三角形知识点+题型分类练习+基础检测+能力提高

合集下载

小学四年级数学三角形的分类(知识点梳理+典型例题)

小学四年级数学三角形的分类(知识点梳理+典型例题)

小学四年级数学三角形的分类(知识点梳理+典型例题)三角形的相关概念考点一【三角形的特性】三角形的定义:由三条线段围成的图形(每相邻两条线段的端点相连)叫做三角形三角形的高:从三角形的一个顶点到它的对边做一条垂线,顶点和垂足之间的线段三角形的底:这条对边叫做三角形的底用字母A、B、C分别表示三角形的三个顶点,这个三角形可以表示成三角形ABC三角形的性质:①物理特性:三角形具有稳定性(不易变形)②三边的特性:三角形任意两边的和大于第三边知识典例题型一:画出三角形的底边上的高例1:画出下面每个三角形底边上的高。

例2:画三条不同的高1题型二:三角形的内角和例1、王爷爷家的屋顶是一个等腰例2、根据三角形的内角和是180°,三角形(如图),求顶角的度数。

你能求出下面五边形的内角和吗?例3、一个三角形两个内角的度数分别为35°,67°,另一个内角的度数是()°,这是一个()三角形。

例4、在一个直角三角形中,一个锐角是75°,另一个锐角是()。

题型三:等腰三角形和等边三角形的性质例1.一个三角形三条边的长度分别为7厘米,8厘米,7厘米,这个三角形是()三角形。

例2.等腰三角形的底角是75°,顶角是(),等边三角形的每个内角都是()。

例3.一个等腰三角形的一边长5厘米,另一边长4厘米,围成这个等腰三角形至少需要()厘米长的绳子。

例4.在一个三角形的三个角中,一个是50度,一个是80度,这个三角形既是()三角形,又是()三角形。

题型四、求出三角形各个角的度数。

40°三角形的分类2考点一【三角形的分类】三角形(按角来分)锐角三角形:三个角都是锐角的三角形直角三角形:有一个角是直角的三角形钝角三角形:有一个角是钝角的三角形三角形(按边来分)三边不等三角形:三条边都不相等等腰三角形:有两条边相等等边三角形(正三角形):三条边都相按照角大小来分:三角形,三角形,三角形。

初一数学三角形知识点+同步提高练习题经典.docx

初一数学三角形知识点+同步提高练习题经典.docx

三角形一、三角形相关概念1.三角形的概念由不在同一直线上的三条线段首尾顺次连结所组成的图形叫做三角形要点:①三条线段;②不在同一直线上;③首尾顺次相接.2.三角形的表示通常用三个大写字母表示三角形的顶点,如用A、B、C 表示三角形的三个顶点时,此三角形可记作△ABC,其中线段 AB、 BC、 AC是三角形的三条边,∠A、∠ B、∠ C 分别表示三角形的三个内角.3.三角形中的三种重要线段三角形的角平分线、中线、高线是三角形中的三种重要线段.(1)三角形的角平分线:三角形一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.注意:①三角形的角平分线是一条线段,可以度量,而角的平分线是经过角的顶点且平分此角的一条射线.②三角形有三条角平分线且相交于一点,这一点一定在三角形的内部.③三角形的角平分线画法与角平分线的画法相同,可以用量角器画,也可通过尺规作图来画.(2)三角形的中线:在一个三角形中,连结一个顶点和它的对边中点的线段叫做三角形的中线.注意:①三角形有三条中线,且它们相交三角形内部一点.②画三角形中线时只需连结顶点及对边的中点即可.(3)三角形的高线:从三角形一个顶点向它的对边作垂线,顶点和垂足间的限度叫做三角形的高线,简称三角形的高.注意:①三角形的三条高是线段②画三角形的高时,只需要向对边或对边的延长线作垂线,连结顶点与垂足的线段就是该边上的高.二、三角形三边关系定理a、b、c 的不等式有:a+b>c,b+c>a,①三角形两边之和大于第三边,故同时满足△ABC三边长c+a>b.a、b、c 的不等式有:a>b-c ,b>a-c ,②三角形两边之差小于第三边,故同时满足△ABC三边长c>b-a .注意:判定这三条线段能否构成一个三角形,只需看两条较短的线段的长度之和是否大于第三条线段即可三、三角形的稳定性三角形的三边确定了,那么它的形状、大小都确定了,三角形的这个性质就叫做三角形的稳定性.例如起重机的支架采用三角形结构就是这个道理.四、三角形的内角结论 1:三角形的内角和为180°.表示:在△ ABC中,∠ A+∠ B+∠ C=180°结论 2:在直角三角形中,两个锐角互余.注意:①在三角形中,已知两个内角可以求出第三个内角如:在△ ABC中,∠ C=180°-(∠ A+∠ B)②在三角形中,已知三个内角和的比或它们之间的关系,求各内角.如:△ ABC中,已知∠ A:∠ B:∠ C=2:3: 4,求∠ A、∠ B、∠ C 的度数.五、三角形的外角1.意义:三角形一边与另一边的延长线组成的角叫做三角形的外角.2.性质:①三角形的一个外角等于与它不相邻的两个内角的和.②三角形的一个外角大于与它不相邻的任何一个内角.③三角形的一个外角与与之相邻的内角互补3.外角个数过三角形的一个顶点有两个外角,这两个角为对顶角(相等),可见一个三角形共有六个外角.六、多边形①多边形的对角线n(n3)条对角线;②n边形的内角和为(n-2)×180°;③多边形的外角和为360°2与三角形有关的线段A卷一、选择题:1. 如图 , 在△ ABF 中,∠ B 的对边是()2.关于三角形的边的叙述正确的是()A. 三边互不相等B. 至少有两边相等C. 任意两边之和一定大于第三边D.最多有两边相等3.下列每组数分别是三根小木棒的长度,用它们能摆成三角形的是( ), 4cm, 8cm, 7cm, 15cm, 12cm, 20cm, 5cm, 11cm4.等腰三角形两边长分别为3,7 ,则它的周长为 ()或 17 D.不能确定5.在平面直角坐标系中,点A( -3 ,0), B(5, 0), C( 0, 4)所组成的三角形ABC的面积是()6.已知三角形的三边长分别为4、 5、 x,则 x 不可能是()7.下列说法错误的是 ( ).A .三角形的三条高一定在三角形内部交于一点B .三角形的三条中线一定在三角形内部交于一点C .三角形的三条角平分线一定在三角形内部交于一点D .三角形的三条高可能相交于外部一点8. 给出下列命题:①三条线段组成的图形叫三角形②三角形相邻两边组成的角叫三角形的内角③三角形的角平分线是射线④三角形的高所在的直线交于一点,这一点不在三角形内就在三角形外⑤任何一个三角形都有三条高、三条中线、三条角平分线⑥三角形的三条角平分线交于一点,且这点在三角形内。

四年级三角形专题训练

四年级三角形专题训练

四年级三角形专题训练一、三角形的认识基础题。

1. 由三条()围成的图形(每相邻两条线段的端点相连)叫做三角形。

- 答案:线段。

- 解析:三角形的定义就是由三条线段首尾顺次相接围成的封闭图形。

2. 三角形有()条边,()个角,()个顶点。

- 答案:3,3,3。

- 解析:这是三角形的基本特征,三条边、三个角和三个顶点。

3. 从三角形的一个顶点到它的对边作一条垂线,顶点和垂足之间的线段叫做三角形的()。

- 答案:高。

- 解析:这是三角形高的定义,三角形的高是从一个顶点向对边作的垂线段。

4. 一个三角形有()条高。

- 答案:3。

- 解析:因为三角形有三个顶点,过每个顶点都可以作对边的高,所以一个三角形有3条高。

二、三角形的分类题。

5. 三角形按角分类可以分为()三角形、()三角形和()三角形。

- 答案:锐角、直角、钝角。

- 解析:锐角三角形是三个角都是锐角(小于90°)的三角形;直角三角形是有一个角是直角(等于90°)的三角形;钝角三角形是有一个角是钝角(大于90°小于180°)的三角形。

