电磁场理论课程习题答案

合集下载

电磁场理论基础答案解析

电磁场理论基础答案解析
E U0 r ln b a
1 1 P Pz b P ( rP r ) 0 r r r z
b P
Sb
ˆ P n
ˆ r
( 0 )U 0 ˆ P r b r ln a
a
U0 U
sb
1-7 求矢量场 A 从所给球面 S 内穿出的通量。
3 3 3 ˆ ˆ ˆ A x x y yz z
2 2
解:矢量场 A 从所给球面 S 内穿出的通量可表示为
S 为:x y z a 提示:利用高斯散度定理求解
2 2

A dS
S
利用高斯散度定理,则有 ∵ 在直角坐标系中
)
A
( x ˆ x y ˆ y z
ˆ ˆ z ) [ x (
Az y

Ay z
ˆ ) y(
Ax z

Az x
ˆ ) z(
Ay x

Ax y
)]

x
2
(
Az y


2
Ay z

ˆ ˆ )x x
补充: 同轴电缆的内导体半径为a,外导体半径 为b,其间填充介电常数 0 r a 的电介质。已知 外导体接地,内导体的电压为U 。求(1)介质中 的 E 和 D ;(2)介质中的极化电荷分布。 q 解: (1)介质中的 E 和 D S E d S

br
先求出
D

D E
q r
2
ˆ E r r
Байду номын сангаас
( br 1) e

高等电磁场理论课后习题答案

高等电磁场理论课后习题答案

由于是远场,
e 1 e 2 e 3 e 4 e e 1 e 2 e 3 e 4 e
2
I ka sin jkr jk r1 jk r2 E E 1 E 2 E 3 E 4 e e jk r3 e jk r4 e e 4r 1 H e k E
2.7
解:
H j E E j H E k 2 E 0 H 0 E 0
比如 E e z e 2.11
jkz
(1)
2 E ( E) ( E) k 2 E 2 E k 2 E 0 (2)
代入公式,可得,
I ka sin1 jkr1 H e e x cos 1 cos 1 e y cos 1 sin 1 e z sin 1 4r1
2

I ka sin 2 jkr2 e e x cos 2 cos 2 e y cos 2 sin 2 e z sin 2 4r2
推导1 1 1 R ˆ 4 lim 2 dV lim dS lim 3 4 R 2 R V 0 R 0 R 0 R R R V S 1 1 又知道 2 在R 0处值为零,符合 (r r ')函数的定义。 4 R 推导2 点电荷q (r r ')产生的电场强度为 q 1 4 0 R 4 R q (r r ') 1 E 2 4 (r r ') 0 R E q
所以有
H 2 E1 H1 E2 E1 J 2 E2 J1 H 2 M1 H1 M 2

