大学物理工科教材习题(附答案)
大学物理习题与答案解析

根据匀加速直线运动的速度公 式$v = v_0 + at$,代入已知的 $v_0 = 2m/s$和$a = 3m/s^2$,以及时间$t = 3s$, 计算得到$v = 2m/s + 3 times 3m/s^2 = 11m/s$。
一物体做匀减速直线运动,初 速度为10m/s,加速度为2m/s^2,则该物体在速度减为 零时的位移是多少?
04
答案解析
根据公式$v = lambda f$,频率$f = frac{v}{lambda} = frac{3 times 10^{8}}{500 times 10^{-9}}Hz = 6 times 10^{14}Hz$;根据公式 $E = hnu$,能量$E = h times f = 6.626 times 10^{-34} times 6 times
题目
答案解析
计算氢原子光谱线波长与频 率的关系。
根据巴尔末公式,氢原子光 谱线波长与频率的关系可以
表示为λ=R*(1/n1^2 1/n2^2),其中λ是光谱线波 长,R是里德伯常数,n1和 n2分别是两个能级的主量子
数。
பைடு நூலகம்
题目
一束光照射到某金属表面, 求光电子的最大初动能。
答案解析
根据爱因斯坦光电效应方程,光 电子的最大初动能Ekm=hν-W, 其中h是普朗克常数,ν是入射光 的频率,W是金属的逸出功。因 此,通过测量入射光的频率和金 属的逸出功,可以计算出光电子
题目
一定质量的理想气体,在等容升温过 程中,不吸热也不放热,则内能如何 变化?
答案解析
根据热力学第一定律,等容升温过程 中,气体不吸热也不放热,则内能增 加。
热传递习题及答案解析
题目
大学物理课后习题答案(上下册全)武汉大学出版社 习题3详解

3-1 有一半径为R 的水平圆转台,可绕通过其中心的竖直固定光滑轴转动,转动惯量为J ,开始时转台以匀角速度ω0转动,此时有一质量为m 的人站在转台中心,随后人沿半径向外跑去,当人到达转台边缘时,转台的角速度为 [ ] A.2ωmR J J + B. 02)(ωR m J J+ C.02ωmR JD. 0ω 答案:A3-2 如题3-2图所示,圆盘绕O 轴转动。
若同时射来两颗质量相同,速度大小相同,方向相反并在一直线上运动的子弹,子弹射入圆盘后均留在盘内,则子弹射入后圆盘的角速度ω将:[ ]A. 增大.B. 不变.C. 减小.D. 无法判断. 题3-2 图 答案: C3-3 芭蕾舞演员可绕过脚尖的铅直轴旋转,当她伸长两手时的转动惯量为J 0,角速度为ω0,当她突然收臂使转动惯量减小为J 0 / 2时,其角速度应为:[ ] A. 2ω0 . B. ω0 . C. 4ω0 . D. ω 0/2. 答案:A3-4 如题3-4图所示,一个小物体,位于光滑的水平桌面上,与一绳的一端相连结,绳的另一端穿过桌面中心的小孔O . 该物体原以角速度ω 在半径为R 的圆周上绕O 旋转,今将绳从小孔缓慢往下拉.则物体:[ ]A. 动量不变,动能改变; 题3-4图B. 角动量不变,动量不变;C. 角动量改变,动量改变;D. 角动量不变,动能、动量都改变。
答案:D3-5 在XOY 平面内的三个质点,质量分别为m 1 = 1kg, m 2 = 2kg,和 m 3 = 3kg,位置坐标(以米为单位)分别为m 1 (-3,-2)、m 2 (-2,1)和m 3 (1,2),则这三个质点构成的质点组对Z 轴的转动惯量J z = .答案: 38kg ·m 23-6 如题3-6图所示,一匀质木球固结在一细棒下端,且可绕水平光滑固定轴O 转动,今有一子弹沿着与水平面成一角度的方向击中木球并嵌于其中,则在此击中过程中,木球、子弹、细棒系统对o 轴的 守恒。
大学物理工科教材习题(附答案)

时间 空间与运动学1 下列哪一种说法是正确的( )(A )运动物体加速度越大,速度越快 (B )作直线运动的物体,加速度越来越小,速度也越来越小(C )切向加速度为正值时,质点运动加快 (D )法向加速度越大,质点运动的法向速度变化越快2 一质点在平面上运动,已知质点的位置矢量的表示式为j i r 22bt at +=(其中a 、b 为常量),则该质点作( ) (A )匀速直线运动 (B )变速直线运动 (C )抛物线运动 (D )一般曲线运动3 一个气球以1s m 5-⋅速度由地面上升,经过30s 后从气球上自行脱离一个重物,该物体从脱落到落回地面的所需时间为( )(A )6s (B )s 30 (C )5. 