6. 一个三角形中最大的角是89°,这个三角形是()三角形。

- 答案:锐角。

- 解析:因为最大角是89°,小于90°,所以三个角都是锐角,这个三角形是锐角三角形。

7. 一个三角形中至少有()个锐角。

- 答案:2。

- 解析:直角三角形有2个锐角,钝角三角形也有2个锐角,锐角三角形有3个锐角,所以一个三角形至少有2个锐角。

8. 等腰三角形的两腰(),两个底角()。

- 答案:相等,相等。

- 解析:这是等腰三角形的重要特征,两腰长度相等,两底角的度数相等。

9. 等边三角形的三条边(),三个角也(),每个角都是()度。

- 答案:相等,相等,60。

- 解析:等边三角形是特殊的等腰三角形,它的三条边都相等,根据三角形内角和是180°,三个角相等,所以每个角都是180°÷3 = 60°。

三角形知识归纳与题型突破(10类题型清单)(解析版)—2024-2025学年八年级数学上册单元记巧练

三角形知识归纳与题型突破(10类题型清单)(解析版)—2024-2025学年八年级数学上册单元记巧练

三角形知识归纳与题型突破(10类题型清单)01 思维导图02 知识速记一、三角形的定义由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.要点诠释:(1)三角形的基本元素:①三角形的边:即组成三角形的线段;②三角形的角:即相邻两边所组成的角叫做三角形的内角,简称三角形的角; ③三角形的顶点:即相邻两边的公共端点.(2)三角形的定义中的三个要求:“不在同一条直线上”、“三条线段”、“首尾顺次相接”.(3)三角形的表示:三角形用符号“△”表示,顶点为A 、B 、C 的三角形记作“△ABC ”,读作“三角形ABC ”,注意单独的△没有意义;△ABC 的三边可以用大写字母AB 、BC 、AC 来表示,也可以用小写字母a 、b 、c 来表示,边BC 用a 表示,边AC 、AB 分别用b 、c 表示.二、三角形的三边关系定理:三角形任意两边之和大于第三边. 推论:三角形任意两边的之差小于第三边.要点诠释:(1)理论依据:两点之间线段最短.(2)三边关系的应用:判断三条线段能否组成三角形,若两条较短的线段长之和大于最长线段的长,则这三条线段可以组成三角形;反之,则不能组成三角形.当已知三角形两边长,可求第三边长的取值范围.(3)证明线段之间的不等关系.三、三角形的分类1.按角分类:ìïìííïîî直角三角形三角形锐角三角形斜三角形钝角三角形要点诠释:①锐角三角形:三个内角都是锐角的三角形;②钝角三角形:有一个内角为钝角的三角形.2.按边分类:ìïìííïîî不等边三角形三角形底边和腰不相等的等腰三角形等腰三角形等边三角形要点诠释:①不等边三角形:三边都不相等的三角形;②等腰三角形:有两条边相等的三角形叫做等腰三角形,相等的两边都叫做腰,另外一边叫做底边,两腰的夹角叫顶角,腰与底边夹角叫做底角;③等边三角形:三边都相等的三角形.四、三角形的三条重要线段三角形的高、中线和角平分线是三角形中三条重要的线段,它们提供了重要的线段或角的关系,为我们以后深入研究三角形的一些特征起着很大的帮助作用,因此,我们需要从不同的角度弄清这三条线段,列表如下:过点A 作AD ⊥BC 于点D .取BC 边的中点D ,连接作∠BAC 的平分线AD ,交BC 1.AD 是△ABC 的高.1.AD 是△ABC 的中线.推理语言因为AD 是△ABC 的高,所以AD ⊥BC .(或∠ADB =∠ADC =90°)因为AD 是△ABC 的中线,所以BD =DC =12BC .因为AD 平分∠BAC ,所以∠1=∠2=12∠BAC .用途举例1.线段垂直.2.角度相等.1.线段相等.2.面积相等.角度相等.注意事项1.与边的垂线不同.2.不一定在三角形内.—与角的平分线不同.重要特征三角形的三条高(或它们的延长线)交于一点.一个三角形有三条中线,它们交于三角形内一点.一个三角形有三条角平分线,它们交于三角形内一点.五、三角形的稳定性三角形的三条边确定后,三角形的形状和大小就确定不变了,这个性质叫做三角形的稳定性. 要点诠释:(1)三角形的形状固定是指三角形的三个内角不会改变,大小固定指三条边长不改变.(2)三角形的稳定性在生产和生活中很有用.例如,房屋的人字梁具有三角形的结构,它就坚固而稳定;在栅栏门上斜着钉一条(或两条)木板,构成一个三角形,就可以使栅栏门不变形.大桥钢架、输电线支架都采用三角形结构,也是这个道理.(3)四边形没有稳定性,也就是说,四边形的四条边长确定后,不能确定它的形状,它的各个角的大小可以改变.四边形的不稳定性也有广泛应用,如活动挂架,伸缩尺.有时我们又要克服四边形的不稳定性,如在门框未安好之前,先在门框上斜着钉一根木板,使它不变形.六、三角形的内角和三角形内角和定理:三角形的内角和为180°.要点诠释:应用三角形内角和定理可以解决以下三类问题:①在三角形中已知任意两个角的度数可以求出第三个角的度数;②已知三角形三个内角的关系,可以求出其内角的度数;③求一个三角形中各角之间的关系.七、三角形的外角1.定义:三角形的一边与另一边的延长线组成的角叫做三角形的外角.如图,∠ACD 是△ABC 的一个外角.要点诠释:(1)外角的特征:①顶点在三角形的一个顶点上;②一条边是三角形的一边;③另一条边是三角形某条边的延长线.(2)三角形每个顶点处有两个外角,它们是对顶角.所以三角形共有六个外角,通常每个顶点处取一个外角,因此,我们常说三角形有三个外角.2.性质:(1)三角形的一个外角等于与它不相邻的两个内角的和.(2)三角形的一个外角大于任意一个与它不相邻的内角.要点诠释:三角形内角和定理和三角形外角的性质是求角度及与角有关的推理论证明经常使用的理论依据.另外,在证角的不等关系时也常想到外角的性质.3.三角形的外角和:三角形的外角和等于360°.要点诠释:因为三角形的每个外角与它相邻的内角是邻补角,由三角形的内角和是180°,可推出三角形的三个外角和是360°.八、多边形的概念1.定义:在平面内不在同一直线上的一些线段首尾顺次相接所组成的封闭图形叫做多边形.其中,各个角相等、各条边相等的多边形叫做正多边形.2.相关概念:边:组成多边形的各条线段叫做多边形的边.顶点:每相邻两条边的公共端点叫做多边形的顶点.内角:多边形相邻两边组成的角叫多边形的内角,一个n边形有n个内角.外角:多边形的边与它的邻边的延长线组成的角叫做多边形的外角.对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.3. 多边形的分类:画出多边形的任何一边所在的直线,如果整个多边形都在这条直线的同一侧,那么这个多边形就是凸多边形,如果整个多边形不在直线的同一侧,这个多边形叫凹多边形.如图:要点诠释:(1)正多边形必须同时满足“各边相等”,“各角相等”两个条件,二者缺一不可;(2)过n 边形的一个顶点可以引(n -3)条对角线,n 边形对角线的条数为;(3)过n 边形的一个顶点的对角线可以把n 边形分成(n -2)个三角形.九、多边形内角和n 边形的内角和为(n -2)·180°(n ≥3).要点诠释:(1)内角和公式的应用:①已知多边形的边数,求其内角和;②已知多边形内角和求其边数;(2)正多边形的每个内角都相等,都等于;十、多边形的外角和多边形的外角和为360°.要点诠释:(1)n 边形的外角和恒等于360°,它与边数的多少无关;(2)正n 边形的每个内角都相等,所以它的每个外角都相等,都等于; (3)多边形的外角和为360°的作用是:①已知各相等外角度数求多边形边数;②已知多边形边数求各相等外角的度数.题型一 三角形的稳定性例题:(23-24七年级下·陕西咸阳·阶段练习)如图,墙上置物架的底侧一般会各设计一根斜杆,与水平和竖直方向的支架构成三角形,这是利用三角形的( )(3)2n n -(2)180n n-g °360n°03 题型归纳A.全等性B.对称性C.稳定性D.灵活性【答案】C【分析】本题主要考查了三角形具有稳定性,根据三角形具有稳定性,即可进行解答.【详解】解:墙上置物架的底侧一般会各设计一根斜杆,与水平和竖直方向的支架构成三角形,这是利用三角形的稳定性,故选;C.巩固训练1.(23-24八年级上·云南昆明·期末)我国建造的港珠澳大桥全长55公里,集桥、岛、隧于一体,是世界最长的跨海大桥.如图,这是港珠澳大桥的斜拉索,它能拉住桥面,并将桥面向下的力通过钢索传给索塔,确保桥面的稳定性和安全性.那么港珠澳大桥斜拉索建设运用的数学原理是()A.三角形的不稳定性B.三角形的稳定性C.四边形的不稳定性D.四边形的稳定性【答案】B【分析】本题主要考查了三角形的特性,解题的关键是熟练掌握三角形的稳定性;根据三角形的稳定性进行解答即可.【详解】解:港珠澳大桥斜拉索建设运用的数学原理是:三角形的稳定性.故选:B.3.(23-24七年级下·黑龙江哈尔滨·期中)如图,松花江大桥的钢架结构采用三角形的形状,这其中运用的数学道理是.【答案】三角形的稳定性【分析】本题主要考查了三角形的稳定性.根据三角形的稳定性,即可求解.【详解】解:松花江大桥的钢架结构采用三角形的形状,其中的数学道理是三角形的稳定性,故答案为:三角形的稳定性.4.(23-24七年级下·全国·假期作业)如图,建高楼常需要用塔吊来吊建筑材料,而塔吊的上部是三角形结构,这是因为三角形具有.【答案】稳定性【解析】略例题:(23-24七年级下·江苏盐城·期末)下列每组数分别表示3根小木棒的长度(单位:cm),其中能搭成三角形的是()A.4,5,10B.5,5,10C.5,8,10D.5,10,15【答案】C【分析】本题考查三角形三边关系,关键是掌握三角形三边关系定理.在运用三角形三边关系判定三条线段能否构成三角形时,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形,由此即可判断.