电磁场课后习题答案

电磁场课后习题答案

电磁场课后习题答案电磁场课后习题答案电磁场是物理学中一个重要的概念,涉及到电荷、电流和磁场的相互作用。

在学习电磁场的过程中,我们经常会遇到一些习题,这些习题旨在帮助我们更好地理解电磁场的基本原理和应用。

本文将给出一些电磁场课后习题的答案,希望能够对大家的学习有所帮助。

1. 一个带电粒子在匀强磁场中作圆周运动,其运动半径与速度之间的关系是什么?答:带电粒子在匀强磁场中作圆周运动时,受到的洛伦兹力与向心力相等。

洛伦兹力的大小为F = qvB,向心力的大小为F = mv²/R,其中q为电荷量,v为速度,B为磁感应强度,m为质量,R为运动半径。

将这两个力相等,可以得到qvB = mv²/R,整理得到v = qBR/m。

因此,速度与运动半径之间的关系是v 与R成正比。

2. 一个长直导线中有一电流I,求其所产生的磁场强度B与距离导线距离r之间的关系。

答:根据安培定律,长直导线所产生的磁场强度与电流和距离的关系为B =μ₀I/2πr,其中B为磁场强度,I为电流,r为距离,μ₀为真空中的磁导率。

可以看出,磁场强度与距离的关系是B与1/r成反比。

3. 一个平面电磁波的电场强度和磁场强度的振幅分别为E₀和B₀,求其能量密度u与E₀和B₀之间的关系。

答:平面电磁波的能量密度与电场强度和磁场强度的关系为u = ε₀E₀²/2 +B₀²/2μ₀,其中u为能量密度,ε₀为真空中的介电常数,μ₀为真空中的磁导率。

可以看出,能量密度与电场强度的振幅的平方和磁场强度的振幅的平方之间存在关系。

4. 一个平行板电容器的电容为C,两板间的距离为d,若电容器中充满了介电常数为ε的介质,请问在电容器中存储的电能与电容、电压和介电常数之间的关系是什么?答:平行板电容器存储的电能与电容、电压和介电常数之间的关系为W =1/2CV²,其中W为存储的电能,C为电容,V为电压。

当电容器中充满了介质后,介质的存在会使电容增加为C' = εC,因此存储的电能也会增加为W' =1/2C'V² = 1/2εCV²。

电磁场理论习题及答案

电磁场理论习题及答案

电磁场理论习题及答案电磁场理论是电磁学的基础,它描述了电荷和电流产生的电磁场在空间中的分布和演化规律。

在学习电磁场理论时,习题是巩固和深化理解的重要方式。

本文将介绍一些电磁场理论的习题及其答案,帮助读者更好地掌握这一理论。

一、电场和电势1. 问题:一个均匀带电球体,半径为R,总电荷为Q。

求球心处的电场强度。

答案:根据库仑定律,电场强度E与电荷Q和距离r的关系为E = kQ/r^2,其中k为库仑常数。

对于球体内部的点,距离球心的距离r小于半径R,所以电场强度为E = kQ/r^2。

对于球体外部的点,距离球心的距离r大于半径R,所以电场强度为E = kQ/R^3 * r。

2. 问题:一个无限长的均匀带电线,线密度为λ。

求距离线上一点距离为r处的电势。

答案:根据电势公式V = kλ/r,其中k为库仑常数。

所以距离线上一点距离为r处的电势为V = kλ/r。

二、磁场和磁感应强度1. 问题:一根无限长的直导线,电流为I。

求距离导线距离为r处的磁感应强度。

答案:根据安培环路定理,磁感应强度B与电流I和距离r的关系为B =μ0I/2πr,其中μ0为真空中的磁导率。

所以距离导线距离为r处的磁感应强度为B = μ0I/2πr。

2. 问题:一根长为L的直导线,电流为I。

求距离导线距离为r处的磁场强度。

答案:根据比奥萨伐尔定律,磁场强度H与电流I和距离r的关系为H = I/2πr。

所以距离导线距离为r处的磁场强度为H = I/2πr。

三、电磁场的相互作用1. 问题:一个半径为R的导体球,带电量为Q。

求导体球表面的电荷密度。

答案:导体球表面的电荷密度σ等于导体球上的电荷总量Q除以导体球表面的面积A。

导体球表面的面积A等于球的表面积4πR^2。

所以导体球表面的电荷密度为σ = Q/4πR^2。

2. 问题:一个平行板电容器,两个平行金属板之间的距离为d,电介质的介电常数为ε。

一块电介质板插入到电容器中间,使得电容器的电容增加了n倍。

高等电磁场理论习题解答(作业)

高等电磁场理论习题解答(作业)

⾼等电磁场理论习题解答(作业)第⼀章基本电磁理论1-1 利⽤Fourier 变换, 由时域形式的Maxwell ⽅程导出其频域形式。

(作1-2—1-3)解:付⽒变换和付⽒逆变换分别为:dt e t f F t j ?∞∞-=ωω)()(ωωπωd e F t f tj ?∞∞--=)(21)( 麦⽒⽅程:t D J H ??+=??ρρρtB E ??-=??ρρ0=??B ρρ=??D ρ对第⼀个⽅程进⾏付⽒变换:),(),(),ωωωr H dt e t r H dt e t r H t j tj ρρρρρρ??=??=??=∞∞-∞∞-(左端),(),(),(),(]),(),[ωωωωωωωr D j r J dte t r D j r J dt e t t r D t r J t j tj ρρρρρρρρρρρρ+=+=??+=??∞∞-∞∞-(右端(时谐电磁场) =??∴),(ωr H ρρ),(),(ωωωr D j r J ρρρρ+同理可得:()()ωωω,,r B j r H ??ρρ-=??()0,=??ωr B ρ()()ωρω,,r r D ?ρ?=??上⾯四式即为麦式⽅程的频域形式。