5s (D )8s4 如图所示湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖上的船向岸边运动,设该人以匀速率0v 收绳,绳长不变,湖水静止,则小船的运动是( )(A )匀加速运动 (B )匀减速运动 (C )变加速运动(D )变减速运动5 已知质点的运动方程j i r 33)s m 4()3(t m -⋅+=,则质点在2s 末时的速度和加速度为( )(A )j a j i v )s m 48( , )s m 48()s m 3(211---⋅=⋅+⋅=(B )j a j v )s m 48( , )s m 48(21--⋅=⋅=(C )j a j i v )s m 32( , )s m 32()s m 3(211---⋅=⋅+⋅=(D )j a j v )s m 32( , )s m 32(21--⋅=⋅=6 一质点作竖直上抛运动,下列的t v -图中哪一幅基本上反映了该质点的速度变化情况( )7 有四个质点A 、B 、C 、D 沿Ox 轴作互不相关的直线运动,在0=t 时,各质点都在00=x 处,下列各图分别表示四个质点的t v -图,试从图上判别,当s 2=t 时,离坐标原点最远处的质点( )8 一质点在0=t 时刻从原点出发,以速度0v 沿Ox 轴运动,其加速度与速度的关系为2kv a -=,k 为正常数,这质点的速度与所经历的路程的关系是( )(A )kx e v v -=0 (B ))21(200v x v v -=(C )201x v v -= (D )条件不足,无地确定9 气球正在上升,气球下系有一重物,当气球上升到离地面100m 高处,系绳突然断裂,重物下落,这重物下落到地面的运动与另一个物体从100m 高处自由落到地面的运动相比,下列哪一个结论是正确的( )(A )下落的时间相同 (B )下落的路程相同(C )下落的位移相同 (D )落地时的速度相同10 质点以速度231)s m 1(s m 4t v --⋅+⋅=作直线运动,沿直线作Ox 轴,已知s 3=t 时质点位于m 9=x 处,则该质点的运动方程为( ) (A )t x )s m 2(1-⋅= (B )221)s m 21()s m 4(t t x --⋅+⋅= (C )m t t x 12)s m 31()s m 4(331-⋅+⋅=-- (D )m t t x 12)s m 31()s m 4(331+⋅+⋅=--11 已知质点作直线运动,其加速度t a )s m 3(sm 232--⋅-⋅=,当0=t 时,质点位于00=x 处,且10s m 5-⋅=v ,则质点的运动方程为( ) (A )33221)s m 21()s m 1()s m 5(t t t x ---⋅-⋅+⋅= (B )3322)s m 21()s m 1(t t x --⋅-⋅=(C )3322)s m 31()s m 21(t t x --⋅-⋅= (D )3322)s m 1()s m 1(t t x --⋅-⋅=12 一个质点在Oxy 平面运动,其速度为j i v t )s m 8()s m 2(21--⋅-⋅=,已知质点0=t 时,它通过(3,7)位置处,那么该质点任意时刻的位矢是( )(A )j i r 221)s m 4()s m 2(t t --⋅-⋅= (B )j 7i r m])s m 4[(]3)s m 2[(221+⋅-+⋅=--t m t(C )j -(8m) (D )条件不足,不能确定13 质点作平面曲线运动,运动方程的标量函数为)( , )(t y y t x x ==,位置矢量大小22 y x +=r ,则下面哪些结论是正确的?( )(A )质点的运动速度是t x d d (B )质点的运动速率是t d d r v = (C ) d d t r v = (D ) d d t r 可以大于或小于 v14 质点沿轨道AB 作曲线运动,速率逐渐减小,在图中哪一个图正确表示了质点C 的加速度?