【详解】解:A、4510+<,长度是4,5,10的小木棒不能搭成三角形,故本选项不符合题意;+=,长度是5,5,10的小木棒不能搭成三角形,故本选项不符合题意;B、5510+>,长度是8,5,10的小木棒能搭成三角形,故本选项符合题意;C、5810+=,长度是15,5,10的小木棒不能搭成三角形,故本选项不符合题意.D、51015故选:C.巩固训练1.(23-24七年级下·海南儋州·期末)下列长度的三条线段中,能构成三角形的是()A.1,3,5B.2,4,6C.1,2,3D.3,4,5【答案】D【分析】题目主要考查了三角形三边关系,理解题意,熟练运用三角形三边关系是解题关键.根据“三角形三边的关系:两边之和大于第三边,两边之差小于第三边”,依次判断即可.+<,不能构成三角形;【详解】解:A、135+=,不能构成三角形;B、246+=,不能够组成三角形;C、123+>,能构成三角形.D、345故选:D.2.(23-24七年级下·河北邢台·阶段练习)甲同学对下列三角形的边长分别进行标注,那么他标注错误的是()A.B.C.D.【答案】C【分析】本题考查的是三角形的三边关系,熟知三角形任意两边之和大于第三边,任意两边之差小于第三边是解答此题的关键.根据三角形的三边关系求解即可.+>,故标注正确;【详解】A.∵234+>,故标注正确;B.∵335+=<,故标注错误;C.∵1345+>,故标注正确.D.∵536故选:C.3.(2024·河北邯郸·二模)将一根吸管按如图所示的位置摆放在单位长度为1的数轴(不完整)上,吸管左-”处,右端对应数轴上的“5”处.若将该吸管剪成三段围成三角形,第一刀剪在数轴上的端对应数轴上的“8“5-”处,则第二刀可以剪在( )A .“4-”处B .“3-”处C .“1-”处D .“2”处【答案】C【分析】本题主要考查了构成三角形的条件,有理数与数轴,分别求出第二刀位置在四个选项中的位置时三段的长,再根据三角形中任意两边之和大于第三边,任意两边之差小于第三边进行求解即可.【详解】解:A 、第二刀剪在“4-”处时,则剪成的三段的长分别为()()()583451,549---=---=--=,,∵319+<,∴此时不能构成三角形,不符合题意;B 、第二刀剪在“3-”处时,则剪成的三段的长分别为()()()583352,538---=---=--=,,∵328+<,∴此时不能构成三角形,不符合题意;C 、第二刀剪在“1-”处时,则剪成的三段的长分别为()()()583154,516---=---=--=,,∵346+>,∴此时能构成三角形,符合题意;D 、第二刀剪在“2”处时,则剪成的三段的长分别为()()583257,523---=--=-=,,∵337+<,∴此时不能构成三角形,不符合题意;故选:C .题型三 已知三角形的两边长,求第三边的取值范围例题:(23-24七年级下·重庆·期末)已知ABC V 两边长分别为4与5,第三边的长为奇数,则第三边的长的最大值为 .【答案】7【分析】此题主要考查了三角形的三边关系,关键是掌握第三边的范围是:大于已知的两边的差,而小于两边的和.首先设第三边长为x ,根据三角形的三边关系可得5454x -<<+,再解不等式可得x 的范围,然后再确定x 的值即可.【详解】解:设第三边长为x ,由题意得:5454x -<<+,解得:19x <<,∵第三边的长为奇数,∴3x =、5或7,∴第三边的长的最大值为7.故答案为:7.巩固训练1.(23-24七年级下·江苏无锡·期末)已知三角形的两边长为3和4,则第三条边长可以为 .(请写出一个符合条件的答案)2.(23-24七年级下·黑龙江大庆·期中)一个三角形的两边长为2和6,第三边为奇数,则这个三角形的周长为 .【答案】13或15【分析】根据三角形三边的关系确定出第三边的取值范围,再根据第三边为奇数结合三角形周长公式进行求解即可.本题主要考查了三角形三边的关系的应用,熟知三角形任意两边之和大于第三边,任意两边之差小于第三边是解题的关键.【详解】解:∵一个三角形的两边长为2和6,设第三边长为x ,∴6262x -<<+,即48x <<∵第三边为奇数,∴第三边长为5或7当第三边长为5时,该三角形的周长是25613++=;++=;当第三边长为7时,该三角形的周长是27615综上所述,这个三角形的周长为13或15.故答案为:13或15.3.(23-24七年级下·内蒙古包头·期中)一个三角形的两边长分别为5和7,若x为最长边且为整数,则此三角形的周长为.题型四 判断是否三角形的高线例题:下列各图中,正确画出AC边上的高的是()A.B.C.D.【答案】D【分析】根据三角形高的定义判断即可得到答案.V中AC边上的高即为过点B作AC的垂线段,该垂线段即为AC边上的高,四个选项中【详解】解:ABC只有选项D符合题意,故选:D.【点睛】本题主要考查了三角形高线定义,解题的关键是熟知过三角形一个顶点作对边的垂线得到的线段叫三角形的高.巩固训练1.下面四个图形中,线段BD 是ABC V 的高的图形是( )A .B .C .D . 【答案】D 【分析】根据三角形的高的定义逐项分析即可解答.【详解】解:A .线段BD 是BDA △的高,选项不符合题意;B .线段BD 是ABD △的高,选项不符合题意;C .线段BD 是ABD △的高,选项不符合题意;D .线段BD 是ABC V 的高,选项符合题意.故选:D .【点睛】本题考查三角形的高的定义,从三角形的一个顶点到它的对边作一条垂线,顶点到垂足之间的线段叫做三角形的高.2.(2023秋·甘肃庆阳·八年级统考期末)如图,在ABC V 中,A Ð是钝角,下列图中作BC 边上的高线,正确的是( )A .B .C .D .【答案】D【分析】根据三角形的高的定义判断即可.【详解】解:在ABC V 中,A Ð是钝角,BC 边上的高线就是过点A 作BC 边的垂线得到的线段,如图,故选:D .【点睛】本题考查了三角形的高:从三角形的一个顶点向它的对边作垂线,垂足与顶点之间的线段叫做三角形的高.掌握定义是解题的关键.3.如图,AD BC ^,EC BC ^,CF AB ^,点D ,C ,F 是垂足,下列说法错误的是( )A .ABD △中,AD 是BD 边上的高B .ABD △中,EC 是BD 边上的高C .CEB V 中,EC 是BC 边上的高D .CEB V 中,FC 是BE 边上的高【答案】B 【分析】根据三角形高的定义依次判断即可.【详解】解:A 、ABD △中,AD 是BD 边上的高,故此选项正确,不符合题意;B 、ABD △中,EC 不是BD 边上的高,故此选项错误,符合题意;C 、CEB V 中,EC 是BC 边上的高故此选项正确,不符合题意;D 、CEB V 中,FC 是BE 边上的高,故此选项正确,不符合题意.故选B .【点睛】本题主要考查了三角形高的概念,应熟记三角形的高应具备的两个条件:①经过三角形的一个顶点,②垂直于这个顶点的对边.题型五 根据三角形的中线求面积A .4B 【答案】B 【分析】根据三角形中线平分三角形面积,先证明【详解】解:如图所示,连接F Q 为CE 中点,1S S 2BFC BEC \=V V .同理可得,1S S 2CDE ADC =V V 1S S S S 2CDE BDE BCE \+==V V V 1.(2023春·山西太原·七年级山西大附中校考期中)如图,AD BE 、是ABC V 的中线,则下列结论中,正确的个数有( )(1)AOE COE S S =V V ;(2)AOB EODC S S =V 四边形;(3)2BOC COE S S =V V ;(4)4ABC BOC S S =V V .A .1个B .2个C .3个D .4个【答案】C 【分析】如图,首先证明AOE COE S S =V V (设为λ),BOD COD S S =△△(设为μ);进而证明2AOB COB S S m ==V V ,2AOC BOC S S m ==V V ,得到2AOC BOC S S m ==V V ,进而得到l m =,此为解决问题的关键性结论,运用该结论即可解决问题【详解】解:∵AD BE 、是ABC V 的中线,∴AE CE BD CD ==,;∴AOE COE S S =V V (设为λ),BOD COD S S =△△(设为μ),ABE CBE S S =V V ,∴2AOB COB S S m ==V V ;同理可证:2AOC BOC S S m ==V V ,即22l m =,l m =;∴选项(1)、(2)、(3)均成立,选项(4)不成立,故选:C .【点睛】该题主要考查了三角形中线的定义、三角形的面积公式等几何知识点及其应用问题;解题的关键是灵活运用等底同高的两个三角形的面积相等这一规律,来分析、判断、推理或解答.2.(2023春·江苏扬州·七年级校联考阶段练习)如图,BD 是ABC V 的中线,点E 、F 分别为BD CE 、的中点,若AEF △的面积为22cm ,则ABC V 的面积是________2cm .【答案】8【分析】根据三角形的中线把三角形分成两个面积相等的三角形解答即可.【详解】∵点F 是CE 的中点,AEF △的面积为22cm ,∴224cm ACE AEF S S ==△△.∵点E 是BD 的中点,∴ADE ABE S S =V V ,CDE CBE S S =△△.【答案】36【分析】根据三角形中线与面积的关系,等高模型进行求解即可.【详解】设AEF△的面积为x,∵13AE AD=,13AF AC=,【点睛】本题考查了三角形的中线,三角形的面积,熟练掌握三角形的中线与面积的关系是解题的关键.题型六 与平行线有关的三角形内角和问题例题:(23-24七年级下·上海虹口·期中)如图,已知AB ED ∥,80EDC Ð=°,53ECD Ð=°,105B Ð=°,那么ACB =∠ .1.(23-24七年级下·陕西渭南·期中)如图,在三角形ABC 中,点D ,H ,E 分别是边AB ,BC ,CA 上的点,连接DE ,DH ,F 为DH 上一点,连接EF ,若12180Ð+Ð=°,365B Ð=Ð=°,52C Ð=°.则FEC Ð的度数为 °.