1-2 设各向异性介质的介电常数为=300420270εε当外加电场强度为 (1) 01E x e E =;(2)02E y e E =;(3) 03E z e E =;(4) )2(04y x E e e E +=;(5))2(05y x E e e E +=求出产⽣的电通密度。

(作1-6)解:()),(,t r E t r D ?Θ?=ε=333231232221131211εεεεεεεεεz y x D D D 即z y x E E E 将E 分别代⼊,得:=??=??????????027003000420270000111E E D D D z y x εε )?2?7(001y x E D +=ε?=??=??????????042003000420270000322E E D D D z y x εε )?4?2(002y x E D +=ε? ????=??=??????????300003000420270000333E E D D D z y x εε z E D ?3003ε=? ??==010110230004202700000444E E E D D D z y x εε )?10?11(004y x E D +=ε? ==08160230004202700000555E E E D D D z y x εε )?8?16(005y x E D +=ε? 1-3 设各向异性介质的介电常数为=4222422240εε试求:(1) 当外加电场强度)(0z y x E e e e E ++=时,产⽣的电通密度D ;(2) 若要求产⽣的电通密度004E x εe D =,需要的外加电场强度E 。

电磁场理论习题及答案_百度文库

电磁场理论习题及答案_百度文库

电磁场理论习题及答案_百度⽂库习题5.1 设的半空间充满磁导率为的均匀介质,的半空间为真空,今有线电流沿z轴⽅向流动,求磁感应强度和磁化电流分布。

5.2 半径为a的⽆限长圆柱导体上有恒定电流J均匀分布于截⾯上,试解⽮势A 的微分⽅程,设导体的磁导率为,导体外的磁导率为。

5.3 设⽆限长圆柱体内电流分布,求⽮量磁位A和磁感应B。

5.4载有电流的细导线,右侧为半径的半圆弧,上下导线相互平⾏,并近似为向左侧延伸⾄⽆穷远。

试求圆弧中⼼点处的磁感应强度。

5.5 两根⽆限长直导线,布置于处,并与z轴平⾏,分别通过电流I 及,求空间任意⼀点处的磁感应强度B。

5.6 半径的磁介质球,具有磁化强度为求磁化电流和磁荷。

5.7已知两个相互平⾏,相隔距离为d,共轴圆线圈,其中⼀个线圈的半径为,另⼀个线圈的半径为b,试求两线圈之间的互感系数。

5.8 两平⾏⽆限长直线电流I1和I2,相距为d,求每根导线单位长度受到的安培⼒Fm。

5.9 ⼀个薄铁圆盘,半径为a,厚度为,如题5.9图所⽰。

在平⾏于z轴⽅向均匀磁化,磁化强度为M。

试求沿圆铁盘轴线上、铁盘内、外的磁感应强度和磁场强度。

均匀磁化的⽆限⼤导磁媒质的磁导率为,磁感应强度为B,若在该媒质内有两个空腔,,空腔1形状为⼀薄盘,空腔2像⼀长针,腔内都充有空⽓。

试求两空腔中⼼处磁场强度的⽐值。

5.11 两个⽆限⼤且平⾏的等磁位⾯D、N,相距h,,。

其间充以两种不同的导磁媒质,其磁导率分别为,,分界⾯与等磁位⾯垂直,求媒质分界⾯单位⾯积受⼒的⼤⼩和⽅向。

题5.11图5.12 长直导线附近有⼀矩形回路,回路与导线不共⾯,如题5.12图所⽰。

证明:直导线与矩形回路间的互感为题5.12图5.13 ⼀环形螺线管的平均半径,其圆形截⾯的半径,铁芯的相对磁导率,环上绕匝线圈,通过电流。

(1)计算螺线管的电感;(2)在铁芯上开⼀个的空⽓隙,再计算电感(假设开⼝后铁芯的不变);(3)求空⽓隙和铁芯内的磁场能量的⽐值。

