MnSOD在炎症反应中的作用
盐生杜氏藻锰超氧化物歧化酶(MnSOD)在大肠杆菌中的功能鉴定

I ntfc to o h u c in fs pe o i edim u a e g n r m de iia in ft e f n to o u r x d s t s e e f o
(i unP bi E pr n l f m f ii omai dMeao c ni ̄ igC lg f Sc a u l x ei t a o o on r tsa tbl gn n ,ol eo h c me P t r B f c n iE e
Lf c n e, i unU i r t, hn d 1 04 hn ) i S i cs Sc a nv s y C eg u60 6 ,C i e e h ei a
Ab ta t sr c :Th eo erc mbn n l m i ET3 aDs n D sc n tu td b u co ig t eORF o M n D ia tpa d p s 2- M S O wa o sr ce y s b lnn h fDs S O g n r m n l l ln e efo Du a i l s i a,wh c n cl lrag o ssige te l fe ieme h n s rtlr t g eaa ihi au iel a ap ses x r meyefc v c a imsf e ai s u l n t o o n s c s t tes n ot ep T3 av co .Th n t er c mbn n ls dwa rn fr d it . oiK 1 u h o mo i srs ,it h E 2 e tr c e h e o ia tpami sta so me o E cl 2. n ad u l tn e od o o bemu a td v i fⅣ 9 。D n ad O S D cii e .Th e e wa n u e o e p esp oen n h at t s vi e g n sid c d t x rs r ti a d t e s
mn型超氧化物歧化酶

mn型超氧化物歧化酶超氧化物歧化酶(Superoxide Dismutase,简称SOD)是一类专一催化超氧自由基(Superoxide,O2^-)转化成分子氧(O2)和过氧化氢(Hydrogen Peroxide,H2O2)的酶。
这一反应对维持细胞内氧化还原平衡以及保护细胞免受氧化损伤具有重要作用。
超氧自由基是含有未配对电子的高活性氧分子,即它们具有强氧化性。
在正常细胞代谢过程中,细胞产生一定量的超氧自由基,如果不能及时转化成分子氧和过氧化氢,将会对细胞结构和功能造成严重伤害。
而SOD则扮演着细胞防御系统的重要角色,促进超氧自由基的正常代谢。
根据金属离子辅助的催化反应机制,超氧化物歧化酶被分为三类:Cu/Zn-SOD、Mn-SOD和Fe-SOD。
其中,Mn-SOD是一种金属离子为锰的超氧化物歧化酶。
它广泛存在于细菌、植物和动物的细胞内,起到了重要的保护作用。
Mn-SOD能够高效催化超氧自由基的歧化反应,将其转化为无害的氧分子和过氧化氢。
这一反应不仅减少了细胞内的有害氧化物,还提供了细胞活动所需的分子氧供给。
此外,经过丰富的研究表明,Mn-SOD还能够参与调节细胞的再生和凋亡过程。
由于Mn-SOD在维持细胞功能和健康方面的重要作用,其活性的变化会直接反映在机体的疾病发生和发展过程中。
例如,大量的研究表明,Mn-SOD活性的下降与多种疾病的发生相关,如神经系统疾病、心血管疾病和癌症等。
因此,科学家们通过对Mn-SOD的研究,解析其活性调控机制,有望为疾病的预防和治疗提供新的思路和方法。
进一步研究Mn-SOD的结构和功能,不仅有助于揭示其催化反应的分子机制,也可以为开发针对其活性调控的药物提供基础。
通过人工合成活性类似物和调控剂,或通过基因工程改良同源蛋白的催化性能,对调节细胞内的氧化还原平衡,改善机体的整体健康具有重要意义。
总之,Mn-SOD作为一种重要的超氧化物歧化酶,在维持细胞内氧化还原平衡方面起到至关重要的作用。
mn-sod基因

Mn-SOD基因
Mn-SOD基因(也称为锰超氧化物歧化酶基因)是一种能够编码锰超氧化物歧化酶(Mn-SOD)的基因。
Mn-SOD是一种金属酶,属于超氧化物歧化酶(SOD)家族,具有抗氧化的功能。
它能够通过歧化反应催化超氧化物转化为氧气和过氧化氢,从而使暴露于氧化应激中的细胞免受氧化损伤。
Mn-SOD基因在生物体内广泛存在,并在多种组织中表达。
在人体中,Mn-SOD基因的表达产物Mn-SOD主要定位于线粒体内,对维持线粒体的功能和稳定性起着重要作用。
同时,Mn-SOD也被认为是一种非特异性的肿瘤抑制基因,其表达量在细胞癌变过程中呈负相关下降,因此具有潜在的抑制肿瘤生长的作用。
在植物中,Mn-SOD基因也扮演着重要的角色。
例如,在玉米中,Mn-SOD 基因是一个多基因家族,包括SOD3.1、SOD3.2、SOD3.3和SOD3.4等多个基因。
这些基因在玉米发育过程中的表达具有组织特异性,并在呼吸作用强的组织中表达水平显著升高。
在胁迫条件下,如干旱、病原菌侵染等,Mn-SOD基因的转录水平也会大幅度提高,与SOD酶活性的适度增加相关。
总之,Mn-SOD基因是一种重要的抗氧化基因,具有保护细胞免受氧化损伤和抑制肿瘤生长的作用。
同时,它在植物中的表达也受到多种环境因素的调控,对植物的生长发育和抗逆性具有重要意义。
今日重磅:nmn对胰腺炎的作用,w+nmn和nmn的区别刷新认知

今日重磅:nmn对胰腺炎的作用,w+nmn和nmn的区别刷新认知今日重磅:nmn对胰腺炎的作用,w+nmn和nmn的区别刷新认知!急性胰腺炎是常见的消化道疾病,发病率逐年升高,轻者可为自限性,重者可导致炎症反应综合征、多器官功能衰竭等严重并发症而危及生命。
nmn对胰腺炎的作用,NMN通过提升体内NAD+含量拥有了抗衰老的功效,同时有助于增强人体免疫力。
根据调查资料显示:SIc12a8基因编码是一个特定的W+NMN细胞膜转运蛋白,帮助W+NMN进入细胞。
转运蛋白SIc12a8在小肠和胰腺中高度表达,在肝脏和白色脂肪组织中等表达。
nmn对胰腺炎的作用,年老者口服给药OULF【欧联法】国际认证的W+NMN,与年轻者相比老龄给药的血浆胰腺NMN水平升高的倍数更多,而且小肠中NAD+水平恢复到接近年轻人水平。
nmn对胰腺炎的作用:胰腺炎抑制胰腺分泌,松弛括约肌,降低胰管内压力,还能减少胰管内胰液进入胰腺组织,从而减轻胰腺的自身消化作用W+NMN通过抑制腺苷环化酶的活性和减少乙酰胆碱的释放可直接降低胰腺外的分泌功能,减少胰腺炎的出血量,从而达到抑制炎症、减轻胰腺的自身消化、缓解临床症状的作用,是治疗胰腺炎的有效物质。
nmn对胰腺炎的作用:W+NMN能一定程度刺激患者体内的网状内皮细胞系统、增加其细胞的吞噬功能,有效地消除患者血液中的内毒素,进而诱发细胞因子的释放过量,有效缓解全身的炎症反应。
nmn对胰腺炎的作用:胰腺炎发病过程中常伴有凝血和纤溶系统的功能障碍,血小板参数出现一定程度的改变。
早期血小板水平降低,而活性增加。
血小板数目的减少与全身炎症反应综合症有关。
W+NMN治疗后可使血小板活性降低,从而阻止胰腺炎的进一步恶化,使病情逐渐好转,改善胰腺炎的预后。
nmn对胰腺炎的作用:W+NMN通过调节细胞因子的作用环节和前列腺素的产生来降低毒素对胃黏膜、胰腺及肝脏细胞损害,促进胰腺细胞损伤的愈合。
nmn对胰腺炎的作用,免疫调节作用,胰腺炎病程中存在一个炎症免疫过激和免疫抑制先后并存的病理过程,这一免疫异常也反映在胰腺炎的临床过程中。
锰超氧化物歧化酶

锰超氧化物歧化酶锰超氧化物歧化酶是一种非常重要的蛋白质,它可以帮助抑制和修复基因突变,并维持细胞健康。
此外,它还能够在细胞分裂过程中调节各种重要的氧化还原反应,以确保正确的细胞生物化学。
他们的研究可以有助于更好的理解细胞的运作,以及如何应对环境的改变。
锰超氧化物歧化酶(MnSOD)能够捕捉和分解氧化物,这些氧化物可能会引起DNA的损坏,细胞的破坏和功能的破坏。
在细胞环境中,它可以抑制自由基的活性,从而减少脂质毒性,防止DNA损伤和细胞凋亡。
MnSOD通过其多功能性,包括氧化应激代谢、细胞增殖、凋亡和炎症反应等,可以影响细胞活性和功能。
MnSOD还可以帮助修复遭受破坏的DNA,并识别和分解氧化应激受体。
他们在细胞凋亡反应中发挥着重要作用,这些反应可以防止连锁反应,从而促进细胞的活性和健康状态。
因此,MnSOD的研究可以有助于更好的认识和控制DNA的损伤。
MnSOD的另一个重要作用是影响细胞信号转导。
MnSOD可以抑制自由基氧化反应,从而减少细胞炎症反应和免疫反应。
此外,MnSOD 还可以参与细胞的凋亡响应,以保护细胞免受氧化应激的伤害。
MnSOD也可以参与细胞凋亡,以帮助凋亡反应的进行。
在临床实践中,MnSOD的研究可以有助于更好地识别和治疗癌症、自身免疫疾病和创伤性脑损伤等病症。
例如,MnSOD可以参与促进癌细胞的凋亡反应,从而抑制肿瘤的发展,并减少治疗的毒性损伤。
此外,MnSOD也可以帮助控制炎症反应,以促进组织再生和复原。
总之,锰超氧化物歧化酶(MnSOD)是一种重要的蛋白质,可以帮助抑制和修复基因突变,调节细胞分裂过程中的氧化还原反应,参与氧化应激代谢,细胞增殖,凋亡和炎症反应,以及参与细胞信号传导,以及可以在癌症、自身免疫疾病和创伤性脑损伤等病症的治疗中发挥重要作用。
因此,MnSOD的研究对更好的认识细胞的运作,以及如何应对环境的改变具有重要的意义。
肌素钠的功能主治

肌素钠的功能主治1. 什么是肌素钠?肌素钠是一种药物,也被称为amento sodium,通常用于治疗多种疾病和症状。
它是一种非处方药,在药店和医疗保健机构可以方便地购买到。
肌素钠常常被用于缓解疼痛、减轻炎症症状以及提高身体的免疫力。
2. 肌素钠的功能主治肌素钠具有多种功能主治,包括但不限于以下方面:•缓解疼痛:肌素钠可以有效缓解头痛、牙痛、肌肉酸痛等不同部位的疼痛症状。
它通过抑制炎症反应、降低组织炎症因子的水平来减轻疼痛感。
•减轻炎症症状:肌素钠具有抗炎作用,可以有效减轻炎症引起的红肿、热痛等症状。
它通过抑制炎症细胞的活性,减少炎症介质的释放来发挥作用。
•提高免疫力:肌素钠可以提高体内的免疫力,增强抵抗疾病的能力。
它通过增加淋巴细胞的数量和活性,促进巨噬细胞的吞噬作用来加强免疫系统的功能。
•抗过敏作用:肌素钠可以抑制过敏反应,减少过敏症状的发生。
它通过阻断过敏介质的释放,减少组织的过敏反应来起到抗过敏的作用。