( )15 以初速度0v 将一物体斜向上抛出,抛射角为o 45>θ,不计空气阻力,在g v t )cos (sin 0θθ-=时刻该物体的( )(A )法向加速度为g (B )法向加速度为g 32- (C )切向加速度为g 23- (D )切向加速度为g 32-16 一质点从静止出发绕半径为R 的圆周作匀变速圆周运动,角加速度为α,当质点走完一圈回到出发点时,所经历的时间是( )(A )R 221α (B )απ4(C )απ2 (D )不能确定17 一飞轮绕轴作变速转动,飞轮上有两点21 P P 和,它们到转轴的距离分别为d d 2 和,则在任意时刻,21 P P 和两点的加速度大小之比)/21a a 为( )(A )21 (B )41(C )要由该时刻的角速度决定 (D )要由该时刻的角加速度决定18 沿直线运动的物体,其速度与时间成反比,则其加速度与速度的关系是( )(A )与速度成正比 (B )与速度平方成正比 (C )与速度成反比 D )与速度平方成反比19 抛物体运动中,下列各量中不随时间变化的是( )(A )v (B )v (C )t v d d (D )t d d v20 某人以1h km 4-⋅速率向东前进时,感觉到风从正北方吹来,如果将速率增加一倍,则感觉风从东北吹来,实际风速和风向为( )(A )1h km 4-⋅从正北方吹来 (B )1h km 4-⋅从西北方吹来 (C )1h km 24-⋅从东北方向吹来 (D )1h km 24-⋅从西北方向吹来 C a c b d a a c c a b c c d b a b d d牛顿运动定律1 下列说法中哪一个是正确的?( )(A )合力一定大于分力 (B )物体速率不变,所受合外力为零(C )速率很大的物体,运动状态不易改变(D )质量越大的物体,运动状态越不易改变2 物体自高度相同的A 点沿不同长度的光滑斜面自由下滑,如右图所示,斜面倾角多大时,物体滑到斜面底部的速率最大()(A )30o (B)45o (C)60o (D )各倾角斜面的速率相等。
(完整版)大学物理课后习题答案详解

第一章质点运动学1、(习题1.1):一质点在xOy 平面内运动,运动函数为2x =2t,y =4t 8-。
(1)求质点的轨道方程;(2)求t =1 s t =2 s 和时质点的位置、速度和加速度。
解:(1)由x=2t 得,y=4t 2-8 可得: y=x 2-8 即轨道曲线 (2)质点的位置 : 22(48)r ti t j =+- 由d /d v r t =则速度: 28v i tj =+ 由d /d a v t =则加速度: 8a j =则当t=1s 时,有 24,28,8r i j v i j a j =-=+= 当t=2s 时,有 48,216,8ri j v i j a j =+=+=2、(习题1.2): 质点沿x 在轴正向运动,加速度kv a -=,k 为常数.设从原点出发时速度为0v ,求运动方程)(t x x =.解:kv dt dv-= ⎰⎰-=t vv kdt dv v 001 tk e v v -=0t k e v dtdx-=0 dt ev dx tk tx-⎰⎰=000)1(0t k e kv x --=3、一质点沿x 轴运动,其加速度为a = 4t (SI),已知t = 0时,质点位于x 0=10 m 处,初速度v 0 = 0.试求其位置和时间的关系式. 解: =a d v /d t 4=t d v 4=t d t ⎰⎰=vv 0d 4d tt t v 2=t 2v d =x /d t 2=t 2t t x txx d 2d 020⎰⎰= x 2= t 3 /3+10 (SI)4、一质量为m 的小球在高度h 处以初速度0v 水平抛出,求:(1)小球的运动方程;(2)小球在落地之前的轨迹方程; (3)落地前瞬时小球的d d r t ,d d v t ,tv d d . 解:(1) t v x 0= 式(1)2gt 21h y -= 式(2) 201()(h -)2r t v t i gt j =+(2)联立式(1)、式(2)得 22v 2gx h y -=(3)0d -gt d rv i j t = 而落地所用时间 gh2t = 所以 0d -2gh d r v i j t =d d v g j t=- 2202y 2x )gt (v v v v -+=+= 2120212202)2(2])([gh v gh g gt v t g dt dv +=+=5、 已知质点位矢随时间变化的函数形式为22r t i tj =+,式中r 的单位为m ,t 的单位为s .求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。
大学物理学课后习题答案

