉了. (4)科学家为了精确地表明各地在地球上的位置,给地球表面假设了一个坐标系,这就是经纬度线.2.应用解三角形知识解决实际问题的解题步骤:①根据题意作出示意图;②确定所涉及的三角形,搞清已知和未知;③选用合适的定理进行求解;④给出答案. 四.数学运用 1.例题:例1.如图1-3-1,为了测量河对岸两点,A B 之间的距离,在河岸这边取点,C D ,测得85ADC ∠=,60BDC ∠=,47ACD ∠=,72BCD ∠=,100CD m =.设,,,A B C D 在同一平面内,试求,A B 之间的距离(精确到1m ).解:在ADC ∆中,85ADC ∠=,47ACD ∠=,则48DAC ∠=.又100DC =,由正弦定理,得()sin 100sin 85134.05sin sin 48DC ADC AC m DAC ∠==≈∠.在BDC ∆中,60BDC ∠=,72BCD ∠=, 则48DBC ∠=.又100DC =, 由正弦定理,得()sin 100sin 60116.54sin sin 48DC BDC BC m DBC ∠==≈∠.在ABC ∆中, 由余弦定理,得3233.95≈, 所以 ()57AB m ≈答,A B 两点之间的距离约为57m .本例中AB 看成ABC ∆或ABD ∆的一边,为此需求出AC ,BC 或AD ,BD ,所以可考察ADC ∆和BDC ∆,根据已知条件和正弦定理来求AC ,BC ,再由余弦定理求AB .引申:如果A ,B 两点在河的两岸(不可到达),试设计一种测量A ,B 两点间距离的方法.可见习题1.3 探究拓展 第8题.例2.如图1-3-2,某渔轮在航行中不幸遇险,发出呼救信号,我海军舰艇在A 处获悉后,测出该渔轮在方位角为45,距离为10n mile 的C 处,并测得渔轮正沿方位角为105的方向,以9/n mile h 的速度向小岛靠拢,我海军舰艇立即以21/n mile h 的速度前去营救.求舰艇的航向和靠近渔轮所需的时间(角度精确到0.1,时间精确到1min ). 解:设舰艇收到信号后x h 在B 处靠拢渔轮,则21AB x =,9BC x =,又10AC =,()45180105120ACB ∠=+-=.由余弦定理,得2222cos AB AC BC AC BC ACB =+-⋅∠,即()()222211092109cos 120x x x =+-⨯⨯∠.化简,得2369100x x --=,解得()()240min 3x h ==(负值舍去).由正弦定理,得图1-3-1图1-3-2sin 9sin12033sin 2114BC ACB x BAC AB x ∠∠===, 所以21.8BAC ∠≈,方位角为4521.866.8+=.答 舰艇应沿着方向角66.8的方向航行,经过40min 就可靠近渔轮.本例是正弦定理、余弦定理在航海问题中的综合应用.因为舰艇从A 到B 与渔轮从C 到B 的时间相同,所以根据余弦定理可求出该时间,从而求出AB 和BC ;再根据正弦定理求出BAC ∠. 例3.如图,某海岛上一观察哨A 在上午11时测得一轮船在海岛北偏东3π的C 处,12时20分测得轮船在海岛北偏西3π的B 处,12时40分轮船到达海岛正西方5km 的E 港口.如果轮船始终匀速前进,求船速. 解:设ABE θ∠=,船的速度为/km h υ,则43BC υ=,13BE υ=. 在ABE ∆中,153sin sin 30υθ=,15sin 2θυ∴=. 在ABC ∆中,()43sin120sin 180AC υθ=-, 4415sin 2033233322AC υθυυ⋅⋅∴===. 在ACE ∆中,22520202525cos150333υ⎛⎫⎛⎫⎛⎫=+-⨯⨯⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 22540077525100933υ=++=,293υ∴=, ∴船的速度93/km h υ=. 2.练习:书上P20 练习1,3,4题.五.回顾小结:1.测量的主要内容是求角和距离,教学中要注意让学生分清仰角、俯角、张角、视角和方位角及坡度、经纬度等概念,将实际问题转化为解三角形问题.2.解决有关测量、航海等问题时,首先要搞清题中有关术语的准确含义,再用数学语言(符号语言、图形语言)表示已知条件、未知条件及其关系,最后用正弦定理、余弦定理予以解决.六.课外作业: 书上P21页习题1.3 第2,3,4题.§1.3 正弦定理、余弦定理的应用(2)教学目标(1)能熟练应用正弦定理、余弦定理解决三角形等一些几何中的问题和物理问题;(2)能把一些简单的实际问题转化为数学问题,并能应用正弦、余弦定理及相关的三角公式解决这些问题;(3)通过复习、小结,使学生牢固掌握两个定理,应用自如.教学重点,难点能熟练应用正弦定理、余弦定理及相关公式解决三角形的有关问题。
解三角形之三角形的角平分线和中线问题(典型例题+跟踪训练)【解答题抢分专题】备战2023年高考数学

【解答题抢分专题】备战2023年高考数学解答题典型例题+跟踪训练(新高考通用)专题05解三角形之三角形中线和角平分线问题目录一览一、梳理必备知识二、基础知识过关三、典型例题讲解四、解题技巧实战五、跟踪训练达标1.正弦定理R CcB b A a 2sin sin sin ===.(其中R 为ABC ∆外接圆的半径)2sin ,2sin ,sin ;a R A b R B c R C ⇔===(边化角)sin ,sin ,sin ;222a b c A B C R R R⇔===(角化边)2.余弦定理:222222222cos 2cos 2cos .2b c a A bc a c b B ac a b c C ab ⎧+-=⎪⎪+-⎪=⎨⎪⎪+-=⎪⎩⇒2222222222cos ,2cos ,2cos .a b c bc A b a c ac B c a b ab C ⎧=+-⎪=+-⎨⎪=+-⎩3.三角形面积公式:B ac A bcC ab S ABC sin 21sin 21sin 21===∆=12++为三角形ABC 的内切圆半径4.三角形内角和定理:一、梳理必备知识在△ABC 中,有()A B C C A B ππ++=⇔=-+222C A B π+⇔=-222()C A B π⇔=-+. 5.三角形中线问题如图在ABC ∆中,D 为CB 的中点,2AD AC AB =+,然后再两边平方,转化成数量关系求解!(常用)6.角平分线如图,在ABC ∆中,AD 平分BAC ∠,角A ,B ,C 所对的边分别为a ,b ,c ①等面积法ABC ABD ADC S S S ∆∆∆=+⇒111sin sin sin 22222A AAB AC A AB AD AC AD ⨯⨯=⨯⨯+⨯⨯(常用)②内角平分线定理:AB AC BD DC =或AB BDAC DC =③边与面积的比值:ABDADCS AB AC S =【常用结论】①在ABC ∆中,sin sin ;a b A B A B >⇔>⇔>②sin 2sin 2,.2A B A B A B π==+=则或③在三角函数....中,sin sin A B A B >⇔>不成立。
最新解三角形复习教案 高一数学

解三角形班级姓名学号一.复习要点1.正弦定理:2sin sin sin abcR A B C ===或变形:::sin :sin :sin a b c A B C =.2.余弦定理: 2222222222cos 2cos 2cos a b c bc A b a c ac B c b a ba C ⎧=+-⎪=+-⎨⎪=+-⎩ 或 222222222cos 2cos 2cos 2b c a A bca cb B acb ac C ab⎧+-=⎪⎪+-⎪=⎨⎪⎪+-=⎪⎩.3.(1)两类正弦定理解三角形的问题:1、已知两角和任意一边,求其他的两边及一角.2、已知两角和其中一边的对角,求其他边角.(2)两类余弦定理解三角形的问题:1、已知三边求三角.2、已知两边和他们的夹角,求第三边和其他两角.4.判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式.5.解题中利用ABC ∆中A B C π++=,以及由此推得的一些基本关系式进行三角变换的运算,如:sin()sin ,A B C +=cos()cos ,A B C +=-tan()tan ,A B C +=-sin cos ,cos sin ,tan cot 222222A B C A B C ABC+++===.6.求解三角形应用题的一般步骤:(1)分析:分析题意,弄清已知和所求;(2)建模:将实际问题转化为数学问题,写出已知与所求,并画出示意图;(3)求解:正确运用正、余弦定理求解;(4)检验:检验上述所求是否符合实际意义。
二.例题分析例1、在ABC 中,已知5,8,30b c B ===︒,求,,C A a 。
例2、在四边形ABCD 中,120A ∠=,90B D ∠=∠=,5,8BC CD ==,求四边形ABCD 的面积S 。
例3、在ABC 中,已知22(cos cos )()cos a b B c C b c A -=-,试判断ABC 的形状 例4、隔河看两目标A 和Bkm 的C 和D 两点,同时,测得75ACB ∠=,45BCD ∠=,30ADC ∠=,45ADB ∠=(,,,A B C D 在同一个平面),求两目标,A B 之间的距离。
高一下期数学培优学案(3)解三角形

【变式练习】 在△ABC 中, a 、 b 、 c 分别是角 A,B,C 的对边,且
cos B b (2)若 b = 13 , =.(1)求角 B 的大小; cos C 2a c
a + c =4,求△ABC 的面积.
题型三:正弦定理余弦定理综合应用 【例 5】 在 ABC 中,内角 A,B,C 的对边分别为 a , b ,c.已知 (I)求
A 2 5 , AB AC 3 . 2 5
2.在 ABC 中,角 A, B, C 所对的边分别为 a, b, c ,且满足 cos (I)求 ABC 的面积; (II)若 b c 6 ,求 a 的值
A 2 5 , AB AC 3 . 2 5
1 . 4
第 1 页 共 4 页
【例 4】
设 ABC 的内角 A、B、C 的对边长分别为 a 、 b 、 c ,且 3 b +3 c -3 a =4 2 b c .