•镇静安眠:肌素钠具有一定的镇静和安眠作用,可以帮助人们入睡并提高睡眠质量。
它通过影响中枢神经系统的神经传导来达到这个效果。
•抗菌作用:肌素钠对某些细菌具有一定的抗菌作用,可以抑制细菌的生长和繁殖。
它通过破坏细菌的细胞壁或细胞膜,抑制细菌的代谢活动来发挥抗菌作用。
•降低发热:肌素钠可以降低体温,缓解发热症状。
它通过减少体内的炎症介质释放,调节体温调节中枢的功能来发挥这个作用。
3. 使用注意事项在使用肌素钠之前,需要注意以下几点:•使用前请先阅读并遵守药品说明书中的用药指导。
如果有任何疑问,请咨询医生或药师的意见。
•严格按照剂量使用,不要超量使用肌素钠。
如果出现过量使用或不良反应,请立即求医。
•对于儿童、孕妇、哺乳期妇女和老年人等特殊人群,要谨慎使用肌素钠,并遵循医生或药师的建议。
•如果出现皮疹、呼吸困难、肿胀等严重的不良反应,请立即停药并就医。
•在使用肌素钠期间,如有其他药物的使用,要注意避免药物相互作用。
mn型超氧化物歧化酶 -回复
mn型超氧化物歧化酶-回复mn型超氧化物歧化酶(Mn-SOD),全称为锰依赖型超氧化物歧化酶,是一种重要的酶类。
它在细胞内负责清除有害的超氧阴离子,以保护细胞免受氧化应激的损害。
本文将深入探讨Mn-SOD的结构、功能以及其在生物体内的作用。
首先,我们来了解一下Mn-SOD的结构。
Mn-SOD是一个含锰离子的金属酶,它通常形成一个四聚体结构。
每个亚基由约20kDa的蛋白质组成,其中包含一个锰离子。
这些锰离子起到了催化超氧化物(O2-)的降解反应的关键作用。
Mn-SOD的催化机理非常复杂,但可以简单概括为以下几个步骤:首先,Mn-SOD通过与锰离子配位形成活性中心。
然后,它与超氧化物结合,超氧化物的一个氧原子与锰离子发生反应,形成过渡态中间体。
接下来,这个过渡态中间体会在催化剂的作用下发生降解,最终产生水和氧气。
Mn-SOD的功能非常重要。
细胞内产生的超氧化物是一种高度活性的自由基,它们会与细胞内的分子发生反应,导致氧化应激。
氧化应激是一种导致细胞损伤和疾病发生的过程,包括癌症、心血管疾病和神经系统疾病等。
Mn-SOD的主要作用就是清除细胞内的超氧化物,以保护细胞免受氧化应激的损害。
通过这种方式,Mn-SOD起到了维持细胞内氧化还原平衡的重要角色。
除了细胞内,Mn-SOD在许多生物体中也起到了重要的作用。
例如,在人体中,Mn-SOD主要存在于线粒体中。
线粒体是细胞内的能量工厂,它通过氧化磷酸化过程产生能量。
然而,这个过程也会产生大量的超氧化物。
Mn-SOD的存在就是为了清除这些超氧化物,以保护线粒体免受氧化应激的损害。
这对于维持正常的线粒体功能和能量供应至关重要。
此外,Mn-SOD对于抗衰老和抗炎症也都有着重要的作用。
随着年龄的增长,细胞内的氧化应激会逐渐增加,导致细胞功能下降和衰老。
Mn-SOD 的存在可以一定程度上减缓这个过程,保护细胞免受氧化应激的损害。
此外,氧化应激与炎症反应之间也存在着密切关联。
MnSOD模拟化合物的合成及抗肿瘤活性研究的开题报告
MnSOD模拟化合物的合成及抗肿瘤活性研究的开题报告题目: MnSOD模拟化合物的合成及抗肿瘤活性研究一、研究背景和意义MnSOD(Manganese-superoxide dismutase)是细胞色素P450酶同源体家族中的一种,负责清除细胞内的过氧化氢,防止过氧化氢损伤细胞膜、细胞器和DNA等生物大分子。
而且,MnSOD还具有抗癌、抗炎等作用,可以帮助抑制肿瘤细胞的生长和转移。
因此,研究MnSOD及其模拟化合物,寻找具有较强抗肿瘤活性的化合物,对于癌症的治疗和抗炎有重要的意义。
二、研究内容和方法1、 MnSOD模拟化合物的合成本研究将采用化学合成的方法,参照已有文献,先合成出一系列不同结构的MnSOD模拟化合物,如亚硝基苯甲酸酯类、亚硝基苯甲酰胺类、N-烷氧基苯甲酰胺类等;再通过技术手段对这些化合物的结构和纯度进行鉴定,并评估其与MnSOD的结合能力和稳定性。
2、抗肿瘤活性试验将合成的化合物与肿瘤细胞株共同处理,观察细胞的生长和死亡情况,并通过MTT测定法、Annexin V-FITC和PI双染法等细胞实验和动物实验方法,评估化合物对肿瘤细胞增殖、凋亡和转移的影响。
通过比较化合物组和对照组的细胞活性和其它生物学参数的差异,找到具有较强抗肿瘤活性的化合物。
三、研究预期成果1、合成出一系列MnSOD模拟化合物,并评估其与MnSOD的结合能力和稳定性。
2、筛选出若干具备较强抗肿瘤活性的化合物。
3、对具有活性的化合物进行优化合成,并考察其生物学特性和安全性。
4、分析化合物对相关通路的影响,探讨其作用机制。
以上成果将对临床疾病治疗和化学药物开发等方面有重大的启示和应用价值。
四、研究计划时间节点研究内容2022.3-2022.5 方案实施、文献查阅2022.6-2022.8 合成MnSOD模拟化合物2022.9-2022.11 化合物鉴定和稳定性测试2022.12-2023.2 化合物抗肿瘤活性测试2023.3-2023.5 优化合成和生物学特性考察2023.6-2023.8 机制分析及文章撰写以上是本项研究的详细内容和计划。
锰超氧化物酶Mn-SOD
锰超氧化物酶Mn-SOD
锰超氧化物酶(Mn-SOD)是一种重要的酶类,能够在自由基反应中作为一种抗氧化剂进行保护作用,防止细胞和组织器官的损伤和疾病发生。
本文将从锰超氧化物酶的定义、特性、功能及应用等方面进行450字的详细介绍。
1. 锰超氧化物酶的定义
锰超氧化物酶(Mn-SOD)是一种四聚体酶,其分子量大约为80kDa。
与其它超氧化物酶相比,锰超氧化物酶是最早被发现和研究的一种,它是细胞内最重要的超氧化物歧化酶之一。
2. 锰超氧化物酶的特性
锰超氧化物酶富含在线粒体、细胞质和细胞核等部位,其中除了细胞核内相对较少。
它的基本特性在于它所用的金属离子是锰离子,而不是铜离子或铁离子等其他超氧化物歧化酶所使用的金属离子。
3. 锰超氧化物酶的功能
锰超氧化物酶的主要功能在于对细胞内的超氧阴离子(O2−)进行歧化作用,将其转变为较为对细胞不具有氧化作用的H2O2,防止其对细胞和组织器官的损伤和疾病发生。
此外,锰超氧化物酶还能够抑制乳酸脱氢酶等一些蛋白质的氧化作用,从而发挥一定的蛋白质保护作用。
4. 锰超氧化物酶的应用
锰超氧化物酶已经被广泛地用于研究一些生物学过程的机制,例如:癌症、糖尿病、神经退行性疾病、心血管疾病等的发生与发展过程。
同时,它也被广泛应用于医学诊疗中。
例如,它可以用于治疗以缺氧为特征的脑损伤、心肌梗死和其他疾病。
总之,锰超氧化物酶是一种重要的酶类,它能够在细胞内对超氧阴离子进行歧化作用,起到抗氧化剂的保护作用。
它的研究和应用对于维护人体健康具有重要意义。
超氧化物歧化酶的研究进展
超氧化物歧化酶的研究进展一、本文概述超氧化物歧化酶(Superoxide Dismutase, SOD)是一类重要的抗氧化酶,它在生物体内发挥着至关重要的角色,负责清除由氧代谢产生的活性氧自由基——超氧阴离子。
由于其在抗氧化防御系统中的重要地位,超氧化物歧化酶的研究一直是生物学、医学和农业科学等多个领域的热点。
本文旨在综述近年来超氧化物歧化酶的研究进展,包括其分子结构、生物学功能、表达调控机制、活性检测方法以及在疾病治疗和农业生物技术中的应用等方面。
通过深入了解和探讨超氧化物歧化酶的研究现状和未来趋势,以期为相关领域的研究提供有价值的参考和启示。
二、SOD的结构与功能超氧化物歧化酶(Superoxide Dismutase,简称SOD)是一种广泛存在于生物体内的金属酶,具有抗氧化和清除自由基的重要作用。
SOD的分子量因其来源和类型的不同而有所差异,但其基本结构都包含有一个或多个金属离子(如铜、锌、锰或铁)以及与之结合的氨基酸残基。
在结构上,SOD通常以同源或异源二聚体的形式存在,其活性中心包含有一个或多个金属离子,这些金属离子通过配位键与蛋白质中的氨基酸残基相连。
SOD的活性中心结构使其具有高效的催化活性,能够迅速将超氧阴离子自由基(O2-•)歧化为过氧化氢(H2O2)和氧气(O2)。
在功能上,SOD的主要作用是清除生物体内产生的超氧阴离子自由基。
超氧阴离子自由基是一种高度活性的自由基,可以引发一系列的氧化反应,导致生物大分子的损伤和细胞死亡。
SOD通过将其歧化为过氧化氢和氧气,从而有效地清除了超氧阴离子自由基,保护了生物体免受氧化应激的损害。
SOD还具有调节细胞信号转导、维持细胞稳态和增强免疫力等多种功能。
研究表明,SOD在抗氧化防御系统中起着关键作用,能够抵抗外源性和内源性氧化应激的影响,维护细胞的正常功能和生命活动的进行。
随着对SOD结构与功能的深入研究,人们发现不同来源和类型的SOD具有不同的催化特性、底物亲和力和组织特异性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
SAGE-Hindawi Access to ResearchEnzyme ResearchVolume2011,Article ID387176,6pagesdoi:10.4061/2011/387176Review ArticleThe Role of Manganese Superoxide Dismutase inInflammation DefenseChang Li1and Hai-Meng Zhou1,21School of Life Sciences,Tsinghua University,Beijing100084,China2Zhejiang Provincial Key Laboratory of Applied Enzymology,Institute of Tsinghua University,Yangtze Delta Region,Jiaxing314006,ChinaCorrespondence should be addressed to Hai-Meng Zhou,zhm-dbs@Received23June2011;Accepted19July2011Academic Editor:Jun-Mo YangCopyright©2011C.Li and H.