【答案】63【分析】由12180Ð+Ð=°,1180DFE Ð+Ð=°,得到2DFE Ð=Ð,根据平行线的判定,得到AB FE ∥,根据平行线的性质,得到FEC A Ð=Ð,根据三角形内角和定理,求出A Ð的度数,即可求解,本题考查了,平行线的性质与判定,三角形内角和定理,解题的关键是:熟练掌握相关性质定理.【详解】解:∵12180Ð+Ð=°,1180DFE Ð+Ð=°,∴2DFE Ð=Ð,∴AB FE ∥,∴FEC A Ð=Ð,∵180180655263A B C Ð=°-Ð-Ð=°-°-°=°,∴63FEC A Ð=Ð=°,故答案为:63.2.(23-24七年级下·陕西咸阳·期中)如图,AN 平分BAM Ð,BM 平分ABN Ð,AN BM ^于点C ,25MBN Ð=°,则下列说法:①90BCN Ð=°;②AM BN P ;③50DAM Ð=°;④60MAN Ð=°,其中正确的是 .(填序号)∴90BAN ABM Ð+Ð=°,∴()2290180BAM ABN BAN ABM Ð+Ð=Ð+Ð=´°=°,∴AM BN P ,故②正确;∵25MBN Ð=°,BM 平分ABN Ð,∴50ABN Ð=°,∵AM BN P ,∴50DAM ABN Ð=Ð=°,故③正确;∵90BCN Ð=°,∴90902565ANB MBN Ð=°-Ð=°-°=°,∵AM BN P ,∴65MAN ANB Ð=Ð=°,故④错误;综上所述,正确的说法有①②③.故答案为:①②③.3.(23-24七年级下·上海浦东新·期中)如图,将一副直角三角板放在同一条直线AB 上,其中3045OMN OCD Ð=°Ð=°,.将三角尺OCD 绕点O 以每秒10°的速度顺时针方向旋转一周,设旋转的时间为t 秒.在旋转的过程中,边CD 恰好与边MN 平行,t 的值为 .【答案】10.5或28.5【分析】本题考查了旋转性质以及平行线的性质,三角形的内角和为180度,先根据旋转的方向,再逐一把满足条件的图作出来,再结合图形以及运用平行线的性质列式计算,即可作答.【详解】解:如图:当11C D 与边MN 平行时,∵3045OMN OCD Ð=°Ð=°,,∴1903060MNO Ð=Ð=°-°=°,19045D CDO OCD Ð=Ð=°-Ð=°,∴()12180180115D Ð=°-°-Ð+Ð=°,即19015105DOD Ð=°+°=°,∵将三角尺OCD 绕点O 以每秒10°的速度顺时针方向旋转一周,设旋转的时间为t 秒.∴10105t °=°,∴10.5t =;如图:当22C D 与边MN 平行时,∵3045OMN OCD Ð=°Ð=°,,∴3903060MNO Ð=Ð=°-°=°,29045D CDO OCD Ð=Ð=°-Ð=°,∴()14180180315D Ð=°-°-Ð+Ð=°,即2901575DOD Ð=°-°=°,∵将三角尺OCD 绕点O 以每秒10°的速度顺时针方向旋转一周,设旋转的时间为t 秒.∴1036075t °=°-°,∴28.5t =;综上:边CD 恰好与边MN 平行,t 的值为10.5或28.5故答案为:10.5或28.5题型七 与角平分线有关的三角形内角和问题例题:(23-24七年级下·江苏南京·期末)如图,在ABC V 中,AD 平分BAC Ð,过点A 作EF BC ∥.若40EAB Ð=°,80C Ð=°,则ADC Ð= .1.(23-24七年级下·上海浦东新·阶段练习)如图,在ABC V 中,125BDC Ð=°,如果ABC Ð与ACB Ð的平分线交于点D ,那么A Ð= 度.2.(23-24七年级下·辽宁大连·期中)如图,在ABC V 中,BD CD 、分别平分,ABC ACB BG CG ÐÐ、、分别平分三角形的两个外角,48EBC FCB G ÐÐÐ=°、,则D Ð= °.3.(23-24七年级下·湖南衡阳·期末)如图,在ABC V 中,30B Ð=°,70C Ð=°,AE 平分BAC Ð,AD BC ^于点D .(1)求BAE Ð的度数.(2)求EAD Ð的度数.题型八 三角形的外角的定义及性质例题:(23-24七年级下·四川乐山·期末)如图,在ABC V 中,点D 在BC 的延长线上,70A Ð=°,120ACD Ð=°,则B Ð= °.【答案】50【分析】本题考查了三角形的外角性质,根据三角形的外角性质:三角形的一个外角等于与它不相邻的两个内角和即可解题.【详解】解:由三角形的外角性质得:ACD A B Ð=Ð+Ð,70,120A ACD Ð=°Ð=°Q ,1207050B ACD A \Ð=Ð-Ð=°-°=°,故答案为:50.巩固训练1.(23-24七年级下·浙江杭州·阶段练习)如图,已知直线12l l ∥,154Ð=°,2100Ð=°,则A Ð= 度.【答案】46【分析】本题考查了平行线的性质,三角形外角的性质,熟练掌握以上知识点是解题的关键.根据两直线平行,内错角相等,外角等于不相邻的两个内角的和求解即可.【详解】解:12l l Q ∥,154Ð=°,2100Ð=°154ABC \Ð=Ð=°2A ABC \Ð=Ð+Ð,即21005446A ABC Ð=Ð-Ð=°-°=°故答案为:46.2.(23-24七年级下·江苏淮安·期末)如图,ABC V 的两个外角的平分线交于点P .若64BPC Ð=°,则A Ð= .3.(23-24七年级下·江西南昌·期末)已知直线 12l l ∥,将含30°角的直角三角板按如图所示摆放.若2140Ð=°,则1Ð= .题型九 多边形的内角和与外角和例题:(23-24七年级下·江苏镇江·期末)足球的表面是由 12个正五边形和20个正六边形组成的.如图,将足球上的一个正六边形和它相邻的一个正五边形展开放平,则图中的 ABC Ð= .【答案】132°/132度【分析】本题主要考查了多边形内角和定理,熟知多边形内角和计算公式是解题的关键.根据多边形内角和公式进行求解即可.【详解】Q 正五边形内角和为()18052540°´-=°正六边形内角和为()18062720°´-=°\正五边形每个内角度数为108°,正六边形每个内角度数为120°360108120132ABC \Ð=°-°-°=°故答案为:132°巩固训练1.(23-24九年级下·重庆开州·阶段练习)如图,3Ð和4Ð是四边形ABCD 的外角,若1120Ð=°,275Ð=°,则34Ð+Ð= .2.(23-24八年级下·江西萍乡·期末)一个多边形的内角和是它的外角和的1.5倍,则这个多边形的边数为 .【答案】5/五【分析】本题考查了多边形的内角和与外角和,熟练掌握多边形内角和的公式是解题的关键.设这个多边形的边数为n ,根据多边形内角和公式和外角和为360°列方程求解即可得出答案.【详解】解:设这个多边形的边数为nQ n 边形的内角和为()2180n -´°,多边形的外角和为360°()2180360 1.5n \-´°=°´解得5n =\这个多边形的边数为5故答案为:5.3.(23-24七年级下·河南驻马店·阶段练习)如图,已知59MON Ð=°,正五边形ABCDE 的顶点A 、B 在射线OM 上,顶点E 在射线ON 上,则NED Ð的度数为 .题型十 在网格中画三角形的中线、高线及求三角形的面积´的网格,每一小格均例题:(2023春·黑龙江哈尔滨·七年级哈尔滨市第六十九中学校校考期中)下图为79V.为正方形,已知ABCV中BC边上的中线AD;(1)画出ABCV中AB边上的高CE.(2)画出ABCV的面积为_________.(3)直接写出ABC【答案】(1)见解析;(2)见解析;(3)6.【分析】(1)取BC的中点D,连接AD,即为所求;(2)取格点E,连接CE,CE即为所求;(3)用直接利用面积公式进行求解即可.【详解】(1)解:如图所示,AD即为所求;(2)如图,CE即为所求;(1)画出ABCV中边BC上的高(2)画出ABCV中边AB上的中线(3)直接写出ACE△的面积为______(2)如图,线段CE即为所求;(3)12442ACES=´´= V.故答案为:4.2.(23-24七年级下·江苏连云港·阶段练习)如图,在方格纸内将ABC V 水平向右平移4个单位得到A B C ¢¢¢V .(1)画出A B C ¢¢¢V ;(2)若连接AA ¢,BB ¢,则这两条线段之间的关系是_________;(3)画出AB 边上的中线CD ;(利用网格点和直尺画图)(4)图中能使ABC PBC S S =△△的格点P 有_________个(点P 异于点A ).(2)连接AA ¢,BB ¢,根据平移性质可知,这两条线段之间的关系是平行且相等;故答案为:平行且相等.(3)解:如图,CD 即为所求.(4)解:如图,过点A 作BC 的平行线,所经过的格点1P ,2P ,3P 即为满足条件的点,共有3个.故答案为:3.3.(23-24七年级下·江苏扬州·阶段练习)如图,方格纸中每个小正方形边长均为1,在方格纸内将ABC V 的点C 平移至点C ¢得到A B C ¢¢¢V .(1)画出A B C ¢¢¢V ;(2)线段AC 和A C ¢¢的关系是_______.(3)借助方格画出AB 边上的中线CE ;(4)四边形 ACC A ¢¢面积为_______.【答案】(1)见详解(2)平行且相等(3)见详解(4)23【分析】(1)观察发现,C ¢点是由C 点先向右平移4个单位,再向下平移1个单位得到的,因此只需将A 点和B 点也按相同的方式平移即可得到A ¢和B ¢,再顺次连接A ¢、B ¢、C ¢即可.(2)根据“平移前后对应点的连线平行且相等”即可得解.(3)根据三角形的中线,高线的定义画出图形即可;(4)四边形ACC A ¢¢的面积2ACA S ¢=V ,利用割补法求解即可.(2)解:根据平移的性质可得:线段AC 故答案为:平行且相等(3)解:如(1)图,线段CD ,CE 即为所求;(4)解:2257(ACA ACC A S S ¢¢¢==´´-V 四边形故答案为:23【点睛】本题考查作图-平移变换,三角形的中线,高线等知识,解题的关键是掌握平移变换的性质,学会利用割补法求三角形面积.。