2
2
2
2sin( A ) sin( B C ) 4 4 的值. (Ⅰ) 求 sinA 的值;(Ⅱ)求 1 cos 2 A
问题五:判断三角形形状 【例 8】在△ABC 中,在 ABC 中, a,b,c 分别是角 A、B、C 所对的边,bcosA= a cosB,试判断 ABC 三 角形的形状.
cosA b 【例 9】. 在△ABC 中,在 ABC 中, a,b,c 分别是角 A、B、C 所对的边,若 = , cosB a 试判断 ABC 三角形的形状.
高一下期数学培优学案(3)解三角形
1.内角和定理:在 ABC 中, A B C
; sin( A B) sin C ; cos( A B ) cos C
第11章 解三角形 章末复习提升-2024-2025学年高中数学新教材高一下苏教版必修第二册PP

本节内容结束
MN= BM2+BN2+2BM·BNcos(β2+α2).
索引
要点四 利用正、余弦定理判断三角形形状
///////
根据已知条件(通常是含有三角形的边和角的等式或不等式)判断三角形的形 状时,一般有以下两种途径:将已知条件统一化成边的关系,用代数方法求 解;将已知条件统一化成角的关系,用三角知识求解.
索引
【训练 5】 已知向量 a=(sin x,cos x),b=( 3cos x,cos x),f(x)=a·b.
(1)求函数 f(x)=a·b 的最小正周期;
解
f(x)=
3sin
xcos
x+cos2x=
3 2 sin
2x+21cos
2x+12=sin2x+π6 +12,
所以 f(x)的最小正周期 T=22π=π.
即sin 2C=sin 2B,∵B,C均为△ABC内角,
∴2C=2B或2C+2B=180°,
即B=C或B+C=90°,
∴△ABC为等腰三角形或直角三角形.
索引
要点五 正、余弦定理与其它知识的综合
///////
对于正、余弦定理的综合问题,首先要熟练使用正、余弦定理,其次要根据条 件,合理选用三角函数公式,达到简化问题的目的.利用正、余弦定理解三角 形问题时,常与平面向量、三角恒等变换等知识结合给出问题的条件,这些知 识的加入,一般只起“点缀”作用.
则v2t2=400+900t2-2·20·30t·cos(90°-30°), 故 v2=900-60t 0+4t020. ∵0<v≤30, ∴900-60t 0+4t020≤900, 即t22-3t ≤0,解得 t≥23. 又 t=23时,v=30,
解三角形小题综合 解析版--高一下学期备战期末专题训练

期末专题04解三角形小题综合一、单选题1(2022春·江苏常州·高一校联考期末)在△ABC中,AB=5,BC=6,AC=8,则△ABC的形状是()A.锐角三角形B.直角三角形C.钝角三角形D.无法判断【答案】C【分析】根据余弦定理可得cos B<0,进而得∠B为钝角,即可求解.【详解】在△ABC中,由余弦定理以及AB=5,BC=6,AC=8可知:cos B=AB2+BC2-AC22AB⋅BC=25+36-64 2×5×6=-120<0,故∠B为钝角,因此△ABC是钝角三角形故选:C2(2022春·江苏连云港·高一统考期末)在锐角三角形ABC中,a=2b sin A,则B=()A.π6B.π4C.π3D.7π12【答案】A【分析】利用正弦定理即可求解.【详解】解:在锐角三角形ABC中,0<B<π2,由正弦定理得asin A=bsin B,又a=2b sin A,所以sin B=12,且0<B<π2,故B=π6.故选:A.3(2022春·江苏泰州·高一统考期末)在△ABC中,角A,B,C所对的边分别为a,b,c.若2a= 3b sin A,则sin B=()A.63B.33C.23D.13【答案】A【分析】运用正弦定理边化角直接计算即可.【详解】由题意,2a=3b sin A,∴2sin A=3sin B sin A,∵sin A≠0,∴sin B=23=63;故选:A.4(2022春·江苏淮安·高一统考期末)在△ABC中,a,b,c分别是角A,B,C的对边,若a=c cos B,则△ABC的形状()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定【答案】B【分析】根据余弦定理边角互化并整理即可得答案.【详解】因为a=c cos B,cos B=a2+c2-b2 2ac,所以a=c⋅a2+c2-b22ac,整理得a2+b2=c2,所以三角形的形状是直角三角形.故选:B5(2022春·江苏淮安·高一统考期末)在△ABC 中,B =45°,点D 是边BC 上一点,AD =5,AC =7,DC =3,则边AB 的长是()A.46B.1036 C.562D.26【答案】C【分析】由余弦定理求得cos C ,由正弦定理求得AB .【详解】△ACD 中cos C =AC 2+CD 2-AD 22AC ⋅CD=49+9-252×7×3=1114,所以sin C =1-1114 2=5314,△ABC 中,由正弦定理AB sin C =AC sin B 得AB =AC sin C sin B =7×5314sin45°=562.故选:C .6(2022秋·江苏南京·高一南京市第九中学校考期末)中国早在八千多年前就有了玉器,古人视玉为宝,玉佩不再是简单的装饰,而有着表达身份、感情、风度以及语言交流的作用.不同形状、不同图案的玉佩又代表不同的寓意.如图1所示的扇形玉佩,其形状具体说来应该是扇形的一部分(如图2),经测量知AB =CD =4,BC =3,AD =7,则该玉佩的面积为()A.496π-934B.493π-932C.496π D.493π【答案】A【分析】延长AB 、DC ,交于点O ,如图,根据相似三角形的性质求出BO =3,AO =7,进而得出△OAD 为等边三角形,利用扇形的面积和三角形的面积公式即可求出结果.【详解】延长AB 、DC ,交于点O ,如图,由BC ⎳AD ,得△OBC ∼△OAD ,所以BC AD =BOAO,又AB =CD =4,BC =3,AD =7,所以37=BO BO +AB=BO BO +4,解得BO =3,所以AO =7,所以△OAD 为等边三角形,则∠AOB =π3,故S 扇形=12αr 2=12×π3×72=496π,S △BOC =12OB ×OC ×sin π3=12×3×3×32=934,所以玉佩的面积为496π-934.故选:A7(2022秋·江苏南通·高一统考期末)图1是南北方向、水平放置的圭表(一种度量日影长的天文仪器,由“圭”和“表”两个部件组成)示意图,其中表高为h ,日影长为l .图2是地球轴截面的示意图,虚线表示点A 处的水平面.已知某测绘兴趣小组在冬至日正午时刻(太阳直射点的纬度为南纬23°26 )在某地利用一表高为2dm 的圭表按图1方式放置后,测得日影长为2.98dm ,则该地的纬度约为北纬( )(参考数据:tan34°≈0.67,tan56°≈1.49)A.23°26B.32°34C.34°D.56°【答案】B【分析】由题意有tan α=22.98≈0.67,可得∠MAN ,从而可得β【详解】由图1可得tan α=22.98≈0.67,又tan34°≈0.67,所以α=34°,所以∠MAN =90°-34°=56°,所以β=56°-23°26 =32°34 ,该地的纬度约为北纬32°34 ,故选:B .8(2022春·江苏镇江·高一扬中市第二高级中学校考期末)设f x =sin x cos x -cos 2x +π4,在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若f A2 =0,a =1,则△ABC 面积的最大值为()A.2+33B.3+33C.2+34D.3+34【答案】C【分析】先用三角恒等变换得到f x =sin2x -12,从而根据f A 2 =0求出A =π6,再结合余弦定理基本不等式求出bc ≤2+3,根据面积公式求出最大值.【详解】f x =sin x cos x -cos 2x +π4 =12sin2x -121+cos 2x +π2 =sin2x -12,则f A 2 =sin A -12=0,所以sin A =12,因为△ABC 为锐角三角形,所以A =π6,由余弦定理得:cos A =b 2+c 2-12bc=32,所以b 2+c 2=3bc +1,由基本不等式得:b 2+c 2=3bc +1≥2bc ,当且仅当b =c 时等号成立,所以bc ≤2+3,S △ABC =12bc sin A =14bc ≤2+34故选:C9(2022春·江苏扬州·高一统考期末)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,下列各组条件中,使得△ABC 恰有一个解的是()A.a =2,b =4,A =π3B.a =13,b =4,A =π3C.a =23,b =4,A =2π3D.a =32,b =4,A =2π3【答案】D【分析】利用正弦定理逐项判断.【详解】A . 因为a =2,b =4,A =π3,由正弦定理得a sin A=b sin B ,则sin B =b sin A a =4×sin π32=3>1,无解;B . 因为a =13,b =4,A =π3,由正弦定理得a sin A=b sin B ,则sin B =b sin Aa =4×sin π313=23913,又32<23913<1,则π3<B <2π3,有两解,故错误;C . 因为a <b ,A =2π3,则B >A ,所以无解,故错误;D . 因为a =32,b =4,A =2π3,由正弦定理得a sin A =b sin B ,则sin B =b sin A a =4×sin π332=63,又12<63<1,且a >b ,所以π6<B <π2,故有一解,故正确. 故选:D10(2022春·江苏南通·高一统考期末)已知△ABC 为锐角三角形,AC =2,A =π6,则BC 的取值范围为()A.1,+∞B.1,2C.1,233D.233,2【答案】C【分析】根据锐角三角形得出角B 的范围,再利用正弦定理及三角函数的性质即可求解.【详解】因为△ABC 为锐角三角形,所以A =π60<B <π20<5π6-B <π2,解得π3<B <π2,所以32<sin B <1.在△ABC 中,由正弦定理,得AC sin B =BC sin A,即BC =AC ⋅sin A sin B =2×sin π6sin B =1sin B ,由32<sin B <1,得1<1sin B<233,即1<BC <233.所以BC 的取值范围为1,233.