-M.Zhou.This is an open access article distributed under the Creative Commons Attribution License,which permits unrestricted use,distribution,and reproduction in any medium,provided the original work is properly cited.Antioxidant enzymes maintain cellular redox homeostasis.Manganese superoxide dismutase(MnSOD),an enzyme located in mitochondria,is the key enzyme that protects the energy-generating mitochondria from oxidative damage.Levels of MnSOD are reduced in many diseases,including cancer,neurodegenerative diseases,and psoriasis.Overexpression of MnSOD in tumor cells can significantly attenuate the malignant phenotype.Past studies have reported that this enzyme has the potential to be used as an anti-inflammatory agent because of its superoxide anion scavenging ability.Superoxide anions have a proinflammatory role in many diseases.Treatment of a rat model of lung pleurisy with the MnSOD mimetic MnTBAP suppressed the inflammatory response in a dose-dependent manner.In this paper,the mechanisms underlying the suppressive effects of MnSOD in inflammatory diseases are studied,and the potential applications of this enzyme and its mimetics as anti-inflammatory agents are discussed.1.IntroductionAerobic organisms utilize molecular oxygen(dioxygen;O2) as thefinal electron receptor in the oxidative phosphory-lation electron transport chain.Normally,O2is reduced to H2O after receiving four electrons;however,partial reduction of O2leads to the formation of highly reactive oxy-gen species(ROS),including the superoxide anion(O2−·), hydrogen peroxide(H2O2),and the hydroxyl radical(OH·). ROS can damage lipids,proteins,and DNA,leading to aber-rant downstream signaling or stimulation of apoptosis[1,2]. Oxidative stress has been implicated in neurodegenerative diseases,aging,cancer,pulmonaryfibrosis,and vascular dis-eases[3–6];elimination of unwanted ROS is,therefore,very important for organismal survival.To confront oxidative stress caused by ROS,organisms have evolved a variety of antioxidant enzymes,such as superoxide dismutase,catalase, and glutathione peroxidase.However,ROS can also act as cell signaling molecules and cause damage to foreign bodies [2].ROS are,therefore,double-edged swords with respect to biological processes.Inflammation is a host defense response to infectious agents,injury,and tissue ischemia.Inflammation occurs because of lymphocyte and macrophage invasion and the secretion of mediators of inflammation such as cytokines, cyclooxygenase products,and kinins[7].Inappropriate inflammation is a hallmark of various diseases.A large body of evidence suggests that antioxidant enzymes are key regulators of inflammation.Manganese superoxide dismu-tase(MnSOD)is an enzyme present in mitochondria that is one of thefirst in a chain of enzymes to mediate the ROS generated by the partial reduction of O2.MnSOD has been implicated in a number of oxidative stress-related diseases.In this paper,we will discuss the role of MnSOD in various inflammation-associated diseases and explore the therapeutic potentials of agents that regulate its expression.2.Regulation of MnSODMnSOD mRNA levels can be upregulated by several fac-tors:LPS[8],cytokines such as TNF[9],IL-1[10],andVEGF[11],UVB irradiation,ROS[12],and thioredoxin [13].The human MnSOD gene(sod2)has a housekeeping promoter with multiple copies of Sp-1-and AP-2-binding sequences.The promoter region also contains a GC-rich region and NF-κB transcription regulation elements[14]. Several enhancers are also present in the promoter region and in the second intron[15].TNF and IL-1inductions of sod2mRNA require a238-bp TNF response element (TNFRE),which is located in intron2.Both C/EBP and NF-κB bind to the TNFRE enhancer to interact with the sod2promoter,resulting in the upregulation of MnSOD transcription[9].TPA-induced MnSOD expression is due to the transcription factor specificity protein1-(SP1-) mediated PKC signaling[16].Dimeric SP1can bind to GC-rich sequences of GGGCGG,but the binding affinity and transcription properties vary according to the interacting cofactors[17–19].The downregulation of mRNA levels is as important in biological processes as is upregulation.Because ROS can act as intracellular secondary messengers,maintaining proper levels of these molecules is important for normal cellular function.This suggests that antioxidant enzymes are likely maintained at low levels in cells.Many studies have reported the downregulation of MnSOD mRNA levels in disease states.Many tumor cell lines have mutations in the promoter region of the MnSOD gene that increase the number of AP-2-binding sites.AP-2can interact with SP-1within the promoter region and decrease promoter activity,thus downregulating transcription[17]. VEGF