习题及解答(全)习题一1-1 |r ∆|与r ∆有无不同?t d d r 和t d d r 有无不同? t d d v 和t d d v有无不同?其不同在哪里?试举例说明.解:(1)r ∆是位移的模,∆r 是位矢的模的增量,即r ∆12r r -=,12r r r -=∆; (2)t d d r 是速度的模,即t d d r ==v tsd d .t rd d 只是速度在径向上的分量.∵有r r ˆr =(式中r ˆ叫做单位矢),则t ˆr ˆt r t d d d d d d r rr += 式中t rd d 就是速度径向上的分量,∴t r t d d d d 与r 不同如题1-1图所示.题1-1图(3)t d d v 表示加速度的模,即t v a d d =,t v d d 是加速度a 在切向上的分量. ∵有ττ (v =v 表轨道节线方向单位矢),所以t v t v t v d d d d d d ττ +=式中dt dv就是加速度的切向分量.(t tr d ˆd d ˆd τ 与的运算较复杂,超出教材规定,故不予讨论) 1-2 设质点的运动方程为x =x (t ),y =y (t ),在计算质点的速度和加速度时,有人先求出r =22y x +,然后根据v =t rd d ,及a =22d d t r 而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即v =22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛t y t x 及a =222222d d d d ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛t y t x 你认为两种方法哪一种正确?为什么?两者差别何在?解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标系中,有j y i x r+=,jt y i t x t r a jt y i t x t r v222222d d d d d d d d d d d d +==+==∴故它们的模即为222222222222d d d d d d d d ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=+=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=+=t y t x a a a t y t x v v v y x y x而前一种方法的错误可能有两点,其一是概念上的错误,即误把速度、加速度定义作22d d d d t r a trv ==其二,可能是将22d d d d t r tr 与误作速度与加速度的模。
江西理工大学 大学物理习题册及答案 完整版

三、计算题:
1、一人站在山坡上,山坡与水平面成α角,他扔出一个初速度为VO的小石子,VO与水平面成θ角(向上)如图:
(1)空气阻力不计,证明小石子落在斜坡上的距离为:
解:建立图示坐标系,则石子的运动方程为:
落地点: 解得:
(2)由此证明对于给定的VO和α值,S在时有最大值
y
由 x
得:
∴ 代入得:
(2) 由题意
即: 解得:t=0.66s
∴
即:
解得:t =0 ; t =0.55s
班级_____________学号____________姓名____________
运动学(习题课)
1、一质点在半径R=1米的圆周上按顺时针方向运动,开始时位置在A点,如图所示,质点运动的路程与时间的关系为S=πt2+πt(SI制)试求:
(A)速度为零,加速度一定为零。
(B)当加速度和速度方向一致,但加速度量值减小时,速度的值一定增加。
(C)速度很大,加速度也一定很大。
2、以初速度VO仰角θ抛出小球,当小球运动到轨道最高点时,其轨道曲率半径为(不计空气阻力)(D)
(a)/g(B) /(2g) (C) sin2θ/g (D) cos2θ/g
解得: ; ;
将M=2m; 代入得:
3、光滑水平面上平放着半径为R的固定环,环内的一物体以速率VO开始沿环内侧逆时针方向运动,物体与环内侧的摩擦系数为μ,求:
(1)物体任一时刻t的速率V;
(2)物体从开始运动经t秒经历的路程S。
解:(1) ; ;
∴ ;得:
化简得:
(2)
∴
4、质量为M的小艇在快靠岸时关闭发动机,此时的船速为VO,设水对小船的阻力R正比于船速V,即R=KV(K为比例系数),求小船在关闭发动机后还能前进多远?