人教版八年级数学上册《三角形基础分类》专项练习题-附含答案

人教版八年级数学上册《三角形基础分类》专项练习题-附含答案

人教版八年级数学上册《三角形基础分类》专项练习题-附含答案1.在三角形中一定能将其面积分成相等两部分的是()A.中线B.高线C.角平分线D.某一边的垂直平分线【答案】A【解答】解:根据同底等高的两个三角形面积相等可知在三角形中三角形的中线一定能将其面积分成相等两部分故选:A.2.如图为估计池塘岸边A、B的距离小方在池塘的一侧选取一点O测得OA=17米OB=9米A、B间的距离不可能是()A.23米B.8米C.10米D.18米【答案】B【解答】解:∵OA=17米OB=9米∴17﹣9<AB<17+9即:8<AB<26故选:B3.如果一个三角形的三条高的交点恰是三角形的一个顶点那么这个三角形是()A.锐角三角形B.钝角三角形C.直角三角形D.不能确定【答案】C【解答】解:A、锐角三角形三条高线交点在三角形内故错误;B、钝角三角形三条高线不会交于一个顶点故错误;C、直角三角形的直角所在的顶点正好是三条高线的交点可以得出这个三角形是直角三角形故正确;D、能确定C正确故错误.故选:C.4.如图AD是△ABC的中线已知△ABD的周长为25cm AB比AC长6cm则△ACD的周长为()A.19cm B.22cm C.25cm D.31cm 【答案】A【解答】解:∵AD是BC边上的中线∴BD=CD∴△ABD和△ACD周长的差=(AB+BD+AD)﹣(AC+AD+CD)=AB﹣AC ∵△ABD的周长为25cm AB比AC长6cm∴△ACD周长为:25﹣6=19cm.故选:A.5.在△ABC中AB=3 AC=2 BC=a a的值可能是()A.1B.3C.5D.7【答案】B【解答】解:∵△ABC中AB=3 AC=2 BC=a∴1<a<5∴B符合故选:B.6.下列长度的三条线段能组成三角形的是()A.3cm5cm7cm B.3cm3cm7cmC.4cm4cm8cm D.4cm5cm9cm【答案】A【解答】解:A.∵A3+5=8>7∴能组成三角形符合题意;B.∵3+3<7∴不能组成三角形不符合题意;C.∵4+4=8∴不能组成三角形不符合题意;D.∵4+5=9∴不能组成三角形不符合题意.故选:A.7.如图所示四个图形中线段BE能表示三角形ABC的高的是()A.B.C.D.【答案】B【解答】解:由题意线段BE能表示三角形ABC的高时BE⊥AC于E.A选项中BE与AC不垂直;C选项中BE与AC不垂直;D选项中BE与AC不垂直;∴线段BE是△ABC的高的图是B选项.故选:B.8.如图已知△ABC中点D、E分别是边BC、AB的中点.若△ABC的面积等于8 则△BDE的面积等于()A.2B.3C.4D.5【答案】A【解答】解:∵点D是边BC的中点△ABC的面积等于8∴S△ABD=S△ABC=4∵E是AB的中点∴S△BDE=S△ABD=4=2故选:A.9.若△ABC的三边长分别为m﹣2 2m+1 8.(1)求m的取值范围;(2)若△ABC的三边均为整数求△ABC的周长.【解答】解:(1)根据三角形的三边关系解得:3<m<5;(2)因为△ABC的三边均为整数且3<m<5 所以m=4.所以△ABC的周长为:(m﹣2)+(2m+1)+8=3m+7=3×4+7=19.10.若三角形三个内角度数比为2:3:4 则这个三角形一定是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定【答案】A【解答】解:设三个内角度数为2x、3x、4x由三角形内角和定理得2x+3x+4x=180°解得x=20°则三个内角度数为40°、60°、80°则这个三角形一定是锐角三角形故选:A.11.如图直线a∥b在Rt△ABC中点C在直线a上若∠1=58°∠2=24°则∠A的度数为()A.56°B.34°C.36°D.24°【答案】B【解答】解:如图∵∠1=54°a∥b∴∠3=∠1=58°.∵∠2=24°∠A=∠3﹣∠2∴∠A=58°﹣24°=34°.故选:B.12.如图将一副直角三角板按如图所示叠放其中∠C=90°∠B=45°∠E=30°则∠BFD的大小是()A.10°B.15°C.25°D.30°【答案】B【解答】解:∵∠B=45°∴∠BAC=45°∴∠EAF=135°∴∠AFD=135°+30°=165°∴∠BFD=180°﹣∠AFD=15°故选:B.13.如图在△ABC中∠A=70°∠B=60°∠ACD是△ABC的一个外角∠ACD的度数为()A.50°B.60°C.70°D.130°【答案】D【解答】解:∵△ABC中∠A=70°∠B=60°∴∠ACB=180°﹣70°﹣60°=50°∴∠ACD=180°﹣50°=130°故选:D.14.如图已知△ABC为直角三角形∠C=90°若沿图中虚线剪去∠C则∠1+∠2等于()A.90°B.135°C.270°D.315°【答案】C【解答】解:∵四边形的内角和为360°直角三角形中两个锐角和为90°∴∠1+∠2=360°﹣(∠A+∠B)=360°﹣90°=270°.故选:C.15.如图直线AB∥CD如果∠EFB=31°∠END=70°那么∠E的度数是()A.31°B.40°C.39°D.70°【答案】C【解答】解:∵直线AB∥CD∴∠EMB=∠END=70°∵∠EFB=31°∠EMB=∠E+∠EFB∴∠E=70°﹣31°=39°故选:C.16.如图在△ABC中∠BCA=40°∠ABC=60°.若BF是△ABC的高与角平分线AE相交于点O 则∠EOF的度数为()A.130°B.70°C.110D.100°【答案】A【解答】解:∵∠BCA=40°∠ABC=60°∴∠BAC=180°﹣∠BCA﹣∠ABC=180°﹣40°﹣60°=80°.∵AE是∠BAC的平分线∴∠EAC=∠BAC=40°.∵BF是△ABC的高∴∠BF A=90°.∴∠AOF=90°﹣∠EAC=90°﹣40°=50°.∴∠EOF=180°﹣∠AOF=180°﹣50°=130°.故选:A.17.如图已知△ABC的外角∠CAD=120°∠C=80°则∠B的度数是()A.30°B.40°C.50°D.60°【答案】B【解答】解:∵∠CAD=∠B+∠C∠CAD=120°∠C=80°∴∠B=∠CAD﹣∠C=120°﹣80°=40°故选:B18.如图在△ABC中AD是BC边上的高AE BF分别是∠BAC∠ABC的平分线.∠BAC=50°∠ABC=60°.则∠DAE+∠ACD等于()A.75°B.80°C.85°D.90°【答案】A【解答】解:∵AD是BC边上的高∠ABC=60°∴∠BAD=30°∵∠BAC=50°AE平分∠BAC∴∠BAE=25°∴∠DAE=30°﹣25°=5°∵△ABC中∠C=180°﹣∠ABC﹣∠BAC=70°∴∠EAD+∠ACD=5°+70°=75°.故选:A.19.已知直线a∥b Rt△DCB按如图所示的方式放置点C在直线b上∠DCB=90°若∠B=20°则∠1+∠2的度数为()A.90°B.70°C.60°D.45°【答案】B【解答】解:如图延长BD交直线b于点M.∵∠DCB=90°∠B=20°∴∠BDC=90°﹣20°=70°∵a∥b∴∠1=∠BMC∵∠BDC=∠DMC+∠2=∠1+∠2∴∠1+∠2=70°故选:B20.