can upregulate MnSOD mRNA levels through the ROS-sensitive PKC-NF-κB and PI3K-Akt-Forkhead signal-ing pathways[11].FOXO3a is a member of the Forkhead family of transcription factors.Phosphorylation of Ser253 of FOXO3a decreases DNA binding and consequently gene expression,which results in the age-related activation of Akt [18].Aging-related disorders are often associated with oxida-tive stress.Epigenetic silencing of the MnSOD gene has also been observed in human breast cancers.Both DNA methy-lation and histone modification contribute to this regulation [19].Epigenetic modification influences the abilities of SP1, AP-1,and NF-κB to bind to cis-elements in the promoter region of the MnSOD gene,resulting in silencing of this gene.MnSOD mRNA upregulation always results in increased levels of MnSOD protein[20].MnSOD is located in mito-chondria;therefore,its major role appears to be controlling the levels of O2−·in mitochondria.H2O2is a product of MnSOD-catalyzed reactions;increased MnSOD activity results in H2O2accumulation.H2O2can act as a second messenger or as a Fenton reaction agent,thereby causing damage to cells.To elucidate the significance of MnSOD regulation,the function of MnSOD must be considered. 3.The Function of MnSODIn cancer cells,MnSOD is almost always suppressed by cer-tain transcription factors or through epigenetic modification of cis-elements or chromatin.Overexpression of MnSOD incancer cells can alter the phenotype in culture;the cells losethe ability to form colonies,a trait characteristic of malignant cells[21].A large number of studies have reported that ROSplay an important role in tumor metastasis[22,23].ROS can activate cell signaling pathways and/or mutate DNA,therebypromoting tumor proliferation and metastasis.This may explain why tumor cells almost always express MnSOD at lowlevels.Exogenous MnSOD can block ROS signaling to inhibit tumorigenesis,suggesting that MnSOD may be a potentialantitumor therapeutic target.Overexpression of MnSOD can enhance the activity of the superoxide-sensitive enzymeaconitase and inhibit pyruvate carboxylase activity,thereby altering the metabolic ability of the cell and inhibiting cellgrowth[24].A mouse knockout model of manganese superoxide dis-mutase has proven to be a useful model for elucidating thefunction of MnSOD.As stated previously,the major function of MnSOD is to protect mitochondria from ROS damage.However,although ROS can damage organisms,they are also mediators of cell signaling.Developing mice fetuses lackingmanganese superoxide dismutase do not survive to birth; overexpressions of other types of SOD cannot attenuatethis symptom[25].Newlyborn MnSOD knockout micehave extensive mitochondrial injuries in multiple tissues. Disorders such as Leigh’s disease and Canavan disease arecharacterized by mitochondrial abnormalities.Reductions in the levels of a variety of energy metabolism enzymes,espe-cially those with a role in the TCA cycle,have also been noted in these disorders.Treatment of Sod2tm1cje(−/−)mutantmice with the manganese superoxide dismutase mimetic manganese5,10,15,20-tetrakis(4-benzoic acid)porphyrin(MnTBAP)improved these mice and dramatically prolongedtheir survival times[26–28].Miki et al.studied the cytological differences betweenwild-type mice and heterozygous sod2knockout(sod2−/+)mice after permanent focal cerebral ischemia(FCI). Cytochrome c accumulated at an early stage and wassignificantly more elevated in sod2−/+mice than it was inwild-type mice.A remarkable increase in DNA laddering wasalso observed in the sod2−/+mice but not in the wild-type mice,suggesting that MnSOD can block the release ofcytosolic cytochrome c and prevent apoptosis[29].Neuro-toxins such as1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine(MPTP),3-nitropropionic acid(3-NP),and malonate arecommonly used in neurodegenerative functional models.Mice with a partial deficiency in MnSOD are more sensitiveto these mitochondrial toxins than are normal mice[30],suggesting that MnSOD is an antitoxin agent that scavengesfree radicals generated by environmental toxins that maycause neurodegeneration.MCF-7human carcinoma cells exposed to single-doseradiation and radioresistant variants isolated from MCF-7cells following fractionated ionizing radiation(MCF and FIRcells)were found to possess elevated MnSOD mRNA levels,activity,and immunoreactive proteins.MnSOD-silencedcells were sensitive to radiation.The genes P21,Myc,14-3-3zeta,cyclin A,cyclin B1,and GADD153were overexpressedin both