大学物理教材习题答案

⼤学物理教材习题答案第⼀章质点运动习题解答⼀、分析题1.⼀辆车沿直线⾏驶,习题图1-1给出了汽车车程随时间的变化,请问在图中标出的哪个阶段汽车具有的加速度最⼤。
答: E 。
位移-速度曲线斜率为速率,E 阶段斜率最⼤,速度最⼤。
2.有⼒P 与Q 同时作⽤于⼀个物体,由于摩擦⼒F 的存在⽽使物体处于平衡状态,请分析习题图1-2中哪个可以正确表⽰这三个⼒之间的关系。
答: C 。
三个⼒合⼒为零时,物体才可能处于平衡状态,只有(C )满⾜条件。
3.习题图1-3(a )为⼀个物体运动的速度与时间的关系,请问习题图1-3(b )中哪个图可以正确反映物体的位移与时间的关系。
答:C 。
由v-t 图可知,速度先增加,然后保持不变,再减少,但速度始终为正,位移⼀直在增加,且三段变化中位移增加快慢不同,根据v-t 图推知s-t 图为C 。
三、综合题:1.质量为的kg 50.0的物体在⽔平桌⾯上做直线运动,其速率随时间的变化如习题图1-4所⽰。
问:(1)设s 0=t 时,物体在cm 0.2=x 处,那么s 9=t 时物体在x ⽅向的位移是多少?(2)在某⼀时刻,物体刚好运动到桌⼦边缘,试分析物体之后的运动情况。
解:(1)由v-t 可知,0~9秒内物体作匀减速直线运动,且加速度为:220.8cm/s 0.2cm/s 4a == 由图可得:0 2.0cm s =,00.8cm/s v =, 1.0cm/s t v =-,则由匀减速直线运动的位移与速度关系可得:22002() t a s s v v -=- 2200()/2t s v v a s =-+ 22[0.8( 1.0)]/20.2 2.0cm =--?+1.1c m =(2)当物体运动到桌⼦边缘后,物体将以⼀定的初速度作平抛运动。
2.设计师正在设计⼀种新型的过⼭车,习题图1- 5为过⼭车的模型,车的质量为0.50kg ,它将沿着图⽰轨迹运动,忽略过⼭车与轨道之间的摩擦⼒。
《新编大学物理》(上、下册)教材习题答案

答案:[A]
提示: ,
题:
答案:[C]
提示:由时间的相对性, ,长度为
题 :
答案:[D]
提示: 得
题:
答案:[D]
提示: , ,故
题:
答案:[A]
提示: ; ; ;故
二、填空题
题:
答案:
提示:设痕迹之间距离为 ,由公式 ( 为静长度)。则车上观察者测得长度为
题:
答案:(1) ,(2)
提示:(1)相对论质量和相对论动量: ,
简谐振动的表达式为:x= (πt –π/3).
(2)当t=T/4时物体的位置为;x= (π/2–π/3) = π/6 = (m).
速度为;v= -πAsin(π/2–π/3) = πsinπ/6 = (m·s-1).
加速度为:a= dv/dt= -ω2Acos(ωt + φ)= -π2Acos(πt -π/3)= π2cosπ/6 = (m·s-2).
[解答]物体的总能量为:E = Ek+ Ep= (J).
(1)根据能量公式E = kA2/2,得振幅为: = (m).
(2)当动能等于势能时,即Ek= Ep,由于E = Ek+ Ep,可得:E =2Ep,
即 ,解得: = ±(m).
(3)再根据能量公式E = mvm2/2,得物体经过平衡位置的速度为:
(2)速度的最大值为:vm= ωA= π = (m·s-1); 题解答图
加速度的最大值为:am= ω2A= π2= (m·s-2).