故选:C .11(2022春·江苏镇江·高一统考期末)已知A ,B 两地的距离为10km ,B ,C 两地的距离为20km ,且测得点B 对点A 和点C 的张角为120°,则点B 到AC 的距离为( )km .A.2077B.10217C.20217D.1077【答案】B【分析】由余弦定理求出AC ,再由面积等积法求解.【详解】由余弦定理可得:AC 2=AB 2+BC 2-2AB ⋅BC cos120°=102+202-2×10×20×-12=700,即AC =107,所以S △ABC =12AB ⋅BC sin120°=12⋅AC ⋅h ,解得h =AB ⋅BC ⋅sin120°AC =1003107=10217.故选:B12(2022春·江苏无锡·高一统考期末)设△ABC 内角A ,B ,C 所对的边分别为a ,b ,c .若b =2,a 2sin C =6sin A ,则△ABC 面积的最大值为()A.3B.5C.6D.3【答案】B【分析】由a 2sin C =6sin A 结合正弦定理可得ac =6,再利用余弦定理可求得cos B ≥23,则可得sin B ≤53,从而可求出△ABC 面积的最大值【详解】因为a 2sin C =6sin A ,所以由正弦定理可得a 2c =6a ,得ac =6,由余弦定理得b 2=a 2+c 2-2ac cos B ,4=a 2+c 2-12cos B ,所以4+12cos B =a 2+c 2≥2ac =12,当且仅当a =c 时取等号,所以cos B ≥23,所以sin B =1-cos 2B ≤1-49=53,所以12ac sin B ≤12×6×53=5,当且仅当a =c 时取等号,所以△ABC 面积的最大值为5,故选:B13(2022春·江苏南通·高一金沙中学校考期末)△ABC 中,A ,B ,C 的对边分别为a ,b ,c ,则()A.若a <b <c ,则cos B <sin CB.∃A ,B 使得sin (A +B )=sin A +sin BC.∀B ,C 都有tan (B +C )=tan B +tan C1-tan B ⋅tan CD.若sin A +cos A =32,则A 是钝角【答案】D【分析】特殊值法判断A 、C ;B 由题设有sin A (cos B -1)=sin B (1-cos A ),进而有cos B =cos A =1即可判断;D 由已知得sin A +π4 =64<22,结合0<A <π即可判断.【详解】A :由题设A <B <C ,若C =150°,B =20°,A =10°,此时cos B =sin π2-B >sin C ,错误;B :若sin (A +B )=sin A +sin B ,则sin A (cos B -1)=sin B (1-cos A ),而sin A ,sin B >0,所以cos B =cos A =1,又0<A +B <π,故不存在这样的A ,B ,错误;C :当B =C =π4时tan (B +C )=tan B +tan C1-tan B ⋅tan C不成立,错误;D :由sin A +cos A =2sin A +π4 =32,故sin A +π4 =64<22,而0<A <π,所以5π4>A +π4>3π4,即π>A >π2,正确.故选:D14(2022春·江苏南通·高一统考期末)在△ABC 中,角A ,B ,C 所对应的边分别为a ,b ,c ,若ac =8,sin B +2sin C cos A =0,则△ABC 面积的最大值为()A.1B.3C.2D.4【答案】C【分析】根据sin B +2sin C cos A =0利用三角恒等变换和正余弦定理得到2b 2=a 2-c 2,再根据余弦定理和基本不等式可得cos B 的范围,由此得B 的范围,从而得到sin B 的最大值,从而根据S △ABC =12ac sin B 可求△ABC 面积的最大值.【详解】∵sin B +2sin C cos A =0,∴sin A +C +2sin C cos A =0,即sin A cos C +cos A sin C +2sin C cos A =0,即sin A cos C +3cos A sin C =0,则a ⋅b 2+a 2-c 22ab +3×b 2+c 2-a 22bc×c =0,整理得2b 2=a 2-c 2,∴cos B =a 2+c 2-b22ac=a 2+c 2-a 2-c222ac=a 2+3c 24ac ≥23ac 4ac =32,当且仅当a 2=3c 2⇔c =83,a =83时取等号,∴B ∈0,π6,∴sin B ≤12,则S △ABC =12ac sin B ≤12×8×12=2.故选:C .15(2022春·江苏扬州·高一期末)△ABC 的三内角A 、B 、C 所对边的长分别是a 、b 、c ,设向量p=(a +c ,b ),q =(b -a ,c -a ),若p ∥q,则角C 的大小为()A.π6B.π3C.π2D.2π3【答案】B【分析】因为p ⎳q ,所以a +c c -a -b b -a =0,再根据余弦定理化简即得解.【详解】因为p ⎳q,所以a +c c -a -b b -a =0,所以c 2-a 2-b 2+ab =0,∴a 2+b 2-c 2=ab ,所以2ab cos C =ab ,∴cos C =12,∵0<C <π,所以C =π3.故选:B .16(2022春·江苏苏州·高一校考期末)如图所示,为了测量A ,B 处岛屿的距离,小明在D 处观测,A ,B 分别在D 处的北偏西15°、北偏东45°方向,再往正东方向行驶40海里至C 处,观测B 在C 处的正北方向,A 在C 处的北偏西60°方向,则A ,B 两处岛屿间的距离为()A.206海里B.406海里C.20(1+3)海里D.40海里【答案】A【分析】分别在△ACD 和△BCD 中利用正弦定理计算AD ,BD ,再在△ABD 中利用余弦定理计算AB 即可【详解】由题意可知CD =40,∠ADC =105°,∠BDC =45°,∠BCD =90°,∠ACD =30°,所以∠CAD =45°,∠ADB =60°,在△ACD 中,由正弦定理得AD sin30°=40sin45°,得AD =202,在Rt △BCD 中,因为∠BDC =45°,∠BCD =90°,所以BD=2CD=402,在△ABD中,由余弦定理得AB=AD2+BD 2-2AD⋅BD cos∠ADB=800+3200-2×202×402×12=2400=206,故选:A17(2022春·江苏苏州·高一统考期末)已知锐角三角形ABC中,角A,B,C所对的边分别为a,b,c,△ABC的面积为S,且b2-c2⋅sin B=2S,若a=kc,则k的取值范围是()A.1,2B.0,3C.1,3D.0,2【答案】A【分析】根据面积公式,余弦定理和题干条件得到c=a-2c cos B,结合正弦定理得到B=2C,由△ABC为锐角三角形,求出B∈π3,π2,从而求出cos B=a-c2c=12k-12∈0,12,求出k的取值范围.【详解】因为S=12ac sin B,所以b2-c2⋅sin B=2S=ac sin B,即b2-c2=ac,所以ac+c2=a2+c2-2ac cos B,整理得:ac=a2-2ac cos B,因为a>0,所以c=a-2c cos B,由正弦定理得:sin C=sin A-2sin C cos B,因为sin A=sin B+C=sin B cos C+cos B sin C,所以sin C=sin B cos C-cos B sin C=sin B-C,因为△ABC为锐角三角形,所以B-C为锐角,所以C=B-C,即B=2C,由B∈0,π2C=B2∈0,π2A=π-B2-B∈0,π2,解得:B∈π3,π2,因为a=kc,所以cos B=a-c2c=12k-12∈0,12,解得:k∈1,2,故选:A【点睛】三角形相关的边的取值范围问题,通常转化为角,利用三角函数恒等变换及三角函数的值域等求出边的取值范围,或利用基本不等式进行求解.二、多选题18(2022春·江苏南京·高一南京市中华中学校考期末)在△ABC中,下列结论中,正确的是()A.若cos2A=cos2B,则△ABC是等腰三角形B.若sin A>sin B,则A>BC.若AB2+AC2<BC2,则△ABC为钝角三角形D.若A=60°,AC=4,且结合BC的长解三角形,有两解,则BC长的取值范围是(23,+∞)【答案】ABC【分析】根据cos2A=cos2B及角A、B的范围,可判断A的正误;根据大边对大角原则,可判断B的正误;根据条件及余弦定理,可判断C的正误;根据正弦定理,可判断D的正误,即可得答案.【详解】对于选项A,因为cos2A=cos2B,且A,B∈(0,π),所以A=B,所以△ABC是等腰三角形,所以选项A正确;对于选项B,由sin A>sin B,则a<b且A,B∈(0,π),可得A>B,所以选项B正确;对于选项C,由AB2+AC2<BC2,以及余弦定理可得cos A<0,即△ABC为钝角三角形,所以选项C正确;对于选项D,由A=60°,AC=4,以及正弦定理可得sin B=ACBCsin A=23BC<1,解得BC>23,且由大边对大角B>A,可得AC>BC,即BC<4,所以BC长的取值范围是(23,4),所以选项D 错误;故选:ABC.19(2022春·江苏南京·高一统考期末)在△ABC中,角A,B,C的对边分别为a,b,c,已知A=45°,c =2,下列说法正确的是()A.若a=3,△ABC有两解B.若a=3,△ABC有两解C.若△ABC为锐角三角形,则b的取值范围是(2,22)D.若△ABC为钝角三角形,则b的取值范围是(0,2)【答案】AC【分析】根据三角形的构成,可判断三角形有几个解所要满足的条件,即c sin A<a<c,△ABC有两解,a>c或a=c sin A,△ABC有一解,a<c sin A,△ABC有0解,根据直角三角形的情况,便可得出△ABC为锐角或钝角三角形时,b的取值范围.【详解】A选项,∵c sin A<a<c,∴△ABC有两解,故A正确;B选项,∵a>c,∴△ABC有一解,故B错误;C选项,∵△ABC为锐角三角形,∴c cos A<b<cc cos A,即2<b<22,故C正确;D选项,∵△ABC为钝角三角形,∴0<b<c cos A或b>cc cos A,即0<b<2或b>22,故D错误.故选:AC20(2022春·江苏宿迁·高一沭阳县修远中学校考期末)在三角形△ABC中,∠A=π3,若三角形有两解,则ca的可能取值为()A.223B.1.1 C.233D.1.01【答案】BD【分析】根据正弦定理可知三角形有两解,则满足32c <a <c ,即可求解.