MCF+FIR and MCF+SOD cells(MCF-7cells overexpressing MnSOD).These genes were suppressed in Sod2knockout mice(−/−)and in MnSOD-silenced cells [31].These six genes are survival genes[32–34]that protect cell from radiation-induced apoptosis.4.MnSOD in Diseases with InflammationInflammation is a complex response to harmful stimuli, such as tissue injury,pathogens,autoimmune damage, ischemia and other irritants[35].Numerous inflammation-associated molecules and cells remove injurious stimuli and repair damaged tissues.The healing process includes the destruction of“foreign objects”and the repair of injured self-tissues.If targeted destruction and associated repair are not correctly programmed,inflammatory disorders resulting in diseases such as psoriasis,inflammatory bowel disease,and neurodegenerative diseases develop[36,37]. Superoxide anions have proinflammatory roles,causing lipid peroxidation and oxidation,DNA damage,peroxynitrite ion formation,and recruitment of neutrophils to sites of inflammation[38–40].Elimination of superoxide anions by MnSOD and its isoenzymes can,therefore,be considered to be anti-inflammatory(Figure1).Inflammatory bowel disease(IBD)is accompanied by the excessive productions of reactive oxygen and nitrogen metabolites[41].The concentration of malondialdehyde (MDA),which can serve as an index for lipid peroxidation, was found to be increased in inflamed mucosa cells[42]. Lipid peroxidation is associated with hydroxyl radicals and superoxide anions.In inflamed cells,levels of MnSOD are suppressed relative to those of normal cells,indicating that MnSOD may be a therapeutic target.NOD2is a susceptibility gene for IBD;the NOD2protein can activate the immune system by triggering NF-κB and can negatively regulate the Toll-like receptor-mediated T-helper type1response, thereby increasing susceptibility to infection[43,44].The pathology of IBD requires further investigation.Currently, drugs targeting NF-κB or ROS have been found to be somewhat effective.The skin is the largest organ of the human body and acts as a physical boundary to protect the internal organs against the environment.Skin dysfunction could result in injury to deeper tissues.Skin injuries can activate the acute inflammatory response,and infection can heighten this response.Psoriasis is a chronic disease characterized by inflamed,scaly,and frequently disfiguring skin lesions. Epidermal keratinocytes in this disease show altered differ-entiation and hyperproliferation,and immune cells such as T-cells and neutrophils are present at lesion sites[45].JunB is a component of the AP-1transcription factor complex that regulates cell proliferation,differentiation,the stress response,and cytokine expression[46].Both JunB and c-Jun are highly expressed in lesional skin,but levels of JunB have been shown to be low in severe psoriasis and intermediate in mild psoriasis,while c-Jun is expressed in the opposite manner[47].Most components of the AP-1transcription factor are redox-sensitive proteins regulated by ROS signaling.Exposure of keratinocytes to chemical irritants,allergens, or inflammatory stimuli triggers activation of several stress-sensitive protein kinases that are mediated by ROS.ROS enhance EGFR phosphorylation and activate ERKs and JNKs [48].ROS also activate NF-κB during skin inflammation. Thesefindings indicate that antioxidant enzymes may have potential as therapeutic agents.MnSOD was found to be highly expressed in psoriasis, but this expression was not associated with the pathology of psoriasis[49].A reasonable hypothesis is that lesional skin cells are induced to express MnSOD by cytokines released from inflammatory cells in order to counteract inflammation-induced oxidative stress.Although native MnSOD has shown promising anti-inflammatory properties against many diseases in both preclinical and clinical studies, there are several drawbacks to using native MnSOD as a therapeutic agent and pharmacological tool.Low molecular weight mimetics of SOD were,therefore,developed to address some of the drawbacks of native SOD use.To date,frequently used SOD mimetics are MnTBAP, the Mn(III)-salen complex,and Mn II-pentaazamacrocyclic ligand-based SOD mimetics[50].In a mouse model of lung pleurisy,treatment with MnTBAP before car-rageenan administration was found to suppress inflamma-tory responses in a dose-dependent manner[51].The mech-anism of attenuation of inflammation by SOD mimetics is the reduction of peroxynitrite formation through the elimination of superoxide anions