(3)弹簧的倔强系数为:k = mω2,最大回复力为:f = kA = mω2A= (N);
振动能量为:E = kA2/2 =mω2A2/2 = ×10-2(J),
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
时间 空间与运动学1 下列哪一种说法是正确的( )(A )运动物体加速度越大,速度越快 (B )作直线运动的物体,加速度越来越小,速度也越来越小 (C )切向加速度为正值时,质点运动加快 (D )法向加速度越大,质点运动的法向速度变化越快 2 一质点在平面上运动,已知质点的位置矢量的表示式为ji r 22bt at +=(其中a 、b 为常量),则该质点作( )(A )匀速直线运动 (B )变速直线运动 (C )抛物线运动 (D )一般曲线运动3 一个气球以1s m 5-⋅速度由地面上升,经过30s 后从气球上自行脱离一个重物,该物体从脱落到落回地面的所需时间为( )(A )6s (B )s 30 (C )5. 5s (D )8s4 如图所示湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖上的船向岸边运动,设该人以匀速率0v 收绳,绳长不变,湖水静止,则小船的运动是( )(A )匀加速运动 (B )匀减速运动 (C )变加速运动(D )变减速运动5 已知质点的运动方程j i r 33)s m 4()3(t m -⋅+=,则质点在2s 末时的速度和加速度为( )(A )j a j i v )s m 48( , )s m 48()s m 3(211---⋅=⋅+⋅=(B )j a j v )s m 48( , )s m 48(21--⋅=⋅= (C )j a j i v )s m 32( , )s m 32()s m 3(211---⋅=⋅+⋅=(D )j a j v )s m 32( , )s m 32(21--⋅=⋅=6 一质点作竖直上抛运动,下列的t v -图中哪一幅基本上反映了该质点的速度变化情况( )7 有四个质点A 、B 、C 、D 沿Ox 轴作互不相关的直线运动,在0=t 时,各质点都在00=x 处,下列各图分别表示四个质点的t v -图,试从图上判别,当s 2=t 时,离坐标原点最远处的质点( )8 一质点在0=t 时刻从原点出发,以速度0v 沿Ox 轴运动,其加速度与速度的关系为2kv a -=,k 为正常数,这质点的速度与所经历的路程的关系是( )(A )kxe v v -=0 (B ))21(20v xv v -=(C )201x v v -= (D )条件不足,无地确定9 气球正在上升,气球下系有一重物,当气球上升到离地面100m 高处,系绳突然断裂,重物下落,这重物下落到地面的运动与另一个物体从100m 高处自由落到地面的运动相比,下列哪一个结论是正确的( )(A )下落的时间相同 (B )下落的路程相同(C )下落的位移相同 (D )落地时的速度相同10 质点以速度231)s m 1(s m 4t v --⋅+⋅=作直线运动,沿直线作Ox 轴,已知s 3=t 时质点位于m 9=x 处,则该质点的运动方程为( )(A )t x )s m 2(1-⋅= (B )221)s m 21()s m 4(t t x --⋅+⋅=(C )m t t x 12)s m 31()s m 4(331-⋅+⋅=-- (D )mt t x 12)s m 31()s m 4(331+⋅+⋅=--11 已知质点作直线运动,其加速度t a )s m 3(s m 232--⋅-⋅=,当0=t 时,质点位于00=x 处,且10s m 5-⋅=v ,则质点的运动方程为( )(A )33221)s m 21()s m 1()s m 5(t t t x ---⋅-⋅+⋅= (B )3322)s m 21()s m 1(t t x --⋅-⋅= (C )3322)s m 31()s m 21(t t x --⋅-⋅= (D )3322)s m 1()s m 1(t t x --⋅-⋅=12 一个质点在Oxy 平面内运动,其速度为j i v t )s m 8()s m 2(21--⋅-⋅=,已知质点0=t 时,它通过(3,7)位置处,那么该质点任意时刻的位矢是( )(A )ji r 221)s m 4()s m 2(t t --⋅-⋅= (B )j7i r m])s m 4[(]3)s m 2[(221+⋅-+⋅=--t m t(C )j -(8m) (D )条件不足,不能确定13 质点作平面曲线运动,运动方程的标量函数为)( , )(t y y t x x ==,位置矢量大小22 y x +=r ,则下面哪些结论是正确的?