【详解】若三角形有两解,则满足32c <a <c ,故1<c a <233,故选:BD 21(2022春·江苏南通·高一统考期末)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若c =2b ,B =30°,则角A 可能为()A.135°B.105°C.45°D.15°【答案】BD【分析】由正弦定理求角.【详解】解:正弦定理得c sin C=bsin B ,又c =2b ,B =30°,sin C =22,c >b ,则C >B ,0°<C <180°,故C =45°或135°,A =105°或15°故选:BD .22(2022春·江苏苏州·高一校联考期末)在△ABC 中,角A ,B ,C 对边分别为a ,b ,c ,设向量m=c ,a +b ,n =a ,c ,且m ⎳n,则下列选项正确的是()A.A =2BB.C =2AC.1<ca<2D.若△ABC 的面积为c 24,则C =π2【答案】BC【分析】根据向量平行得到c 2=a 2+ab ,结合余弦定理转化为cos C =-12+b 2a,进而利用正弦定理得到cos C =-12+sin B 2sin A,化简整理即可判断A 、B 选项;利用正弦定理及二倍角公式将ca 转化为2cos A ,然后求出角A 的范围,进而求出值域即可判断C 选项;利用S =12ab sin C =c 24,结合正弦定理及二倍角公式化简整理可求得角A ,进而可以求出角C ,从而可以判断D 选项.【详解】因为向量m =c ,a +b ,n =a ,c ,且m ⎳n,所以c 2=a a +b ,即c 2=a 2+ab ,结合余弦定理得cos C =a 2+b 2-c 22ab ,cos C =-ab +b 22ab,cos C =-12+b 2a ,再结合正弦定理得cos C =-12+sin B2sin A,2sin A cos C =-sin A +sin B ,又因为sin B =sin A +C =sin A cos C +cos A sin C ,所以2sin A cos C =-sin A +sin A cos C +cos A sin C ,sin A cos C -cos A sin C =-sin A ,sin A -C =-sin A ,sin A -C =sin -A ,所以A -C =-A ,故C =2A ,所以B 正确,A 错误;c a =sin C sin A =sin2A sin A =2sin A cos A sin A,因为sin A ≠0,所以c a =2cos A ,又因为0°<A<180°0°<2A<180°0°<180°-3A<180°,所以0°<A<60°,所以12<cos A<1,即1<2cos A<2,因此1<ca<2,故C正确;因为S=12ab sin C=c24,结合正弦定理12sin A sin B sin C=14sin2C,即sin A sin B=12sin C,则sin A sin180°-3A=12sin2A,sin A sin3A=12sin2A,sin A sin3A=sin A cos A,sin3A=cos A ,sin3A=sin A+90°则3A+A+90°=180°,或3A=A+90°,故A=22.5°或A=45°,故C=45°或C=90°,故D错误.故选:BC.23(2022春·江苏泰州·高一统考期末)在△ABC中,角A、B、C所对的边分别为a、b、c.若b=6,c=2,3sin A3+cos A3=2cos C,则下列说法正确的有()A.A+3C=πB.sin C=64C.a=2 D.S△ABC=154【答案】AD【分析】利用三角恒等变换可得出cos C=cosπ3-A3,结合余弦函数的单调性可判断A选项;利用正弦定理、二倍角的正弦公式以及同角三角函数的基本关系可判断B选项;利用正弦定理可判断C 选项;利用三角形的面积公式可判断D选项.【详解】因为2cos C=2cos A3cosπ3+sinπ3sin A3=2cosπ3-A3,即cos C=cosπ3-A3,因为0<A<π,0<C<π,则0<π3-A3<π3且余弦函数y=cos x在0,π上递减,所以,C=π3-A3,所以,A+3C=π,A对;因为A+3C=π=A+B+C,则B=2C,所以,0<2C<π,可得0<C<π2,由正弦定理bsin B=csin2C,即62sin C cos C=2sin C,所以,cos C=64,则sin C=1-cos2C=104,B错;由二倍角公式可得sin2C=2sin C cos C=154,cos2C=2cos2C-1=-14,所以,sin A=sin3C=sin C cos2C+cos C sin2C=104×-14+64×154=108,由正弦定理asin A=csin C可得a=c sin Asin C=1,C错;S△ABC=12ab sin C=12×1×6×104=154,D对.故选:AD.24(2022春·江苏扬州·高一统考期末)如图所示,△ABC中,AB=3,AC=2,BC=4,点M为线段AB 中点,P 为线段CM 的中点,延长AP 交边BC 于点N ,则下列结论正确的有( ).A.AP =14AB +12ACB.BN =3NCC.|AN |=193D.AP 与AC 夹角的余弦值为51938【答案】AC【分析】对A ,根据平面向量基本定理,结合向量共线的线性表示求解即可;对B ,根据三点共线的性质,结合AP =14AB +12AC 可得AN =13AB +23AC ,进而得到BN=2NC判断即可;对C ,根据余弦定理可得∠BAC ,再根据B 中AN =13AB +23AC两边平方化简求解即可;对D ,在△ANC 中根据余弦定理求解即可【详解】对A ,AP =12AM +12AC =14AB +12AC,故A 正确;对B ,设AP =λAN ,则由A ,λAN =14AB +12AC ,故AN =14λAB +12λAC,因为B ,N ,C 三点共线,故14λ+12λ=1,解得λ=34,故AN =13AB +23AC ,故AB +BN =13AB +23AB +23BC ,所以BN =23BN +23NC ,即BN =2NC ,故B 错误;对C ,由余弦定理,cos ∠BAC =32+22-422×3×2=-14,由B 有AN =13AB +23AC ,故AN 2=19AB2+49AC 2+49AB ⋅AC ⋅-14 ,即AN 2=1+169-23=199,所以|AN |=193,故C 正确;对D ,在△ANC 中AN =193,AC =2,NC =13BC =43,故cos ∠NAC =AN 2+AC 2-NC 22AN ⋅AC=199+4-1692⋅193⋅2=131976,故D 错误;故选:AC25(2022春·江苏徐州·高一统考期末)已知△ABC 内角A ,B ,C 所对的边分别为a ,b ,c ,以下结论中正确的是()A.若A >B ,则sin A >sin BB.若a =2,b =5,B =π3,则该三角形有两解C.若a cos A =b cos B ,则△ABC 一定为等腰三角形D.若sin 2C >sin 2A +sin 2B ,则△ABC 一定为钝角三角形【答案】AD【分析】对A ,根据正弦定理判断即可;对B,根据正弦定理求解sin A判断即可;对C,根据正弦定理结合正弦函数的取值判断即可;对D,根据正弦定理边角互化,再根据余弦定理判断即可【详解】对A,由三角形的性质,当A>B时,a>b,又由正弦定理asin A=bsin B>0,故sin A>sin B,故A正确;对B,由正弦定理asin A=bsin B,故2sin A=532,故sin A=155,因为a<b,故A<π3,故该三角形只有1解,故B错误;对C,由正弦定理,sin A cos A=sin B cos B,故sin2A=sin2B,所以A=B或2A+2B=π,即A+B =π2,所以△ABC为等腰或者直角三角形,故C错误;对D,由正弦定理,c2>a2+b2,又余弦定理cos C=a2+b2-c22ab<0,故C∈π2,π,故△ABC一定为钝角三角形,故D正确;故选:AD26(2022春·江苏无锡·高一统考期末)△ABC的内角A,B,C所对边分别为a,b,c,下列说法中正确的是()A.若sin A>sin B,则A>BB.若a2+b2-c2>0,则△ABC是锐角三角形C.若a cos B+b cos A=a,则△ABC是等腰三角形D.若asin A =bcos B=ccos C,则△ABC是等边三角形【答案】AC【分析】A由正弦定理及大边对大角判断;B由余弦定理知C为锐角;C正弦边角关系及三角形内角和性质得A=C;D由正弦定理及三角形内角性质得B=C=45°.【详解】A:由sin A>sin B及正弦定理知:a>b,根据大边对大角有A>B,正确;B:由余弦定理cos C=a2+b2-c22ab>0,只能说明C为锐角,但不能确定△ABC是锐角三角形,错误;C:sin A cos B+sin B cos A=sin(A+B)=sin C=sin A,则a=c,故△ABC是等腰三角形,正确;D:由asin A =bcos B=ccos C=bsin B=csin C,则sin B=cos B,sin C=cos C,且0<A,B,C<π,故B=C=45°,即△ABC是等腰直角三角形,错误.故选:AC27(2022春·江苏苏州·高一江苏省昆山中学校考期末)在△ABC中,内角A,B,C所对的边分别为a,b,c,则下列说法正确的是()A.c=a cos B+b cos AB.若a cos A=b cos B,则△ABC为等腰或直角三角形C.若a2tan B=b2tan A,则a=bD.若a3+b3=c3,则△ABC为锐角三角形【答案】ABD【分析】由余弦定理判断A,利用正弦定理和正弦函数性质判断B,由正弦定理,切化弦及正弦函数性质判断C ,由余弦定理判断D .【详解】解:由余弦定理a cos B +b cos A =a ×a 2+c 2-b 22ac +b ×b 2+c 2-a 22bc=c ,A 正确;a cos A =b cos B ,由正弦定理得sin A cos A =sin B cos B ,sin2A =sin2B ,A ,B 是三角形内角,所以2A =2B 或2A +2B =π,即A =B 或A +B =π2,三角形为等腰三角形或直角三角形,B 正确;由a 2tan B =b 2tan A 得sin 2A ×sin B cos B =sin 2B ×sin Acos A,sin2A =sin2B ,同上得a =b 或a 2+b 2=c 2,C 错;若a 3+b 3=c 3,所以a c 3+b c 3=1,因此0<a c <1,0<bc<1,所以a c 2+b c 2>a c 3+b c 3=1,即a 2+b 2>c 2,cos C =a 2+b 2-c 22ab >0,C ∈(0,π),所以C 为锐角,显然c 边最大,C 角最大,所以△ABC 为锐角三角形,D 正确.