before they react with nitric oxide.Because peroxynitrites are numerous and have pro-inflammatory and cytotoxic effects,administration of SOD mimetics is clinically very important.M40403(Figure2)was derived from1,4,7,10,13-pentaazacyclopentadecane contain-ing added bis(cyclohexylpyridine)functionalities.It is the best products achieved high stability and catalytical activity based on the computer-aided design.M40403gets a high specificity for scavenging superoxide anion,while other oxidants,such as hydrogen peroxide,peroxynitrite,and hypochlorite,are hardly oxidative to Mn-II packaged in the complex.The biological function of M40403has been tested in several models[52].The global mechanism seems that M40403could block nitrosation of tyrosine in pro-teins,indicating that superoxide anion driven formation of peroxynitrite might be responsible for the nitrosation. While increasing evidences are suggesting that nitrosation plays important role in many inflammation-related diseases [50,53],this low molecular mass synthetic is a potential therapeutic agent for curing inflammation.5.ConclusionsInflammation is a traditional but complex problem that still requires extensive investigation.ROS play a very important role in the triggering and promotion of inflammation.Thus, antioxidant enzymes that can function as ROS scavengers are ideal therapeutic agents.Data generated from mouse models have shown that native MnSOD has anti-inflammatory properties but also some practical disadvantages.MnSOD mimetics were,therefore,developed to address the short-comings of native MnSOD.These low molecular weightFigure1:Biological basis and effects of superoxide generation.Excessive production of superoxide anions can lead to inflammation throughperoxynitrite.many pathways,such as generation of(b)(a)(c)Figure2:The three-dimensional(3D)structure of human manganese superoxide dismutase(a)and that of the synthetic superoxide dismu-tase mimetic M40403(b).The3D structure of M40403and the active site of MnSOD(c).This manganese-containing biscyclohexylpyridine has superior catalytic activity compared to that of the native enzyme.Note that Mn2+is purple and Cl−is light green in the3D structure of M40403.molecules have been tested in several in vivo and in vitro models;they have all been shown to be effective mimics of SOD.Despite the great achievements made over the past few decades,however,there is still a need to develop even more efficient and compatible anti-inflammatory agents suitable for clinical pharmaceutical therapy.AbbreviationsMnSOD:Manganese superoxide dismutase;ROS:Reactive oxygen species;MnTBAP:Manganese5,10,15,20-tetrakis(4-benzoicacid)porphyrin.Conflict of InterestsThe authors have no conflict of interests to declare. AcknowledgmentsThis study was supported by the Grant from the National Key Basic Research project(no.2007CB91440),the National Key Basic Research and Development(973)Program of China (no.2006CB503905),and the National Natural Science Foundation of China(nos.30670460and30970559). References[1]T.Finkel,“Oxygen radicals and signaling,”Current Opinion inCell Biology,vol.10,no.2,pp.248–253,1998.[2]V.J.Thannickal and B.L.Fanburg,“Reactive oxygen speciesin cell signaling,”The American Journal of Physiology,vol.279, no.6,pp.L1005–L1028,2000.[3]N.R.Madamanchi,A.Vendrov,and M.S.Runge,“Oxidativestress and vascular disease,”Arteriosclerosis,Thrombosis,and Vascular Biology,vol.25,no.1,pp.29–38,2005.[4]P.Jenner,Hunot,Olanow et al.,“Oxidative stress in Parkin-son’s disease,”Annals of Neurology,vol.53,no.3,pp.S26–S38, 2003.[5]D.I.Feig,T.M.Reid,and L.A.Loeb,“Reactive oxygen speciesin tumorigenesis,”Cancer Research,vol.54,no.7,pp.1890s–1894s,1994.[6]J.E.Repine,A.Bast,and nkhorst,“Oxidative stress inchronic obstructive pulmonary disease,”The American Journal of Respiratory and Critical Care Medicine,vol.156,no.2,pp.341–357,1997.[7]S.M.Lucas,N.J.Rothwell,and R.M.Gibson,“The role ofinflammation in CNS injury and disease,”The British Journal of Pharmacology,vol.147,no.1,pp.S232–S240,2006.[8]G.A.Visner,W.C.Dougall,J.M.Wilson,I.A.Burr,and H.S.Nick,“Regulation of manganese superoxide dismutase by lipopolysaccharide,interleukin-1,and tumor necrosis factor.Role in the acute inflammatory response,”Journal of Biological Chemistry,vol.265,no.5,pp.2856–2864,1990.[9]P.L.Jones, D.Ping,and J.M.Boss,“Tumor necrosisfactor alpha and interleukin-1βregulate the murine man-ganese superoxide dismutase gene through a complex intronic enhancer involving C/EBP-βand NF-κB,”Molecular and Cellular Biology,vol.17,no.12,pp.6970–6981,1997.