电磁场理论课后习题1答案

电磁场理论课后习题1答案

电磁场理论课后习题1答案电磁场理论是物理学中的重要课程,它研究了电磁场的产生、传播和相互作用。

在学习这门课程时,课后习题是巩固知识、提高能力的重要途径。

本文将针对电磁场理论课后习题1给出详细的解答。

习题1:一个带电粒子在电磁场中运动,受到的洛伦兹力为F=q(E+v×B),其中q是粒子的电荷量,E是电场强度,v是粒子的速度,B是磁感应强度。

请证明:洛伦兹力对粒子所做的功率为P=qv·E。

解答:根据洛伦兹力的表达式F=q(E+v×B),我们可以将其展开为F=qE+qv×B。

其中第一项qE表示粒子在电场中受到的电力,第二项qv×B表示粒子在磁场中受到的磁力。

根据功率的定义,功率P等于力F对时间t的导数,即P=dW/dt,其中W表示对物体所做的功。

所以我们需要计算洛伦兹力对粒子所做的功。

根据力的功的定义,功W等于力F对位移的积分,即W=∫F·ds。

在这里,位移ds是粒子在运动过程中的微小位移。

将洛伦兹力F=qE+qv×B代入功的计算式中,得到W=∫(qE+qv×B)·ds。

由于电场强度E和磁感应强度B是空间中的矢量场,所以我们可以将其展开为E=E_xi+E_yj+E_zk和B=B_xi+B_yj+B_zk的形式。

对于微小位移ds,我们可以将其表示为ds=dx·i+dy·j+dz·k。

将上述表达式代入功的计算式中,得到W=∫(q(E_xi+E_yj+E_zk)+q(v_xi+v_yj+v_zk)×(B_xi+B_yj+B_zk))·(dx·i+dy·j+dz·k)。

根据矢量积的性质,可以得到v×B=(v_yB_z-v_zB_y)i-(v_xB_z-v_zB_x)j+(v_xB_y-v_yB_x)k。

将其代入功的计算式中,得到W=∫(q(E_xi+E_yj+E_zk)+q((v_yB_z-v_zB_y)i-(v_xB_z-v_zB_x)j+(v_xB_y-v_yB_x)k))·(dx·i+dy·j+dz·k)。

(完整版)电磁场理论习题及答案7.

(完整版)电磁场理论习题及答案7.

习题:1. 在3z m =的平面内,长度0.5l m =的导线沿x 轴方向排列。

当该导线以速度24x y m v e e s=+在磁感应强度22363x y z B e x z e e xz T =+-的磁场中移动时,求感应电动势.解:给定的磁场为恒定磁场,故导线中的感应电动势只能是导线在恒定磁场中移动时由洛仑兹力产生的。

有 ()in v B dl ε=⨯⋅⎰ 根据已知条件,得2233()|(24)(363)|z x y x y z z v B e e e x z e e xz ==⨯=+⨯+- 210854(1236)x y z e x e x e x =-++- x dl e dx = 故感应电动势为0.520[10854(1236)]13.5in x y z x e x e x e x e dx V ε=-++-⋅=-⎰2。

长度为l 的细导体棒位于xy 平面内,其一端固定在坐标原点。

当其在恒定磁场0z B e B =中以角速度ω旋转时,求导体棒中的感应电动势。

解:导体中的感应电动势是由洛仑兹力产生的,即 ()in v b dl ε=⨯⋅⎰根据已知条件,导体棒上任意半径r 处的速度为 v e r ωΦ= r dl e dr = 故感应电动势为200001()()2llLin z r v b dl e r e B e dr B rdr B l V εωωωΦ=⨯⋅=⨯⋅==⎰⎰⎰3.试推出在线性、无耗、各向同性的非均匀媒质中的麦克斯韦方程。