故选:ABD .28(2022春·江苏苏州·高一校考期末)在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,下列说法正确的是()A.若a cos A =b cos B ,则△ABC 是等腰三角形B.若AB =22,B =45°,AC =3,则满足条件的三角形有且只有一个C.若△ABC 不是直角三角形,则tan A +tan B +tan C =tan A tan B tan CD.若AB ⋅BC<0,则△ABC 为钝角三角形【答案】BC【分析】对于A 利用正弦边角关系及三角形内角性质可得A =B 或A +B =π2判断;对于B 应用余弦定理求BC 即可判断;对于C 由三角形内角性质及和角正切公式判断.对于D 由向量数量积定义判断;【详解】对于A :由正弦定理得sin A cos A =sin B cos B ,则sin2A =sin2B ,则△ABC 中A =B 或A +B =π2,故A 错误;对于B :由cos B =AB 2+BC 2-AC 22AB ⋅BC =BC 2-142BC=22,则BC 2-4BC -1=0,可得BC =2±5,故BC =2+5,满足条件的三角形有一个,故B 正确;对于C :由△ABC 不是直角三角形且A =π-(B +C ),则tan A =-tan (B +C )=-tan B +tan C1-tan B tan C,所以tan A +tan B +tan C =tan A tan B tan C ,故C 正确;对于D :AB ⋅BC =|AB ||BC |cos (π-B )=-|AB ||BC |cos B <0,即|AB ||BC|cos B >0,∠B 为锐角,故△ABC 不一定为钝角三角形,故D 错误;故选:BC三、填空题29(2022春·江苏连云港·高一统考期末)曲柄连杆机构的示意图如图所示,当曲柄OA 在水平位置OB 时,连杆端点P 在Q 的位置,当OA 自OB 按顺时针方向旋转角α时,P 和Q 之间的距离是xcm ,若OA =3cm ,AP =7cm ,α=120°,则x 的值是.【答案】5【分析】根据余弦定理解决实际问题,直接计算即可.【详解】如下图,在△APO中,由余弦定理可知49=OP2+9-2×3⋅OP⋅cos∠AOP⇒OP=5cm,另外,由图可知,在点A与点B重合时,OQ=AP+OA=10cm,∴PQ=OQ-OP=10-5=5cm,故答案为:530(2022春·江苏南京·高一江苏省江浦高级中学校联考期末)已知轮船A和轮船B同时离开C岛,A船沿北偏东30°的方向航行,B船沿正北方向航行(如图).若A船的航行速度为40nmile/h,1小时后,B船测得A船位于B船的北偏东45°的方向上,则此时A,B两船相距nmile.【答案】202【分析】利用正弦定理求AB的长度即可.【详解】由题设,CA=40nmile且∠ABC=135°,正弦定理有ABsin∠BCA=CAsin∠ABC°,则ABsin30°=40sin135°,可得AB=202nmile.故答案为:20231(2022春·江苏无锡·高一统考期末)△ABC的内角A,B,C所对边分别为a,b,c,已知C=60°,a =1,c=7,则b=.【答案】3【分析】利用余弦定理求解即可【详解】因为在△ABC中,C=60°,a=1,c=7,所以由余弦定理得c2=a2+b2-2ab cos C,所以7=1+b2-2b cos60°,b2-b-6=0,(b+2)(b-3)=0,得b=-2(舍去),或b=3,故答案为:332(2022春·江苏扬州·高一期末)《后汉书·张衡传》:“阳嘉元年,复造候风地动仪.以精铜铸成,员径八尺,合盖隆起,形似酒尊,饰以篆文山龟鸟兽之形.中有都柱,傍行八道,施关发机.外有八龙,首衔铜丸,下有蟾蜍,张口承之.其牙机巧制,皆隐在尊中,覆盖周密无际.如有地动,尊则振龙,机发吐丸,而蟾蜍衔之.振声激扬,伺者因此觉知.虽一龙发机,而七首不动,寻其方面,乃知震之所在.验之以事,合契若神.”如图为张衡地动仪的结构图,现在相距120km的A,B两地各放置一个地动仪,B在A的东偏北75°方向,若A地地动仪正东方向的铜丸落下,B地地动仪东南方向的铜丸落下,则地震的位置距离B地km【答案】603+60【分析】由题意作图后由正弦定理求解【详解】作图如下,由题意得A=75°,B=60°,C=45°,AB=120,故BCsin A=ABsin C,BC=120sin45°⋅sin75°,而sin75°=sin(45°+30°)=6+24,得BC=603+60故答案为:603+6033(2022春·江苏泰州·高一统考期末)如图所示,该图由三个全等的△BAD 、△ACF 、△CBE 构成,其中△DEF 和△ABC 都为等边三角形.若DF =2,∠DAB =π12,则AB =.【答案】6+2##2+6【分析】设AF =BD =x ,在△ABD 中,利用正弦定理求出x 的值,再利用正弦定理可求得AB 的长.【详解】由已知△ABD ≌△CAF ,所以,AF =BD ,设AF =x ,在△ABD 中,∠ADB =2π3,∠BAD =π12,则∠ABD =π4,sin ∠BAD =sin π12=sin π3-π4 =sin π3cos π4-cos π3sin π4=6-24,由正弦定理BD sin π12=AD sin π4,即x 6-24=x +222,解得BD =AF =x =233,由正弦定理BD sin π12=ABsin 2π3得AB =BD sin 2π3sin π12=233×326-24=6+ 2.故答案为:6+ 2.34(2022春·江苏常州·高一统考期末)在△ABC 中,AB =22,BC =3,B =45°,点D 在边BC 上,且cos ∠ADC =1717,则tan ∠DAC 的值为.【答案】67【分析】首先由余弦定理求出b ,再求出sin ∠ADC ,由正弦定理求出AD ,再由余弦定理求出BD ,最后在△ADC 中由正弦定理求出sin ∠DAC ,最后由同角三角函数的基本关系计算可得;【详解】解:因为AB =22,BC =3,B =45°,由余弦定理b 2=a 2+c 2-2ac cos B ,即b 2=9+8-2×3×22×22=5,所以b =5,因为cos ∠ADC =1717,所以sin ∠ADC =1-cos 2∠ADC =41717,所以sin ∠ADB =sin π-∠ADC =sin ∠ADC =41717由正弦定理AB sin ∠ADB=AD sin B ,所以AD =172,再由余弦定理AD 2=BD 2+AB 2-2AB ⋅BD cos B ,即4BD 2-16BD +15=0,解得BD =32或BD =52,又BC =3,∠ADC ∈0,π2 ,所以BD =32,则DC =32,在△ADC 中由正弦定理AC sin ∠ADC =DCsin ∠DAC ,即541717=32sin ∠DAC,所以sin ∠DAC =68585,又AD >DC ,所以cos ∠DAC =1-sin 2∠DAC =78585,所以tan ∠DAC =sin ∠DAC cos ∠DAC=67;故答案为:6735(2022春·江苏南通·高一统考期末)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知a =6,b =2,要使△ABC 为钝角三角形,则c 的大小可取(取整数值,答案不唯一).【答案】5(填7也对,答案不唯一)【分析】利用三角形两边和与差点关系,求出4<c <8,再分别讨论a 和c 为钝角时,边c 的取值范围,根据题意即可得到答案.【详解】首先由a ,b ,c 构成三角形有4=a -b <c <a +b =8,若c 为钝角所对边,有c 2>a 2+b 2=40,c >40,若a 为钝角所对边,有36=a 2>b 2+c 2=4+c 2,c <32,由b <a ,b 不可能为钝角所对边,综上,c 的取值范围是4,32 ∪40,8 , 由题意,c 取整数值,故c 的大小可取5或7.故答案为:5(填7也对,答案不唯一).36(2022春·江苏南京·高一南京市中华中学校考期末)拿破仑是十九世纪法国伟大的军事家、政治家,对数学也很有兴趣,他发现并证明了著名的拿破仑定理:“以任意三角形的三条边为边向外构造三个等边三角形,则这三个等边三角形的中心恰为另一个等边三角形的顶点”,在△ABC 中,以AB ,BC ,CA 为边向外构造的三个等边三角形的中心依次为D ,E ,F ,若∠BAC =30°,DF =4,利用拿破仑定理可求得AB +AC 的最大值为.【答案】46【分析】结合拿破仑定理求得AD ,AF ,利用勾股定理列方程,结合基本不等式求得AB +AC 的最大值.【详解】设BC =a ,AC =b ,AB =c ,如图,连接AF ,BD ,AD .由拿破仑定理知,△DEF 为等边三角形.因为D 为等边三角形的中心,所以在△DAB 中,AD =12⋅AB sin60°=c 3,同理AF =b3.又∠BAC=30°,∠CAF=30°,∠BAD=30°,所以∠DAF=∠BAD+∠BAC+∠CAF=90°.在△ADF中,由勾股定理可得DF2=AD2+AF2,即16=c23+b23,化简得b+c2=2bc+48,由基本不等式得b+c2≤2⋅b+c22+48,解得b+c≤46(当且仅当b=c=26时取等号),所以AB+ACmin=46.故答案为:46。
高中数学解三角形解答题专题训练含答案