[10]A.Masuda, D.L.Longo,Y.Kobayashi, E.Appella,J.J.Oppenheim,and K.Matsushima,“Induction of mitochondri-al manganese superoxide dismutase by interleukin1,”FASEB Journal,vol.2,no.15,pp.3087–3091,1988.[11]M.R.Abid,I.G.Schoots,K.C.Spokes,S.Q.Wu,C.Mawhinney,and W.C.Aird,“Vascular endothelial growth factor-mediated induction of manganese superoxide dismu-tase occurs through redox-dependent regulation of forkhead and IκB/NF-κB,”Journal of Biological Chemistry,vol.279,no.42,pp.44030–44038,2004.[12]B.B.Warner,L.Stuart,S.Gebe,and J.R.Wisp´e,“Redoxregulation of manganese superoxide dismutase,”The American Journal of Physiology,vol.271,no.1,pp.L150–L158,1996. [13]K.C.Das,Y.Lewis-Molock,and C.W.White,“Elevation ofmanganese superoxide dismutase gene expression by thiore-doxin,”The American Journal of Respiratory Cell and Molecular Biology,vol.17,no.6,pp.713–726,1997.[14]C.B.Ambrosone,J.L.Freudenheim,P.A.Thompson et al.,“Manganese superoxide dismutase(MnSOD)genetic poly-morphisms,dietary antioxidants,and risk of breast cancer,”Cancer Research,vol.59,no.3,pp.602–606,1999.[15]D.K.Clair St.,S.Porntadavity,Y.Xu,and K.Kiningham,“Transcription regulation of human manganese superoxide dismutase gene,”Methods in Enzymology,vol.349,pp.306–312,2002.[16]T.Tanaka,M.Kurabayashi,Y.Aihara,Y.Ohyama,andR.Nagai,“Inducible expression of manganese superoxide dismutase by phorbol12-myristate13-acetate is mediated by SP1in endothelial cells,”Arteriosclerosis,Thrombosis,and Vascular Biology,vol.20,no.2,pp.392–401,2000.[17]Y.Xu,S.Porntadavity,and D.K.Clair St.,“Transcriptionalregulation of the human manganese superoxide dismutase gene:the role of specificity protein1(Sp1)and activating protein-2(AP-2),”Biochemical Journal,vol.362,no.2,pp.401–412,2002.[18]M.Li,J.F.Chiu,B.T.Mossman,and N.K.Fukagawa,“Down-regulation of manganese-superoxide dismutase through phos-phorylation of FOXO3a by Akt in explanted vascular smooth muscle cells from old rats,”Journal of Biological Chemistry,vol.281,no.52,pp.40429–40439,2006.[19]M.J.Hitchler,L.W.Oberley,and F.E.Domann,“Epigeneticsilencing of SOD2by histone modifications in human breast cancer cells,”Free Radical Biology and Medicine,vol.45,no.11,pp.1573–1580,2008.[20]C.S.Perera,D.K.S.Clair,and C.J.McClain,“Differentialregulation of manganese superoxide dismutase activity by alcohol and TNF in human hepatoma cells,”Archives of Biochemistry and Biophysics,vol.323,no.2,pp.471–476,1995.[21]S.L.Church,J.W.Grant,L.A.Ridnour et al.,“Increasedmanganese superoxide dismutase expression suppresses the malignant phenotype of human melanoma cells,”Proceedings of the National Academy of Sciences of the United States of America,vol.90,no.7,pp.3113–3117,1993.[22]K.Ishikawa,K.Takenaga,M.Akimoto et al.,“ROS-generatingmitochondrial DNA mutations can regulate tumor cell metas-tasis,”Science,vol.320,no.5876,pp.661–664,2008.[23]W.S.Wu,“The signaling mechanism of ROS in tumorprogression,”Cancer and Metastasis Reviews,vol.25,no.4,pp.695–705,2006.[24]K.H.Kim,A.M.Rodriguez,P.M.Carrico,and J.A.Melendez,“Potential mechanisms for the inhibition of tumor cell growth by manganese superoxide dismutase,”Antioxidants and Redox Signaling,vol.3,no.3,pp.361–373,2001.[25]J.C.Copin,Y.Gasche,and P.H.Chan,“Overexpression ofcopper/zinc superoxide dismutase does not prevent neonatal lethality in mutant mice that lack manganese superoxide dismutase,”Free Radical Biology and Medicine,vol.28,no.10, pp.1571–1576,2000.[26]R.M.Lebovitz,H.Zhang,H.Vogel et al.,“Neurodegener-ation,myocardial injury,and perinatal death in mitochon-drial superoxide dismutase-deficient mice,”Proceedings of the National Academy of Sciences of the United States of America, vol.93,no.18,pp.9782–9787,1996.[27]Y.Li,T.T.Huang,E.J.Carlson et al.,“Dilated cardiomyopathyand neonatal lethality in mutant mice lacking manganese superoxide dismutase,”Nature Genetics,vol.11,no.4,pp.376–381,1995.[28]S.Melov,J.A.Schneider,B.J.Day et al.,“A novel neurologicalphenotype in mice lacking mitochondrial manganese super-oxide dismutase,”Nature Genetics,vol.18,no.2,pp.159–163, 1998.[29]M.Fujimura,Y.Morita-Fujimura,M.Kawase et al.,“Man-ganese superoxide dismutase mediates the early release of mitochondrial cytochrome C and subsequent DNA frag-mentation after permanent focal cerebral ischemia in mice,”Journal of Neuroscience,vol.19,no.9,pp.3414–3422,1999.[30]O.A.Andreassen,R.J.Ferrante,A.Dedeoglu et al.,“Mice witha partial deficiency of manganese superoxide dismutase showincreased vulnerability to the mitochondrial toxins malonate, 3-nitropropionic acid,and MPTP,”Experimental Neurology, vol.167,no.1,pp.189–195,2001.