解:考察麦克斯韦方程中的参量,利用它们与电场强度E 和磁感应强度B 的关系,将,,H B D E J E μεσ===代入即可,注意在非均匀媒质中,,μεσ是空间坐标的函数.考察麦克斯韦第一方程,有 11()BH B B μμμ∇⨯=∇⨯=∇⨯+∇⨯211B B μμμ=-∇⨯+∇⨯D E J J t tε∂∂=+=+∂∂ 所以E BB J t μμμεμ∂∇⨯∇⨯=++∂ 而 ()D E E E εεερ∇⋅=∇⋅=⋅∇+∇⋅=,于是,微分形式的麦克斯韦方程用E 和B 表示为E BB J t μμμεμ∂∇⨯∇⨯=++∂ B E t∂∇⨯=-∂ 0B ∇⋅= E E εερ∇⋅+∇⋅= 对于无耗媒质,0σ=,因此有0J =。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电磁场理论习题集信息科学技术学院第1章1-1 在直角坐标系中,试将微分形式的麦克斯韦方程写成8个标量方程。

1-2 试证明:任意矢量E 在进行旋度运算后再进行散度运算,其结果恒为零,即∇ ⋅ (∇ ⨯ E ) = 01-3 试由微分形式麦克斯韦方程组,导出电流连续性方程t∂∂-=∇⋅ρJ1-4 参看1-4题图,分界面上方和下方两种媒质的介电常数分别为 ε1和 ε2,分界面两侧电场强度矢量E 与单位法向矢量n 21之间的夹角分别是 θ1和 θ2。

假设两种媒质分界面上的电荷面密度 ρS = 0,试证明:2121tan tan εεθθ=上式称为电场E 的折射定律。

1-5 参看1-4题图,分界面上方和下方两种媒质的磁导率分别为 μ1和 μ2,假设两种媒质的分界面上的表面电流密度矢量J S = 0,把图中的电场强度矢量E 换成磁感应强度矢量B 。

试证明:2121tan tan μμθθ=上式称为磁场B 的折射定律。

若 μ1为铁磁媒质,μ2为非铁磁媒质,即 μ1>>μ2 ,当 θ1 ≠ 90︒ 时,试问 θ2的近似值为何?请用文字叙述这一结果。

1-6 已知电场强度矢量的表达式为E = i sin(ω t - β z )+j 2cos(ω t - β z )通过微分形式的法拉第电磁感应定律t∂∂-=⨯∇BE ,求磁感应强度矢量B (不必写出与时间t 无关的积分常数)。

1-7 一平板电容器由两块导电圆盘组成,圆盘的半径为R ,间距为d 。

其间填充介质的介电常数 ε 。

如果电容器接有交流电源,已知流过导线的电流为I (t ) = I 0sin(ωt )。

忽略边缘效应,求电容器中的电位移矢量D 。

1-8 在空气中,交变电场E = j A sin(ω t - β z )。

试求:电位移矢量D ,磁感应强度矢量B 和磁场强度矢量H 。

1-9 设真空中的磁感应强度为)106sin(10)(83kz t e t B y -⨯=-π试求空间位移电流密度的瞬时值。

1-10试证真空中麦克斯韦方程对于下列变化具有不变性⎪⎩⎪⎨⎧+-='+='θθθθcos sin sin cos B c EB cB E E 式中,001εμ=c为真空中的光速。

第2章2-1 参看图2-5-1,无限大导板上方点P (0, 0, h ) 处有一点电荷q 。

试求:z > 0半无限大空间的电场强度矢量E 和电位移矢量D ,以及导板上的面电荷密度 ρS 和总电荷量q 。

2-2 参看图2-6-3,如果将4块导板的电位分别改为:上板120 V ,左板40 V ,下板30 V ,右板90 V 。

按下面步骤和要求用迭代法计算4个内节点处的电位值:(1) 列出联立方程;(2) 用塞德尔迭代法求解;(3) 计算最佳加速因子 α;(4) 用超松弛迭代法求解;(5) 比较两种迭代法的结果和收敛速度。