解三角形解答题专题训练 2017.121.在ABC ∆中,角,,A B C 所对的边分别是,,a b c ,已知(Ⅰ)求C ;,且sin sin()3sin 2C B A A +-=,求ABC ∆的面积.因为sin 0A ≠,解得(Ⅱ)由sin sin()3sin 2C B A A +-=,得sin()sin()3sin 2B A B A A ++-=, 整理,得sin cos 3sin cos B A A A =. 若cos 0A =,则ABC ∆的面积若cos 0A ≠,则sin 3sin B A =,3b a =.由余弦定理,得2222cos c a b ab C =+-,解得1,3a b ==.ABC ∆的面积 综上,ABC ∆的面积为2.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c. 已知a+b=5,(Ⅰ) 求角C 的大小; (Ⅱ)求△ABC 的面积. 解: (Ⅰ)∵A+B+C=180整理,得01cos 4cos 42=+-C C∵ ∴C=60°(Ⅱ)由余弦定理得:c 2=a 2+b 2-2abcosC ,即7=a 2+b 2-ab ∴ 由条件a+b=5得 7=25-3ab , 故所以的面积 3.已知,,a b c 分别为ABC ∆三个内角,,A B C 所对的边长,且cos cos 2cos a B b A c C +=. (1)求角C 的值;(2)若4,7c a b =+=,求ABC S ∆的值. 解:(1得:sin cos sin cos 2sin cos A B B A C C +=, 又sin sin()2sin cos C A B C C =+=, (2)由余弦定理:2222cos c a b ab C =+-,∴11ab =,∴4.在ABC ∆中,内角C B A ,,的对边为c b a ,,,已知(1)求角C 的值;(2)若2=c ,且ABC ∆的面积为,求b a ,. 解:(1︒<<︒1800C ab b a 3)(72-+=ab=6ABC △又∵是三角形的内角,∴又∵C 是三角形的内角,∴(2,∴4=ab ,又∵C ab b a c cos 2222-+=,∴ab ab b a --+=2)(42,∴4=+b a ,或0=-b a , ∴2==b a .5.锐角ABC ∆中,角C B A 、、的对边分别是c b a 、、,已知(Ⅰ)求C sin 的值;(Ⅱ)当2=a ,C A sin sin 2=时,求b 的长及ABC ∆的面积. (Ⅱ)当a 2,2sinA sinC ==时,由正弦定理,解得c 4=. 由余弦定理222c a b 2abcosC =+-,得 6.已知向量(sin m x =,(cos ,n x =-,且()f x m n =⋅.(1)求()f x 的单调递增区间;(2上有零点,求m 的取值范围.解:(1sin m n x =⋅=B则()f x 的递增区间为(2()g x 有零点,即函数与y m =图像有交点,由图象可得,m 的取值范围为7.如图,D 是直角三角形ABC ∆斜边BC 上一点,(Ⅰ)若 30=∠DAC ,求B ∠;(Ⅱ)若DC BD 2=,且,求DC . 解:(Ⅰ)在ABC ∆中,根据正弦定理,有又 6060>+∠=∠+∠=∠B BAD B ADC ,∴ 120=∠ADC , ∴ 3030120180=--=∠C ,∴ 60=∠B . (Ⅱ)设x DC =,则在ABD ∆中,B BD AB BD AB AD cos 2222⋅⋅-+=,,得2=x .故2=DC . 8.在△ABC 中,角A,B,C 所对的边分别为a,b,c,已知(1)求角B 的大小;(2)若a+c=1,求b 的取值范围.又cos 0B ≠,又0B π<<,(2)由余弦定理,有2222cos ba c ac B =+-. 又01a <<,9.在△ABC 中,角A ,B ,C 对应的边分别是a ,b ,c 且cos2B+3cosB ﹣1=0. (1)求角B 的大小;(2)若a+c=1,求b 的最小值.解:(1)在△ABC 中,∵cos2B+3cosB ﹣1=0, ∴2cos 2B+3cosB ﹣2=0,∴或cosB=﹣2(舍去),∴.(2)∵a+c=1,由余弦定理,得b 2=a 2+c 2﹣2accosB=(a+c )2﹣3ac=1﹣3a (1﹣a )=3a 2﹣3a+1,其中0<a <1, ∵f (a )=3a 2﹣3a+1在上递减,在上递增,∴,又0<b <1,∴.10.已知ABC ∆中,a ,b,c 分别是角A ,B ,C 的对边,且2b ,2c 是关于x 的一元二次方程22()0x a bc x m -++=的两根. (1)求角A 的大小;(2,设=B θ,ABC ∆的周长为y ,求()y f θ=的最大值.解:(1)在中,依题意有:,∴2ABC ∆222b c a bc +=+(0)A π∈,∴2sin 2sin b B θ==,11.已知在△ABC 中,(1)若三边长a ,b ,c 依次成等差数列,sinA :sinB=3:5, 求三个内角中最大角的度数; (2)若()22BA BC b a c ⋅=--,求cosB . 解:(1)在△ABC 中有sinA :sinB=3:5, ∴a :b=3:5,设a=3k ,(k >0)则b=5k , ∵a ,b ,c 成等差数列,∴c=7k ,∴最大角为C ,有cosC=()()()()()2223k 5k 7k 23k 5k +-⋅⋅=﹣,∴C=120° (2)由BA BC ⋅=b 2﹣(a ﹣c )2 得:accosB=b 2﹣(a ﹣c )2,即accosB=a 2+c 2﹣2accosB ﹣(a 2+c 2﹣2ac ),∴3cosB=2,∴cosB=. 12.在ABC ∆中,,,a b c 分别为角,,A B C 所对的三边,22()a b c bc --=, (Ⅰ)求角A ;(Ⅱ),角B 等于x ,周长为y ,求函数)(x f y =的取值范围. 解:(Ⅰ)由22()a b c bc --=,得222a b c bc --=-,又0A π<< ,(Ⅱ13.在ABC ∆中,(2)cos cos a c B b C -= (1)求角B 的大小;(2)求22cos cos()A A C +-的取值范围. 解:(1)由已知得:(2sin sin )sin cos A C B C -=,即2sin cos sin()A B B C =+∴(2)由(1所以()22cos cos A A C +-的取值范围是(0,2]. 14.在△中,内角C B A 、、的对边分别为c b a 、、,已知.(Ⅰ)求;(Ⅱ)若2=b ,求△面积的最大值.解:(Ⅰ)由已知及正弦定理得B C C B A sin sin cos sin sin += 又)(C B A +-=π,故C B C B C B A sin cos cos sin )sin(sin +=+= 得B B cos sin =,又()π,0∈B ,所以(Ⅱ) ⊿ABC 的面积又ac c a 222≥+.,当且仅当c a =时,等号成立.因此⊿ABC 的面积的最大值为15.如图,在△ABC 中,已知45B ∠=,D 是BC 边上一点,AD=10,AC=14,DC=6,求AB 的长.解:在△ABC 中,∵AD=10,AC=14,DC=6∴120ADC ∠=, ∴60ADB ∠= ∴在△ABD 中,∵45B ∠=, 60sin 45AD=, 16.在△ABC 中,内角A ,B ,C 的对边长分别为a ,b ,c 于任意,()()x f x f A ∈R ≤恒成立. (1)求角A 的大小;(2BC 边上的中线AM 长的取值范围.解:(1)由题意,∵对于任意,()()x f x f A ∈R ≤恒成立, ()f A ,当()f x 取得最大值时,A 是三角形的内角,即0A π<<,∴(2)∵AM 是BC 边上的中线, ∴在△ABM ① 在△ACM ② 又∵AMB AMC π∠=-∠,∴cos cos AMB AMC ∠=-∠,①+②得,∴2236b c <+≤,17.设ABC ∆的内角A ,B ,C ,所对的边长分别为a ,b ,c ,()cos ,cos m A C =,(3n c =-,且m n ⊥.(1)求角A 的大小;(2)若a b =,且BC 边上的中线AM 的长为求边a 的值. 解:(1)∵0m n ⋅=,∴4分6 (2)由(1,又∵b a =,∴ ,在AMC ∆中,由余弦定理得:解得2x =,即2a =.18.在ABC ∆中, )cos ,(),cos ,2(B b n C c a m =-= 且m ∥n (1)求角B 的大小;(2)若1=b ,当ABC ∆面积取最大时,求ABC ∆内切圆的半径.解:(1)因为m ∥n ,所以02=--C b B c a cos cos )(,∴(2sin sin )cos sin cos A C B B C -=, 即2sin cos sin()A B B C =+,(2)由(1)得,又1=b ,ABC ∆中B ac c a b cos 2222-+=得ac c a b -+=222即()2a 31c ac +=+,又因为()ac 4a 2≥+c .得ac ac 431≥+即1≤ac .所以当且仅当1==c a 时ABC S ∆最大值为19.设ABC ∆的内角C B A ,,所对的边分别为,,,a b c 且(Ⅰ)求角B 的大小;(Ⅱ)若1=b ,求ABC ∆的周长l 的取值范围.∴ac a c b a -=-+22222, ∴ac b c a =-+222,∴ac B ac =cos 2,则 ∵),0(π∈B ,∴(Ⅱ)ac c a c a c b a l =-+++=++=1)1(,122知由,∴ac c a 31)(2=-+ ∴4)(2≤+c a .∴2≤+c a .又∵1=>+b c a ,∴△ABC 的周长]3,2(∈++=c b a l . 20.如图,在ABC ∆中,点D 在BC 边上,(1)求sin C ∠的值;(2)若5BD =,求ABD ∆的面积.解:(1(2)在ACD ∆中,由21.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,a =1,b =2.(1)求∠C 和边c ;(2)若BC BM 4=,且点P 为△BMN值.解:(1所以01cos cos 22=-+C C ,所以1cos -=C 或又因为),0(π∈C ,所以建立坐标系,由(1),由BC BM 4=, ()0,3),4,0(N M ,△BMN 的内切圆方程为:()()11122=-+-y x ,设),(y x P ,则令[)πθθθ2,0,sin 1cos 1∈⎩⎨⎧+=+=y x。
高一下数学期末专题练习(必修5解三角形)