[31]G.Guo,Y.Yan-Sanders,B.D.Lyn-Cook et al.,“Manganesesuperoxide dismutase-mediated gene expression in radiation-induced adaptive responses,”Molecular and Cellular Biology, vol.23,no.7,pp.2362–2378,2003.[32]K.Alevizopoulos,J.Vlach,S.Hennecke,and B.Amati,“CyclinE and c-Myc promote cell proliferation in the presence ofp16(INK4a)of hypophosphorylated retinoblastoma family proteins,”EMBO Journal,vol.16,no.17,pp.5322–5333,1997.[33]A.L.Gartel and A.L.Tyner,“The role of the cyclin-dependentkinase inhibitor p21in apoptosis1supported in part by NIH grant R01DK56283(to A.L.T.)for the p21research and Campus Research Board and Illinois Department of Public Health Penny Severns Breast and Cervical Cancer grants(to A.L.G.).1,”Molecular Cancer Therapeutics,vol.1,pp.639–649, 2002.[34]H.Xing,S.Zhang,C.Weinheimer,A.Kovacs,and A.J.Muslin,“14-3-3proteins block apoptosis and differentially regulate MAPK cascades,”EMBO Journal,vol.19,no.3,pp.349–358, 2000.[35]C.Nathan,“Points of control in inflammation,”Nature,vol.420,no.6917,pp.846–852,2002.[36]H.Akiyama,S.Barger,S.Barnum et al.,“Inflammation andAlzheimer’s disease,”Neurobiology of Aging,vol.21,no.3,pp.383–421,2000.[37]J.E.Lennard-Jones,“Classification of inflammatory boweldisease,”Scandinavian Journal of Gastroenterology,Supple-ment,vol.24,no.170,pp.2–6,1989.[38]M.T.Droy-Lefaix,Y.Drouet,G.Geraud, D.Hosford,and P.Braquet,“Superoxide dismutase(SOD)and the PAF-antagonist(BN52021)reduce small intestinal damage induced by ischemia-reperfusion,”Free Radical Research Com-munications,vol.13,pp.725–735,1991.[39]E.A.Deitch,W.Bridges,R.Berg,R.D.Specian,and D.N.Granger,“Hemorrhagic shock-induced bacterial transloca-tion:the role of neutrophils and hydroxyl radicals,”Journal of Trauma,vol.30,no.8,pp.942–952,1990.[40]D.Salvemini,Z.Q.Wang,D.M.Bourdon,M.K.Stern,M.G.Currie,and P.T.Manning,“Evidence of peroxynitrite involvement in the carrageenan-induced rat paw edema,”European Journal of Pharmacology,vol.303,no.3,pp.217–220,1996.[41]E.M.Conner,S.J.Brand,J.M.Davis,D.Y.Kang,andM.B.Grisham,“Role of reactive metabolites of oxygen and nitrogen in inflammatory bowel disease:toxins,mediators, and modulators of gene expression,”Inflammatory Bowel Diseases,vol.2,no.2,pp.133–147,1996.[42]L.Kruidenier,I.Kuiper, C. mers,and H.W.Verspaget,“Intestinal oxidative damage in inflammatory bowel disease:semi-quantification,localization,and associa-tion with mucosal antioxidants,”Journal of Pathology,vol.201, no.1,pp.28–36,2003.[43]S.Schreiber,S.Nikolaus,and J.Hampe,“Activation of nuclearfactorκB inflammatory bowel disease,”Gut,vol.42,no.4,pp.477–484,1998.[44]C.Fiocchi,“Inflammatory bowel disease:etiology and patho-genesis,”Gastroenterology,vol.115,no.1,pp.182–205,1998.[45]W.H.Boehncke and M.P.Sch¨o n,“Animal models ofpsoriasis,”Clinics in Dermatology,vol.25,no.6,pp.596–605, 2007.[46]E.Shaulian and M.Karin,“AP-1as a regulator of cell life anddeath,”Nature Cell Biology,vol.4,no.5,pp.E131–E136,2002.[47]R.Zenz,R.Eferl,L.Kenner et al.,“Psoriasis-like skin diseaseand arthritis caused by inducible epidermal deletion of Jun proteins,”Nature,vol.437,no.7057,pp.369–375,2005. [48]C.Mazi`e re,S.Floret,R.Santus,P.Morli`e re,V.Marcheux,andJ.C.Mazi`e re,“Impairment of the EGF signaling pathway by the oxidative stress generated with UV A,”Free Radical Biology and Medicine,vol.34,no.6,pp.629–636,2003.[49]W.Lontz, A.Sirsjo,W.Liu,M.Lindberg,O.Rollman,and H.Torma,“Increased mRNA expression of manganese superoxide dismutase in psoriasis skin lesions and in cultured human keratinocytes exposed to IL-1βand TNF-α,”Free Radical Biology and Medicine,vol.18,no.2,pp.349–355,1995.[50]D.Salvemini,D.P.Riley,and S.Cuzzocrea,“SOD mimetics arecoming of age,”Nature Reviews Drug Discovery,vol.1,no.5, pp.367–374,2002.[51]S.Cuzzocrea,B.Zingarelli,G.Costantino,and A.P.Caputi,“Beneficial effects of Mn(III)tetrakis(4-benzoic acid)por-phyrin(MnTBAP),a superoxide dismutase mimetic,in carrageenan-induced pleurisy,”Free Radical Biology and Medicine,vol.26,no.1-2,pp.25–33,1999.[52]H.Ischiropoulos,A.B.Al-Mehdi,and A.B.Fisher,“Reactivespecies in ischemic rat lung injury:contribution of peroxyni-trite,”The American Journal of Physiology,vol.269,no.2,pp.L158–L164,1995.[53]D.Salvemini,T.P.Misko,J.L.Masferrer,K.Seibert,M.G.Currie,and P.Needleman,“Nitric oxide activates cyclooxyge-nase enzymes,”Proceedings of the National Academy of Sciences of the United States of America,vol.90,no.15,pp.7240–7244, 1993.。