如图在△ABC中∠A=50°∠1=30°∠2=40°∠D的度数是()A.110°B.120°C.130°D.140°【答案】B【解答】解:∴∠A=50°∴∠ABC+∠ACB=180°﹣50°=130°∴∠DBC+∠DCB=∠ABC+∠ACB﹣∠1﹣∠2=130°﹣30°﹣40°=60°∴∠BDC=180°﹣(∠DBC+∠DCB)=120°故选:B.21.如图将△ABC沿MN折叠使MN∥BC点A的对应点为点A' 若∠A'=32°∠B=112°则∠A'NC的度数是()A.114°B.112°C.110°D.108°【答案】D【解答】解:∵MN∥BC∴∠MNC+∠C=180°又∵∠A+∠B+∠C=180°∠A=∠A′=32°∠B=112°∴∠C=36°∠MNC=144°.由折叠的性质可知:∠A′NM+∠MNC=180°∴∠A′NM=36°∴∠A′NC=∠MNC﹣∠A′NM=144°﹣36°=108°.故选:D.22.已知:如图点D、E、F、G都在△ABC的边上DE∥AC且∠1+∠2=180°(1)求证:AD∥FG;(2)若DE平分∠ADB∠C=40°求∠BFG的度数.【解答】证明:(1)∵DE∥AC∴∠2=∠DAC∵∠l+∠2=180°∴∠1+∠DAC=180°∴AD∥GF(2)∵ED∥AC∴∠EDB=∠C=40°∵ED平分∠ADB∴∠2=∠EDB=40°∴∠ADB=80°∵AD∥FG∴∠BFG=∠ADB=80°23.在△ABC中CD平分∠ACB交AB于点D AH是△ABC边BC上的高且∠ACB=70°∠ADC=80°求:(1)∠BAC的度数.(2)∠BAH的度数.【解答】解:(1)∵CD平分∠ACB∠ACB=70°∴∠ACD=∠ACB=35°∵∠ADC=80°∴∠BAC=180°﹣∠ACD﹣∠ADC=180°﹣35°﹣80°=65°;(2)由(1)知∠BAC=65°∵AH⊥BC∴∠AHC=90°∴∠HAC=90°﹣∠ACB=90°﹣70°=20°∴∠BAH=∠BAC﹣∠HAC=65°﹣20°=45°.24.如图在△ABC中点E在AC上点F在AB上点G在BC上且EF∥CD∠1+∠2=180°.(1)求证:GD∥CA;(2)若CD平分∠ACB DG平分∠CDB且∠A=40°求∠ACB的度数.【解答】证明:(1)∵EF∥CD∴∠1+∠3=180°.∵∠1+∠2=180°∴∠2=∠3.∴AC∥GD.(2)∵CD平分∠ACB DG平分∠CDB∴∠3=∠ACB∠2=∠GDB=∠CDB.∵∠CDB=∠A+∠3 ∠2=∠3∴2∠3=∠A+∠3.∴∠3=∠A=40°.∴∠ACB=80°.25.如图在△ABC中∠B=31°∠C=55°AD⊥BC于D AE平分∠BAC交BC于E DF⊥AE于F求∠ADF的度数.【解答】解:∵∠B=31°∠C=55°∴∠BAC=94°∵AE平分∠BAC∴∠BAE=∠BAC=47°∴∠AED=∠B+∠BAE=31°+47°=78°∵AD⊥BC DF⊥AE∴∠EFD=∠ADE=90°∴∠AED+∠EDF=∠EDF+∠ADF∴∠ADF=∠AED=78°.26.如图在△ABC中AD平分∠BAC AE⊥BC若∠BAD=40°∠C=70°求∠DAE的度数.【解答】解:∵AD平分∠BAC∴∠BAC=2∠BAD=80°∵∠C=70°∴∠B=180°﹣∠BAC﹣∠C=180°﹣70°﹣80°=30°∴∠ADE=∠B+∠BAD=30°+40°=70°∵AE⊥BC∴∠AEB=90°∴∠DAE=90°﹣∠ADE=90°﹣70°=20°.27.一个正多边形它的一个内角恰好是一个外角的3倍则这个正多边形是()A.正十二边形B.正十边形C.正八边形D.正六边形【答案】C【解答】解:设这个正多边的一个外角为x°由题意得:x+3x=180解得:x=45360°÷45°=8.故选:C.28.若一个多边形的内角和等于1800°这个多边形的边数是()A.6B.8C.10D.12【答案】D【解答】解:设这个多边形是n边形根据题意得(n﹣2)×180=1800解得n=12∴这个多边形是12边形.故选:D.29.如图足球图片中的一块黑色皮块的内角和是()A.720°B.540°C.360°D.180°【答案】B【解答】解:∵黑色皮块是正五边形∴黑色皮块的内角和是(5﹣2)×180°=540°.故选:B.30.如图已知∠1+∠2+∠3=240°那么∠4的度数为()A.60°B.120°C.130°D.150°【答案】B【解答】解:∵∠1+∠2+∠3+∠4=360°∠1+∠2+∠3=240°∴∠4=360°﹣(∠1+∠2+∠3)=360°﹣240°=120°故选:B.31.若一个正多边形的每个内角都是120°则这个正多边形是()A.正六边形B.正七边形C.正八边形D.正九边形【答案】A【解答】解:解法一:设所求正多边形边数为n则120°n=(n﹣2)•180°解得n=6 ∴这个正多边形是正六边形.解法二:∵正多边形的每个内角都等于120°∴正多边形的每个外角都等于180°﹣120°=60°又∵多边形的外角和为360°∴这个正多边形边数=360°÷60°=6.故选:A.32.小丽利用最近学习的数学知识给同伴出了这样一道题:假如从点A出发沿直线走6米后向左转θ接着沿直线前进6米后再向左转θ……如此下法当他第一次回到A点时发现自己走了72米θ的度数为()A.28°B.30°C.33°D.36°【答案】B【解答】解:∵第一次回到出发点A时所经过的路线正好构成一个正多边形∴多边形的边数为:72÷6=12.根据多边形的外角和为360°∴他每次转过的角度θ=360°÷12=30°.故选:B.33.将正六边形与正五边形按如图所示方式摆放公共顶点为O且正六边形的边AB与正五边形的边DE 在同一条直线上则∠COF的度数是()A.74°B.76°C.84°D.86°【答案】C【解答】解:由题意得:∠EOF=108°∠BOC=120°∠OEB=72°∠OBE=60°∴∠BOE=180°﹣72°﹣60°=48°∴∠COF=360°﹣108°﹣48°﹣120°=84°故选:C.34.小明把一副含45°30°的直角三角板如图摆放其中∠C=∠F=90°∠A=45°∠D=30°则∠α+∠β等于()A.280°B.285°C.290°D.295°【答案】B【解答】解:∵∠C=∠F=90°∠A=45°∠D=30°∴∠2+∠3=180°﹣∠D=150°∵∠α=∠1+∠A∠β=∠4+∠C∵∠1=∠2 ∠3=∠4∴∠α+∠β=∠A+∠1+∠4+∠C=∠A+∠C+∠2+∠3=45°+90°+150°=285°故选:B.35.如图若干全等正五边形排成环状.图中所示的是前3个五边形要完成这一圆环还需()个五边形.A.6B.7C.8D.9【答案】B【解答】解:五边形的内角和为(5﹣2)×180°=540°所以正五边形的每一个内角为540°÷5=108°如图延长正五边形的两边相交于点O则∠1=360°﹣108°×3=360°﹣324°=36°360°÷36°=10∵已经有3个五边形∴10﹣3=7即完成这一圆环还需7个五边形.故选:B.36.一个多边形它的内角和比外角和的4倍多180°求这个多边形的边数.【解答】解:根据题意得(n﹣2)•180=1620解得:n=11.则这个多边形的边数是11 内角和度数是1620度.。