( )(A )质点的运动速度是t xd d (B )质点的运动速率是t d d r v =(C )d dt r v = (D )d d t r可以大于或小于 v14 质点沿轨道AB 作曲线运动,速率逐渐减小,在图中哪一个图正确表示了质点C 的加速度?( )15 以初速度0v 将一物体斜向上抛出,抛射角为o45>θ,不计空气阻力,在g v t )cos (sin 0θθ-=时刻该物体的( )(A )法向加速度为g (B )法向加速度为g 32-(C )切向加速度为g 23- (D )切向加速度为g 32-16 一质点从静止出发绕半径为R 的圆周作匀变速圆周运动,角加速度为α,当质点走完一圈回到出发点时,所经历的时间是( )(A )R221α (B )απ4(C )απ2 (D )不能确定17 一飞轮绕轴作变速转动,飞轮上有两点21 P P 和,它们到转轴的距离分别为d d 2 和,则在任意时刻,21 P P 和两点的加速度大小之比)/21a a 为( )(A )21 (B )41(C )要由该时刻的角速度决定 (D )要由该时刻的角加速度决定18 沿直线运动的物体,其速度与时间成反比,则其加速度与速度的关系是( )(A )与速度成正比 (B )与速度平方成正比 (C )与速度成反比 D )与速度平方成反比 19 抛物体运动中,下列各量中不随时间变化的是( ) (A )v (B )v (C )t v d d (D )t d d v20 某人以1h km 4-⋅速率向东前进时,感觉到风从正北方吹来,如果将速率增加一倍,则感觉风从东北吹来,实际风速和风向为( )(A )1h km 4-⋅从正北方吹来 (B )1h km 4-⋅从西北方吹来(C )1h km 24-⋅从东北方向吹来 (D )1h km 24-⋅从西北方向吹来C a c b d a a c c a b c c d b a b d d牛顿运动定律1 下列说法中哪一个是正确的?( )(A )合力一定大于分力 (B )物体速率不变,所受合外力为零 (C )速率很大的物体,运动状态不易改变(D )质量越大的物体,运动状态越不易改变 2 物体自高度相同的A 点沿不同长度的光滑斜面自由下滑,如右图所示,斜面倾角多大时,物体滑到斜面底部的速率最大() (A )30o(B)45o(C)60o(D )各倾角斜面的速率相等。
3 如右图所示,一轻绳跨过一定滑轮,两端各系一重物,它们的质量分别为2121 ,m m m m >且和,此时系统的加速度为a ,今用一竖直向下的恒力g m 1=F 代替1m ,系统的加速度为a ',若不计滑轮质量及摩擦力,则有( )(A )a a =' (B )a a >' (C )a a <'(D )条件不足不能确定。
4 一原来静止的小球受到下图1F 和2F 的作用,设力的作用时间为5s ,问下列哪种情况下,小球最终获得的速度最大( )(A )N 61=F ,02=F (B )01=F ,N 62=F (C )N 821==F F (D )N 61=F ,N 82=F5 三个质量相等的物体A 、B 、C 紧靠一起置于光滑水平面上,如下图,若A 、C 分别受到水平力1F 和2F 的作用(F 1>F 2),则A 对B 的作用力大小( )(A )21F F - (B )21F F 3132+ (C )21F F 3132-(D )21F F 3231+ 6 长为l ,质量为m 的一根柔软细绳挂在固定的水平钉子上,不计摩擦,当绳长一边为b ,另一边为c 时,钉子所受压力是( )(A )mg (B )lcb mg - (C )l b l mg )(- (D )24l mgbc7 物体质量为m ,水平面的滑动摩擦因数为μ,今在力F 作用下物体向右方运动, 如下图所示,欲使物体具有最大的加速度值,则力F 与水平方向的夹角θ应满足( ) (A )1cos =θ (B )1sin =θ (C )μθ=tg (D )μθ=ctg8.质量分别为m 和m '滑块,叠放在光滑水平桌面上,如下图所示,m 和m '间静摩擦因数为0μ,滑动摩擦因数为μ,系统原处于静止。