两种迭代方法的迭代次数都取n = 4。

2-3 参看图2-7-1,如果平板电容其中电荷分布的线密度为 ρ = ε0(1 + 4x 2),其余条件相同,用矩量法(伽辽金法)求两导板之间的电位分布函数 ψ。

选择基函数为f n (x ) = x (1 - x n ) n = 1, 2, 3,…2-4 参看例2-7-1以及该题示意图图2-7-1。

如果在该问题中选择权函数为x k Rx w k R x w 6)( 2)(2211-=∂∂=-=∂∂=和 上式中,R 是余数,由式(2-7-8)表示。

矩量法中,通过这种方式来选择权函数,又称为最小二乘法。

在其他已知条件均不变的情况下,用最小二乘法来求解两导板之间的电位分布函数 ψ。

2-5 若带点球的内外区域中的电场强度为⎪⎪⎩⎪⎪⎨⎧<>=a r aqr a r r qe E r ,,2试求球内外各点的点位。

2-6 已知空间电场强度E = 3e x + 4e y - 5e z ,试求(0,0,0)与(1,1,2)两点间的电位差。

2-7半径为a 的球内充满介电常数为1ε的均匀介质,球外是介电常数为2ε的均匀介质。

若已知球内和球外的电位为⎪⎩⎪⎨⎧≥=Φ≤=Φar r Aa r a r Ar r θθθθ221),(),(式中A 为常数,求(1)两种介质中的E 和D;(2) 两种介质中的自由电荷密度。

2-8一半径为a 的薄导体球壳内表面涂覆了一薄层绝缘膜,如图题2-6所示,球内充满了总电荷量为Q 的体电荷,球壳上又另充有电量Q ,已知内部的电场为4)(ar e E r =(1)球内的电荷分布;(2)球外表面的面电荷分布。

2-9中心位于原点,边长为L 的电介质立方体极化强度矢量为P =(1)计算面和体极化电荷密度; (2)证明总的极化电荷为零。

3-1 通过直角坐标系试证明,对于任意的标量函数 ψ 和矢量函数A 都满足下面关系: (1) ∇ ⨯ (∇ψ) ≡ 0 ; (2) ∇ ⋅ (∇ ⨯ A ) ≡ 03-2 同轴线内、外半径分别为a 和b ,内外导体之间介质的介电常数为 ε,电导率为 σ。

设在同轴线内外导体上施加的电压为U ab ,求内外导体之间的漏电流密度J 。

3-3 求图3-3-2中1/4垫圈两个弯曲面r = a 和r = b 之间的电阻。

3-4 参见3-4题图。

某输电系统的接地体为紧靠地面的半球。

土壤的平均电导率为 σ =10-2 S/m 。

设有I = 500 A 的电流流入地内。

为了保证安全,需要划出一半径为a 的禁区。

如果人的正常步伐为b = 0.6 m ,且人能经受的跨步电压为U = 200 V ,问这一安全半径a 应为多大?3-5 参看图2-5-6,半径为a ,间距为D 的平行双线传输线,周围介质的介电常数为 ε,电导率为 σ。

利用例2-5-2的结果,计算平行双线每单位长度的分布漏电导G 1。

3-6 参看图3-2-1(a ),半径分别为a 和b 的两个同心球壳(a < b )之间是电导率为 σ = σ0(1 + k/r )的导电媒质,试求两球壳之间的电阻R ab 。

再问此题中的电流位 ψ 是否满足普拉斯方程。

3-7已知一根长直导线的长度为1km ,半径为0.5mm ,当两端外加电压为6V 时,线中产生的电流为1/6A ,试求:①导线的电导率;②导线中的电场强度;③导线中的损耗功率。

3-8当恒定电流通过无限大的非均匀导电媒质时,试证任意一点的电荷密度可以表示为⎥⎦⎤⎢⎣⎡∇-∇⋅=σσεερ)(Exy习题图4-34-1 通过直角坐标系试证明,对于任意的矢量A 都满足下面关系:∇⨯∇⨯A≡∇(∇⋅A )-∇2A4-2 已知无限长导体圆柱半径为a ,通过的电流为I ,且电流均匀分布,试求柱内外的磁感应强度。