原创2023学年三角形中角的关系-八年级数学上册检测

原创2023学年三角形中角的关系-八年级数学上册检测

三角形中角的关系知识要点基础练知识点1 三角形按角的分类1.在△ABC中,∠A比∠B大100°,则△ABC的形状是( C )A.直角三角形B.锐角三角形C.钝角三角形D.无法判断2.一个三角形三个内角的度数之比为3∶4∶5,则这个三角形一定是( A )A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形知识点2 三角形的内角和3.如图是一块三角形木板的残余部分,量得∠A=100°,∠B=40°,则这块三角形木板另外一个角∠C的度数为( B )A.30°B.40°C.50°D.60°4.( 滨州中考 )在△ABC 中,若∠A=30°,∠B=50°,则∠C= 100° .5.一个三角形的三个内角度数的比是2∶3∶4,那么这个三角形是 锐角 三角形.( 填“锐角”“钝角”或“直角” )6.在△ABC 中,∠A-2∠B=20°,∠A+∠B=110°,求∠A,∠B,∠C 的大小. 解:因为∠A-2∠B=20°,∠A+∠B=110°,所以∠A=80°,∠B=30°.在△ABC 中,∠C=180°-∠A-∠B=180°-80°-30°=70°.综合能力提升练7.( 合肥包河区期中 )具备下列条件的△ABC,不是直角三角形的是( B )A.∠A-∠B=∠CB.∠A=∠B=2∠CC.∠A ∶∠B ∶∠C=3∶2∶1D.2∠A=2∠B=∠C8.在△ABC 中,∠A=13∠B=15∠C,则△ABC 是( B )A.锐角三角形B.钝角三角形C.直角三角形D.无法确定9.如图,在△ABC中,∠ABC=∠ACB,P为△ABC内的一点,且∠PBC=∠PCA,∠BPC=110°,则∠A的大小为( A )A.40°B.50°C.60°D.70°【变式拓展】如图,已知∠1=20°,∠2=27°,∠A=52°,则∠BDC的度数是99°.10.已知在△ABC中,∠A+∠B=1∠C,则∠C= 120°.211.如图,在△ABC中,∠A=75°,直线DE分别与边AB,AC交于D,E两点,则∠1+∠2= 255°.12.如图,在△ABC中,∠A=155°,第一步:在△ABC的上方确定点A1,使∠A1BA=∠ABC,∠A1CA=∠ACB;第二步:在△A1BC的上方确定点A2,使∠A2BA1=∠A1BA,∠A2CA1=∠A1CA;…,则∠A1= 130°;照此继续,最多能进行 6 步.13.( 合肥庐阳区期末 )在△ABC中,∠A+∠B=∠C,∠B-∠A=30°.( 1 )求∠A,∠B和∠C的度数.( 2 )△ABC按角分类,属于什么三角形?△ABC按边分类,属于什么三角形? 解:( 1 )由题意得∠B=∠A+30°,∠C=∠A+∠B=2∠A+30°.又因为∠A+∠B+∠C=180°,所以∠A+∠A+30°+2∠A+30°=180°,所以∠A=30°,∠B=60°,∠C=90°.( 2 )因为∠C=90°,∠A=30°,∠B=60°,所以△ABC按角分类,属于直角三角形;△ABC按边分类,属于不等边三角形.14.( 教材P70例2变式 )如图,在△ABC中,∠C=∠ABC=2∠A,BD是AC边上的高,求∠DBC的度数.解:因为∠C+∠ABC+∠A=180°,∠C=∠ABC=2∠A,所以5∠A=180°,解得∠A=36°,所以∠C=∠ABC=2∠A=72°.因为BD是AC边上的高,所以∠BDC=90°,所以∠DBC=180°-∠BDC-∠C=180°-90°-72°=18°.15.已知AD与BC相交于点O.( 1 )如图1,试探究∠A+∠B与∠C+∠D的数量关系;( 2 )若∠ABC与∠ADC的平分线相交于点E,如图2,试探究∠A,∠C,∠E之间的数量关系.解:( 1 )在△AOB中,∠A+∠B+∠AOB=180°,在△COD中,∠C+∠D+∠COD=180°.又因为∠AOB=∠COD,所以∠A+∠B=∠C+∠D.( 2 )由( 1 )的结论可知∠A+∠ABE=∠E+∠ADE,∠C+∠CDE=∠E+∠EBC,所以∠A+∠ABE+∠C+∠CDE=∠E+∠ADE+∠E+∠EBC.又因为BE平分∠ABC,DE平分∠ADC,所以∠ABE=∠EBC,∠ADE=∠CDE,所以∠A+∠C=2∠E.拓展探究突破练16.在一个三角形中,如果一个角是另一个角的3倍,这样的三角形我们称之为“智慧三角形”.如三个内角分别为120°,40°,20°的三角形是“智慧三角形”. 如图,∠MON=60°,在射线OM上取一点A,过点A作AB⊥OM交ON于点B,以A为端点作射线AD,交线段OB于点C.( 1 )∠ABO的度数为30 °,△AOB 是( 填“是”或“不是” )智慧三角形;( 2 )当△ABC为“智慧三角形”时,求∠OAC的度数.解:( 2 )因为△ABC为“智慧三角形”,当点C在线段OB上时,∠ABO=30°,所以∠BAC+∠BCA=150°,∠ACB>60°,∠BAC<90°.①当∠ABC=3∠BAC时,∠BAC=10°,所以∠OAC=80°;②当∠ABC=3∠ACB时,∠ACB=10°,所以此种情况不存在;③当∠BCA=3∠BAC时,∠BAC+3∠BAC=150°,所以∠BAC=37.5°,所以∠OAC=52.5°;④当∠BCA=3∠ABC时,∠BCA=90°,所以∠BAC=60°,所以∠OAC=90°-60°=30°;⑤当∠BAC=3∠ABC时,∠BAC=90°,所以此种情况不成立;⑥当∠BAC=3∠ACB时,3∠ACB+∠ACB=150°,所以∠ACB=37.5°,所以此种情况不存在.综上,当△ABC为“智慧三角形”时,∠OAC的度数为80°或52.5°或30°.。

三角形的有关概念拓展提高

三角形的有关概念拓展提高

三角形所有知识点总结和拓展提高知识点:1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.2.三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边.3.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高.4.中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线.5.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.6.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性.7.公式与性质:⑴三角形的内角和:三角形的内角和为180°⑵三角形外角的性质:性质1:三角形的一个外角等于和它不相邻的两个内角的和.性质2:三角形的一个外角大于任何一个和它不相邻的内角.一.选择题(共13小题)1.已知三角形的两边长分别为4cm和9cm,则下列长度的四条线段中能作为第三边的是()A.13cm B.6cm C.5cm D.4cm2.一个正方形和两个等边三角形的位置如图所示,若∠3=50°,则∠1+∠2=()A.90°B.100°C.130°D.180°3.已知如图,△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于()A.315°B.270°C.180°D.135°4.如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A.B.C.D.5.如图,在四边形ABCD中,∠A+∠D=α,∠ABC的平分线与∠BCD的平分线交于点P,则∠P=()A.90°﹣αB.90°+α C.D.360°﹣α6.如图,Rt△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边CB 上A′处,折痕为CD,则∠A′DB=()A.40°B.30°C.20°D.10°7.如图,在锐角△ABC中,CD,BE分别是AB,AC边上的高,且CD,BE 相交于一点P,若∠A=50°,则∠BPC=()A.150°B.130°C.120°D.100°8.如图,为估计池塘岸边A、B的距离,小方在池塘的一侧选取一点O,测得OA=15米,OB=10米,A、B间的距离不可能是()A.20米B.15米C.10米D.5米9、已知三角形的一个外角小于与它相邻的内角,那么这个三角形()A、是锐角三角形B、是直角三角形C、是钝角三角形D、以上三种都有可能10如图,一副分别含有30°和45°角的两个直角三角板,拼成如下图形,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD的度数是()A.15°B.25°C.30°D.10°11.在一个三角形中,一个外角是其相邻内角的3倍,那么这个外角是()A、150°B、135°C、120°D、100°12.一个三角形三个内角的度数之比为2:3:7,这个三角形一定是()A.等腰三角形 B.直角三角形 C.锐角三角形 D.钝角三角形二.填空题(共13小题)13.如图,在△ABC中,∠A=60°,BD、CE分别是AC、AB上的高,H是BD、•CE的交点,求∠BHC____.14.如图所示,在△ABC中,AB=AC,AD=AE,∠BAD=60°,则∠EDC=______.15.如图,小亮从A点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,…,照这样走下去,他第一次回到出发地A点时,一共走了米.16.将一副直角三角板如图放置,使含30°角的三角板的短直角边和含45°角的三角板的一条直角边重合,则∠1的度数为度.17.当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为100°,那么这个“特征三角形”的最小内角的度数为.18.已知:如图02-13△ABC中,∠C=90°,∠BAC,∠ABC的平分线AD、BE交于点O,求:∠AOB的度数。