高一下数学期末专题练习(必修5解三角形)1.正弦定理:2sin sin sin a b cR A B C===或变形:::sin :sin :sin a b c A B C =. 2.余弦定理: 2222222222cos 2cos 2cos a b c bc A b a c ac B c b a ba C ⎧=+-⎪=+-⎨⎪=+-⎩ 或 222222222cos 2cos 2cos 2b c a A bc a c b B ac b a c C ab ⎧+-=⎪⎪+-⎪=⎨⎪⎪+-=⎪⎩.3.(1)两类正弦定理解三角形的问题:1、已知两角和任意一边,求其他的两边及一角.2、已知两角和其中一边的对角,求其他边角. (2)两类余弦定理解三角形的问题:1、已知三边求三角.2、已知两边和他们的夹角,求第三边和其他两角. 4.判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式.5.解题中利用ABC ∆中A B C π++=,以及由此推得的一些基本关系式进行三角变换的运算,如:sin()sin ,A B C +=cos()cos ,A B C +=-tan()tan ,A B C +=- sin cos ,cos sin ,tan cotA B C A B C A B C+++===.、 1、ΔABC 中,a=1,b=3, ∠A=30°,则∠B 等于 ( )A .60°B .60°或120°C .30°或150°D .120°2、符合下列条件的三角形有且只有一个的是 ( )A .a=1,b=2 ,c=3B .a=1,b=2 ,∠A=30°C .a=1,b=2,∠A=100°C .b=c=1, ∠B=45°3、在锐角三角形ABC 中,有( )A .cosA>sinB 且cosB>sinAB .cosA<sinB 且cosB<sinAC .cosA>sinB 且cosB<sinAD .cosA<sinB 且cosB>sinA 4、若(a+b+c)(b+c -a)=3abc,且sinA=2sinBcosC, 那么ΔABC 是 ( )A .直角三角形B .等边三角形C .等腰三角形D .等腰直角三角形5、设A 、B 、C 为三角形的三内角,且方程(sinB -sinA)x 2+(sinA -sinC)x +(sinC -sinB)=0有等根,那么角B( )A .B>60°B .B ≥60°C .B<60°D .B ≤60°6、满足A=45°,c=6 ,a=2的△ABC 的个数记为m,则a m 的值为 ( ) A .4B .2C .1D .不定7、如图:D,C,B 三点在地面同一直线上,DC=a,从C,D 两点测得A 点仰角分别是β, α(α<β),则A点离地面的高度AB 等于( )A .)sin(sin sin αββα-aB .)cos(sin sin βαβα-⋅aC .)sin(cos sin αββα-a D .)cos(sin cos βαβα-a9、A 为ΔABC 的一个内角,且sinA+cosA=127, 则ΔABC 是______三角形. 11、在ΔABC 中,若S ΔABC =41 (a 2+b 2-c 2),那么角∠C=______. 12、在ΔABC 中,a =5,b = 4,cos(A -B)=3231,则cosC=_______.13、在ΔABC 中,求分别满足下列条件的三角形形状: ①B=60°,b 2=ac ; ②b 2tanA=a 2tanB ;③sinC=BA BA cos cos sin sin ++④ (a 2-b 2)sin(A+B)=(a 2+b 2)sin(A -B).14. 在ABC ∆中,已知C BA sin 2tan =+,给出以下四个论断,其中正确的是 ①1cot tan =⋅B A②2sin sin 0≤+<B A③1cos sin 22=+B A④C B A 222sin cos cos =+ABαβ15、在ABC △中,已知内角A π=3,边BC =B x =,周长为y . (1)求函数()y f x =的解析式和定义域;(2)求y 的最大值.16、在ABC 中,,a b c 分别为,,A B C ∠∠∠的对边,若2sin (cos cos )3(sin sin )A B C B C +=+, (1)求A 的大小;(2)若9a b c =+=,求b 和c 的值。
高一下学期数学限时训练18解三角形(应用举例)
2018—2019学年第二学期高一数学限时训练18(内容:必修5第一章解三角形(应用举例))1.甲船在湖中B岛的正南A处,AB=3 km,甲船以8 km/h的速度向正北方向航行,同时乙船自B岛出发,以12 km/h的速度向北偏东60°方向驶去,则行驶15 min时,求两船间的距离.2.一船向正北方向航行,看见正西方向有相距10海里的两个灯塔恰好与它在一条直线上,船继续航行半小时后,看见一灯塔在船的南偏西60°方向,另一灯塔在船的南偏西75°方向,求这艘船的速度.3.一个大型喷水池的中央有一个强力喷水柱,为了测量喷水柱喷出的水柱的高度,某人在喷水柱正西方向的点A测得水柱顶端的仰角为45°,沿点A向北偏东30°前进100 m 到达点B,在B点测得水柱顶端的仰角为30°,求水柱的高度.4. 空中有一气球D ,在它正西方向的地面上有一点A ,在此处测得气球的仰角为45°,同时在气球的南偏东60°方向的地面上有一点B ,测得气球的仰角为30°,两观察点A ,B 相距266 m ,计算气球的高度.5. 如图,某山上原有一条笔直的山路BC ,现在又新架设了一条索道AC ,小李在山脚B 处看索道AC ,发现张角∠ABC =120°,从B 处攀登400米后到达D 处,再看索道AC ,发现张角∠ADC =150°,从D 处再攀登800米方到达C 处,求索道AC 的长.6. 某气象仪器研究所按以下方案测试一种“弹射型”气象观测仪器的垂直弹射高度,如图,在C 处进行该仪器的垂直弹射,观测点A ,B 两地相距100 m ,∠BAC=60°,在A 地听到弹射声音的时间比B 地晚217 s .A 地测得该仪器在C 处时的俯角为15°,A 地测得该仪器在最高点H 时的仰角为30°,求该仪器的垂直弹射高度CH .(声音在空气中的传播速度为340 m/s)2018—2019学年第二学期高一数学限时训练18(教师版)(内容:必修5第一章 解三角形(应用举例))1. 甲船在湖中B 岛的正南A 处,AB =3 km ,甲船以8 km/h 的速度向正北方向航行,同时乙船自B 岛出发,以12 km/h 的速度向北偏东60°方向驶去,则行驶15 min 时,两船间的距离是( B )A .7 kmB .13 kmC .19 kmD .10-3 3 km解析:选B .如图,设行驶15 min 时,甲船到达M 点,乙船到达N 点,由题意知AM =8×14=2 km ,BN =12×14=3 km ,MB =AB -AM =3-2=1 km ,由余弦定理得MN 2=MB 2+BN 2-2MB ·BN cos 120°=1+9-2×1×3×⎝ ⎛⎭⎪⎫-12=13,所以MN =13 km .2. 一船向正北方向航行,看见正西方向有相距10海里的两个灯塔恰好与它在一条直线上,船继续航行半小时后,看见一灯塔在船的南偏西60°方向,另一灯塔在船的南偏西75°方向,则这艘船的速度是( D )A .5 2 海里/时B .5海里/时C .10 2 海里/时D .10海里/时解析:选D .如图,依题意有∠BAC =60°,∠BAD =75°,所以∠CAD =∠CDA =15°,从而CD =CA =10海里,在直角三角形ABC 中,由正弦定理可得AB =5海里,于是这艘船的速度是10海里/时.故选D .3. 一个大型喷水池的中央有一个强力喷水柱,为了测量喷水柱喷出的水柱的高度,某人在喷水柱正西方向的点A 测得水柱顶端的仰角为45°,沿点A 向北偏东30°前进100 m 到达点B ,在B 点测得水柱顶端的仰角为30°,则水柱的高度是__________m .50解析:设水柱的高度是h m ,水柱底端为C ,则在△ABC 中,∠BAC =60°,AC =h ,AB =100,BC = 3 h ,根据余弦定理,得(3h )2=h 2+1002-2·h ·100·cos 60°,即h 2+50h -5 000=0,即(h -50)(h +100)=0,解得h =50,故水柱的高度是50 m .4. 空中有一气球D ,在它正西方向的地面上有一点A ,在此处测得气球的仰角为45°,同时在气球的南偏东60°方向的地面上有一点B ,测得气球的仰角为30°,两观察点A ,B 相距266 m ,计算气球的高度.解析:如图,设CD =x ,在Rt △ACD 中,∠DAC =45°,所以AC =CD =x .在Rt △BCD 中,∠CBD =30°,所以CB =CD tan 30°=3x .在△ABC 中,∠ACB =90°+60°=150°,由余弦定理得AB 2=AC 2+BC 2-2·AC ·BC ·cos ∠ACB ,所以2662=x 2+(3x )2-2·x ·3x ·⎝ ⎛⎭⎪⎫-32,所以x =387(m).所以气球的高度为387 m . 5. 如图,某山上原有一条笔直的山路BC ,现在又新架设了一条索道AC ,小李在山脚B 处看索道AC ,发现张角∠ABC =120°,从B 处攀登400米后到达D 处,再看索道AC ,发现张角∠ADC =150°,从D 处再攀登800米方到达C 处,则索道AC 的长为________米.40013解析:在△ABD 中,BD =400,∠ABD =120°,因为∠ADB =180°-∠ADC =30°,所以∠DAB =30°,所以AB =BD =400,AD =AB 2+BD 2-2AB ·BD cos 120°=4003.在△ADC 中,DC =800,∠ADC =150°,AC 2=AD 2+DC 2-2AD ·DC ·cos ∠ADC =(4003)2+8002-2×4003×800×cos 150°=4002×13,所以AC =40013,故索道AC 的长为40013米.6. 某气象仪器研究所按以下方案测试一种“弹射型”气象观测仪器的垂直弹射高度,如图,在C 处进行该仪器的垂直弹射,观测点A ,B 两地相距100 m ,∠BAC=60°,在A 地听到弹射声音的时间比B 地晚217 s .A 地测得该仪器在C 处时的俯角为15°,A 地测得该仪器在最高点H 时的仰角为30°,求该仪器的垂直弹射高度CH .(声音在空气中的传播速度为340 m/s)解析:由题意,设AC =x m ,则BC =x -217×340=x -40 (m).在△ABC 中,由余弦定理得BC 2=BA 2+CA 2-2BA ·CA ·cos ∠BAC ,即(x -40)2=10 000+x 2-100x ,解得x =420.在△ACH 中,AC =420 m ,∠CAH =30°+15°=45°,∠CHA =90°-30°=60°.由正弦定理得CH sin ∠CAH =AC sin ∠AHC ,所以CH =AC ·sin ∠CAH sin ∠AHC=1406(m). 故该仪器的垂直弹射高度CH 为140 6 m .。
高一数学必修5系列教案:1.解三角形复习课
趁机复习古典概型和几何概型。 (答案分别为 2/5 和 1/2 ,学生多在数字的取舍和开闭区间
当中迷糊)
【归纳小结一】 ( 注:学生导学案中有这些文字,主要留意学生能否点处当中的关键地方
)
1.一般的解三角形的问题可归纳为“知三求其它”的问题,做题中注意结合画图和正余弦
定理的使用条件可较快的得出解题思路。
B. 135o或 45o
C. 45o
D. 30o
选题原因: 还是考察画图,大边对大脚基本可直接出答案。
(4)已知 ABC 中,若 a 2 ab b2 c2 0 , 则角 C 的大小是(
)
A.