若有水平力F 作用于上,欲使m '从m 中抽出来,则( )(A )g m m F ))((0'++>μμ(B )g m m F )(0μμ+'>(C )g m m m F )]([0'++>μμ (D )m m m mgF ''+≥)(μ9 如下图所示,质量为m 的均匀细直杆AB ,A 端靠在光滑的竖直墙壁上,杆身与竖直方向成θ角,A 端对壁的压力大小为( )(A )θcos 41mg (B )θmgtg 21(C )θsin mg (D )θsin 31mg10 一质量为m 的猫,原来抓住用绳子吊着的一根垂直长杆,杆子的质量为m ',当悬线突然断裂,小猫沿着杆子竖直向上爬,以保持它离地面的距离不变,如图所示,则此时杆子下降的加速度为( )(A)g (B) gm m' (C)g m m m ''+ (D) g m m m '-'11 一弹簧秤,下挂一滑轮及物体1m 和2m ,且21m m ≠,如右图所示,若不计滑轮和绳子的质量, 不计摩擦,则弹簧秤的读数( )(A )小于g m m )(21+(B )大于g m m )(21+(C )等于g m m )(21+(D )不能确定12 几个不同倾角的光滑斜面有共同的底边,顶点也在同一竖直面上,如右图所示,若使一物体从斜面上端滑到下端的时间最短,则斜面的倾角应选( ) (A )30o(B )45o(C )60o(D )75o13 水平面转台可绕通过中心的竖直轴匀速转动。
角速度为ω,台上放一质量为m 的物体, 它与平台间的摩擦因数为μ,如果m 距轴为R 处不滑动,则ω满足的条件是( )(A )R gμ2≤ (B )R g μ≤(C )gRμ≤(D )gR μ21≤14 水平放置的轻质弹簧,劲度系数为k ,其一端固定,另一端系一质量为m 的滑块A ,A 旁又有一质量相同的滑块B ,如下图所示,设两滑块与桌面间无摩擦,若加外力将A 、B 推进,弹簧压缩距离为d ,然后撤消外力,则B 离开A 时速度为( )(A )k d2(B )m k d(C )m k d 2(D )m k d 315 用细绳系一小球,使之在竖直平面内作圆周运动,当小球运动到最高点时,它( ) (A )将受到重力,绳的拉力和向心力的作用 (B )将受到重力,绳的拉力和离心力的作用(C )绳子的拉力可能为零 (D )小球可能处于受力平衡状态16 一轻绳经过两定滑轮,两端各挂一质量相同的小球m ,如果左边小球在平衡位置来摆动,如下图所示,那么右边的小球,将( )(A )保持静止(B )向上运动(C )向下运动(D )上下来回运动17 水平的公路转弯处的轨道半径为R ,汽车轮胎与路面间的摩擦因数为μ,要使汽车不致于发生侧向打滑,汽车在该处的行驶速率( ) (A )不得小于gRμ (B )不得大于gRμ(C )必须等于gRμ2 (D )必须大于gRμ318 质量为m 的物体放在升降机底板上,物体与底板的摩擦因数为μ,当升降机以加速度a 上升时,欲拉动m 的水平力至少为多大( )(A )mg (B )mg μ(C ))(a g m +μ (D ))(a g m -μ19 可以认为,地球是一个匀角速转动的非惯性系,因此,通常所说的物体的重力实际上是地球引力和地球自转引起的惯性离心力的合力,由此可见,重力和地球的引力两者无论大小,方向都不相同,那么两者大小相差最多的,应该是() (A )在赤道上 (B )在南北极 (C )在纬度45o处 (D )在纬度60 o处20 如下图所示,1m 与2m 与桌面之间都是光滑的,当1m 在斜面上滑动时,1m 对2m 的作用力为( )(A )大于θcos 1g m (B )等于θcos 1g m (C )小于θcos 1g m (D )无法确定守恒定律1 质量为m 的铁锤竖直从高度h 处自由下落,打在桩上而静止,设打击时间为t ∆,则铁锤所受的平均冲力大小为( )(A )mg (B )tghm ∆2 (C )mgtghm +∆2 (D )mgtghm -∆22 一个质量为m 的物体以初速为0v 、抛射角为o30=θ从地面斜上抛出。