4-3 若在y = - a 处放置一根无限长线电流e z I ,在y = a 处放置另一根无限长线电流e x I ,如习题图4-3所示。

试求坐标原点处的磁感应强度。

4-4 若无限长的半径为a 的圆柱体电流密度分布函数为a r r r e J z ≤+=),4(2,试求圆柱体内外的磁感应强度。

4-5 证明在边界上矢量磁位A 的切向分量是连续的。

4-6一个半径为a 的导体球带电荷量为Q ,以匀角速度ω绕一个直径旋转,求此球心处的磁感应强度B 。

图 题4-64-7两个相同的半径为b ,各有匝的同轴线圈N ,相距d ,如图题4-7所示。

电流I 以相同方向流过两个线圈。

(1)求两个线圈中点处的x x B e B =;(2)证明:在中点处dx dB x /等于零;(3)使中点处22/dx B d x 也等于零,则b 和d 之间应有何种关系?图题4-74-8一圆形截面的无限长直铜线,半径为1cm ,如图题4-8所示,通过电流为25A ,在铜线外套上一个磁性材料制成的圆筒,与之同轴,圆筒的内,外半径为2cm 及3cm ,相对磁导率为2000。

(1)求圆筒内每米长的总磁通量; (2)求圆筒内的磁化强度M ; (3)求圆筒内的磁环电流Jm 和JmS 。

图题4-8第5章5-1 通过直角坐标系验证矢量恒等式:∇ ⋅ (E ×H ) = H ⋅ (∇×E )-E ⋅ (∇×H )5-2 根据下面复数形式的简谐场表达式,利用麦克斯韦方程求出其相应的电场或磁场表达式,并把复数形式改写成瞬时值形式。

εμηλμεωβεμηλωεμωηεμηλωεμωβ=π==-=+==π===+=+==π===+=+=-- , 2 e )2j ( , 2 e )j ( , 2 e )2( j m0000j 0000000j 0,(3),(2),(1)x z y kz yx kz y x E E E c k E H H c k E E E k j k j E j i j i H j i j i E5-3 将下面瞬时形式的简谐场表达式改写成复数形式,并利用麦克斯韦方程求出其相应的电场或磁场表达式。

2 )2cos(sin 2 2 )cos()cos(2 )sin()cos( )cos()cos( 0000000000000εμηλεμωωθηλεμηλμεωβωβηεμημεωββωβωεμηεμωωηωηθθθ=π==π+-===π======-+-=+===-+--=+=,, (4),,(3),,(2),, (1) k kr t r IL E t z E H x t E x t E E E k ky t E ky t E H H y z y x z e e E j j H k j k j E iki k H5-4 电流元的远区辐射场为kr kr rlI H r l I E j j e sin 2j , e sin 60j--==π==θλθλϕϕϕθθθe e H e e E (1) 试求:(1)写出波印亭矢量的瞬时值S ;(2)写出复数波印亭矢量S C ;(3)总的平均辐射功率P ∑。

5-5 在微波环境中,如果平均功率密度 |S av | < 10 mW/cm 2对人体是安全的。

分别计算以电场强度E 和磁场强度H 表示的相应标准。

已知E = η0H ,η0 = 120π Ω。

5-6 设一天线辐射的电场强度矢量为E = i A sin(ωt - kz ) (1) 上式中00εμω=k ,是电磁波的相位常数,已知波阻抗000εμη=。

试求:(1)将电场强度矢量E 改写 成复数形式;(2)通过麦克斯韦方程求磁场强度矢量H ;(3)瞬时波印亭矢量S ;(4)复数波印亭矢量S C 。

5-7 空中交变电磁场的电场强度矢量只有x 分量E x = a cos(ωt - kz ) + b sin(ωt + kz ) (1)试求:(1)由麦克斯韦方程求出磁场强度矢量H ;(2)瞬时波印亭矢量S ;(3)复数波印亭矢量S C 。

相关文档
最新文档