3
2
B
.
3
C.
6
5
D
.
6
选题原因: 纯粹边之间的关系,考虑余弦定理的变形使用。
(5)在Δ ABC中,已知 a= 7, b= 10, c= 6,则三角形的形状为
2.已知三角形两边和其中一边的对角问题(既可用正弦定理,也可用余弦定理;解三角形
时可能有一解、两解和无解三种情况) .
【达标测评】 让学生分析今年试题考察的知识点及隐含的“陷阱”
(1)(2015 广东文)设△ ABC 的内角 , , C 的对边分别为 a ,b ,c .若 a 2 ,c 2 3 ,
cos A
正弦定理
C
b
a
SAS(全等)
c
A
B
求对角 求第三边
正弦定理 余弦定理
A+2S
A
C
求对角(注意讨论边角关
正弦定理
系)
b
a
SSA(?)
c B
求余边(设 X,解方程)
余弦定理
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一下数学《解三角形》训练案(1)
班别: 姓名: 学号: 成绩:
一、选择题:
1、 在ABC ∆中,已知a =3,b =4,c C ∠为( ) A .900
B .600
C .450
D .300
2、 已知△ABC 中,a ∶b ∶c =1∶3∶2,则A ∶B ∶C 等于( )
A .1∶2∶3
B .2∶3∶1
C .1∶3∶2
D .3∶1∶2
3、 △ABC 中,sin 2A =sin 2B +sin 2C ,则△ABC 为( )
A 直角三角形
B 等腰直角三角形
C 等边三角形
D 等腰三角形
4、 满足条件a=4,b=32,A=45°的ABC ∆的个数是( )
A .一个
B .两个
C .无数个
D .零个
5、在ABC ∆中,45B =
,60C =
,1c =,则最短边的边长等于( )
12
6、 在ABC ∆中,A ∠=600
,AB =2,且ABC S ∆=
,则BC 边的长为( )
A B .3 C D .7 7、 符合下列条件的三角形有且只有一个的是( ) A .a=1,b=2 ,c=3 B .a=1,b=2 ,∠A=30° C .a=1,b=2,∠A=100° D .b=c=1, ∠B=45°
8、在ABC ∆中,已知222
a b c +=+
,则C ∠=( )
A .0
30 B .0
45 C .0
150 D .0
135
9、在200m 高的山顶上,测得山下一塔顶与塔底的俯角分别为30o
和60o
,则塔高为( )
A B 400.3C m 200.3D m 10.在△ABC 中,sinA:sinB:sinC=3:2:4,则cosC 的值为( )
A .
23 B .-23 C .14 D .-1
4
二、填空题:
1、在中,角A,B,C 的对应边分别为a,b,c,若2
2
2
a c
b +-=,则角B 的值为_________ .
2、在ABC ∆中,0601,,A b ==a b c
A B C
++=++sin sin sin
3、已知△ABC 的三边分别是a 、b 、c ,且面积4
2
22c b a S -+=,则角C=__ _.
4、已知△ABC 中,a =4,b =43,∠A =30°,则∠B =__ _
5、在ABC ∆中,如果bc a c b c b a 3))((=-+++,则角A =__ _
6、在△ABC 中,sin A :sin B :sin C =3:2:4,则cos C=__ _
三、解答题:
1、在∆ABC 中,已知8a =,7b =,060=B ,求c .
2、 在△ABC 中,AB =5,BC =7,AC =8,求⋅的值
3、在ABC ∆中,,75,45,300===C A AB 求BC
4、在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,A =3
π
,a =3,b =1,求c
5、在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,已知3,30,a b c ==︒求A
6、已知a =33,c =2,B =150°,求边b 的长及S △.
7、在ABC ∆中,6=a , 30=B ,
120=C ,求ABC ∆的面积
8、在ABC ∆中,已知()()()a c a c b b c +-=+,求A ∠
10、已知,,a b c 分别是ABC ∆三个内角,,A B C 的对边,且cos cos a A b B =,判断ABC ∆的形状
11、在△ABC 中,已知2a b c =+,2
sin sin sin A B C =,试判断△ABC 的形状。
12、在ABC △中,5cos 13A =-,3cos 5
B =. (Ⅰ)求sin
C 的值; (Ⅱ)设5BC =,求ABC △的面积.
13、在ABC ∆中,如果::1)a b c =,求这个三角形的最小角
高一下数学《解三角形》训练案(2)
14、AB 是底部B 不可到达的一个建筑物,A 为建筑物的最高点,设计一种测量建筑物高度AB 的方法。
0
60,30,1,3DH m DC m αβ====,求建筑物AB 的高度?
15、如图,在山顶铁塔上B 处测得地面上一点A 的俯角0
60α=,在塔底C 处测得A 处的俯角0
45β=。
已知铁塔BC 部分的高为3 m,求出山高CD
30的方向,16、一艘船以3n mile / hr的速度向正北航行。
在A处看灯塔S在船的北偏东0
45的方向,已知距离此灯塔6.5n mile 以30min后航行到B处,在B处看灯塔在船的北偏东0
外的海区为航行安全区域,这艘船可以继续沿正北方向航行吗?
17、某渔船在航行中不幸遇险,发出求救信号,我海军舰艇在A处获悉后,立即测出该渔船在方位角为45°、距离A为10海里的C处,并测得渔船正沿方位角为105°的方向,以9海里/h的速度向某小岛B靠拢,我海军舰艇立即以21海里/h的速度前去营救,试问舰艇应按照怎样的航向前进?并求出靠近渔船所用的时间
18、在锐角△ABC 中,a 、b 、c 分别为角A 、B 、C 所对的边,且A c a sin 23=
(Ⅰ)确定角C 的大小;
(Ⅱ)若c =7,且△ABC 的面积为
2
33,求a +b 的值.
19、如图1,甲船在A 处,乙船在A 处的南偏东45°方向,距A 有9n mile 并以20n mile/h 的速度沿南偏西15°方向航行,若甲船以28n mile/h 的速度航行,应沿什么方向,用多少h 能尽快追上乙船?
19、一缉私艇发现在北偏东
45方向,距离12 nmile 的海面上有一走私船正以10 nmile/h 的速度沿东偏南
15方向逃窜.缉私艇的速度为14 nmile/h, 若要在最短的时间内追上该走私船,缉私艇应沿北偏东α+
45的方向去追,.求追及所需的时间和α角的正弦值.
图1
C
°
18、一架侦察机在海拔50 km的高空飞行,观测到一艘潜艇的方位角是1000,俯角是300,一艘货轮的方位角是1300,俯角是450。
求潜艇和货轮之间的距离是多少km?
19、甲船在A处观察到乙船在它的东偏北60o方向的B处,两船相距3海里,乙船以每小
时2n mile
才能尽快追上乙船?相遇时乙船已行驶多少海里?。