三角形基础知识及习题

三角形基础知识及习题

三角形基础知识及习题三角形是几何学中最基本的图形之一,其基础知识对于学习几何学和解决几何问题至关重要。

本文将介绍三角形的基本定义、分类和性质,并提供一些习题供读者练习。

一、三角形的定义和分类1. 定义:三角形是由三条线段(边)所围成的图形。

三角形的三个顶点(角)和三个边缘(边)都相互连接。

2. 分类:根据三个角的大小,三角形可以分为三种类型:a. 锐角三角形:三个角都小于90度。

b. 直角三角形:其中一个角为90度。

c. 钝角三角形:其中一个角大于90度。

二、三角形的性质1. 角度和:三角形的三个角的角度和总是等于180度。

无论三角形是锐角、直角还是钝角三角形,其内角之和都是180度。

2. 边长关系:a. 等边三角形:三个边的长度都相等。

b. 等腰三角形:两个边的长度相等。

c. 直角三角形:满足毕达哥拉斯定理,即两直角边的平方和等于斜边的平方。

3. 角度关系:a. 锐角三角形:三个角都是锐角。

b. 直角三角形:其中一个角是直角。

c. 钝角三角形:其中一个角是钝角。

三、三角形的习题下面是几个关于三角形的习题,供读者练习运用三角形的基础知识与技巧。

1. 题目:已知三角形的两边长分别为5厘米和8厘米,夹角为60度,求第三条边的长度。

解法:利用余弦定理,可以得到第三条边的长度:c^2 = a^2 + b^2 - 2abcosC。

带入数值计算得到c≈7.53厘米。

2. 题目:在直角三角形ABC中,AB = 3厘米,BC = 4厘米,求AC的长度。

解法:根据毕达哥拉斯定理,可以得到AC的长度:AC^2 =AB^2 + BC^2。

带入数值计算得到AC = 5厘米。

3. 题目:已知三角形的两边长分别为6厘米和8厘米,以及夹角为30度,求第三条边的长度。

解法:利用正弦定理,可以得到第三条边的长度:a/sinA = b/sinB = c/sinC。

带入数值计算得到第三条边的长度约为7.61厘米。

4. 题目:在锐角三角形ABC中,AB = 7厘米,BC = 9厘米,夹角为45度,求角度C的大小。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角形章节复习全章知识点梳理:一、三角形基本概念1. 三角形的概念由不在同一条直线上的三条线段首尾依次相接所组成的图形叫做三角形;2.3. 三角形三边的关系重点三角形的任意两边之和大于第三边;三角形的任意两边之差小于第三边;这两个条件满足其中一个即可用数学表达式表达就是:记三角形三边长分别是a,b,c,则a+b>c或c-b<a;已知三角形两边的长度分别为a,b,求第三边长度的范围:|a-b|<c<a+b解题方法:①数三角形的个数方法:分类,不要重复或者多余;②给出三条线段的长度或者三条线段的比值,要求判断这三条线段能否组成三角形方法:最小边+较小边>最大边不用比较三遍,只需比较一遍即可③给出多条线段的长度,要求从中选择三条线段能够组成三角形方法:从所给线段的最大边入手,依次寻找较小边和最小边;直到找完为止,注意不要找重,也不要漏掉;④已知三角形两边的长度分别为a,b,求第三边长度的范围方法:第三边长度的范围:|a-b|<c<a+b⑤给出等腰三角形的两边长度,要求等腰三角形的底边和腰的长方法:因为不知道这两边哪条边是底边,哪条边是腰,所以要分类讨论,讨论完后要写“综上”,将上面讨论的结果做个总结;二、三角形的高、中线与角平分线1. 三角形的高从△ABC的顶点向它的对边BC所在的直线画垂线,垂足为D,那么线段AD叫做△ABC的边BC上的高;三角形的三条高的交于一点,这一点叫做“三角形的垂心”;2. 三角形的中线连接△ABC的顶点A和它所对的对边BC的中点D,所得的线段AD叫做△ABC的边BC上的中线;三角形三条中线的交于一点,这一点叫做“三角形的重心”;三角形的中线可以将三角形分为面积相等的两个小三角形;3. 三角形的角平分线∠A的平分线与对边BC交于点D,那么线段AD叫做三角形的角平分线;要区分三角形的“角平分线”与“角的平分线”,其区别是:三角形的角平分线是条线段;角的平分线是条射线;三角形三条角平分线的交于一点,这一点叫做“三角形的内心”;要求会的题型:①已知三角形中两条高和其所对的底边中的三个长度,求其中未知的高或者底边的长度方法:利用“等积法”,将三角形的面积用两种方式表达,求出未知量;三、三角形的稳定性1. 三角形具有稳定性2. 四边形及多边形不具有稳定性要使多边形具有稳定性,方法是将多边形分成多个三角形,这样多边形就具有稳定性了;四、与三角形有关的角1. 三角形的内角①三角形的内角和定理三角形的内角和为180°,与三角形的形状无关;②直角三角形的两个锐角互余相加为90°;有两个角互余的三角形是直角三角形;2.三角形的外角①三角形外角的意义三角形的一边与另一边的延长线组成的角叫做三角形的外角;②三角形外角的性质三角形的一个外角等于与它不相邻的两个内角之和;三角形的一个外角大于与它不相邻的任何一个内角;③五个基本图形五、多边形及其内角和1. 多边形在平面中,由一些线段首尾顺次相接组成的图形叫做多边形,边形的边与它邻边的延长线组成的角叫做外角;连接多边形不相邻的两个顶点的线段叫做多边形的对角线;注:一个n边形从一个顶点出发的对角线的条数为n-3条,其所有的对角线条数为12n(n−3).2. 凸多边形画出多边形的任何一条边所在的直线,如果多边形的其它边都在这条直线的同侧,那么这个多边形就是凸多边形;3. 正多边形各角相等,各边相等的多边形叫做正多边形;两个条件缺一不可,除了三角形以外,因为若三角形的三内角相等,则必有三边相等,反过来也成立要求会的题型:①告诉多边形的边数,求多边形过一个顶点的对角线条数或求多边形全部对角线的条数n(n−3). 将边数方法:一个n边形从一个顶点出发的对角线的条数为n-3条,其所有的对角线条数为12带入公式即可;4.多边形的内角和①n边形的内角和定理n边形的内角和为(n−2)∙180°②n边形的外角和定理:多边形的外角和等于360°,与多边形的形状和边数无关;BC 三角形的复习题型分类讲解考点一:三角形三边关系的考查: 基本应用1.下列每组数分别是三根小木棒的长度,用它们能摆成三角形的是A. 3cm, 4cm, 8cmB. 8cm, 7cm, 15cmC. 13cm, 12cm, 20cmD. 5cm, 5cm, 11cm 2.2013•宜昌下列每组数分别表示三根木棒的长度,将它们首尾连接后,能摆成三角形的一组是 ,2,6 ,2,4 ,2,3 ,3,4 3.图中共有 个三角形;4.2013•毕节地区已知等腰三角形的一边长为4,另一边长为8,则这个等腰三角形的周长为 A. 16 或16 能力提高1.2013·南通中考有3cm,6cm,8cm,9cm 四条线段,任选其中的三条线段组成一个三角形,则最多能组成三角形的个数为2.长为11,8,6,4的四根木条,选其中三根组成三角形有 种选法,它们分别是3.等腰三角形两边长分别为3,7,则它的周长为 或17 D.不能确定4.2013•广安等腰三角形的一条边长为6,另一边长为13,则它的周长为 或325.等腰三角形两边长分别为4和8,则这个等腰三角形的周长为______________6.若三条线段中a =3,b =5,c 为奇数,那么由a,b,c 为边组成的三角形共有 A. 1个 B. 3个 C. 无数多个 D. 无法确定7.2012·义乌中考如果三角形的两边长分别为3和5,第三边长是偶数,则第三边长可以是8.已知a 、b 、c 是三角形的三边,化简c b -+a -c -b -a .9.已知a,b,c 是三角形的三边长,化简|a-b+c|+|a-b-c|.10.若a,b,c分别为三角形的三边,化简:|a−b−c|+|b−c−a|+|c−a+b|.考点、三角形角的考查基本应用1.一个三角形中最多有个内角是钝角,最多可有个角是锐角.2.若∠A=50°,∠B=∠C,则∠C=_______3.若∠A∶∠B∶∠C=1∶2∶3,则∠A=_______,∠B=_______,∠C=_______.4.已知△ABC的三个内角的度数之比∠A:∠B:∠C=1:3:5,则∠B= 0,∠C= 05.2010山东济宁若一个三角形三个内角度数的比为2︰3︰4,那么这个三角形是A. 直角三角形B. 锐角三角形C. 钝角三角形D. 等边三角形6.在Rt△ABC中,∠C=90°.若∠A=48°,则∠B=_______.7.在Rt△ABC中,∠C=90°,∠A=5∠B,则∠A=_______.8.在△ABC中,∠A=55°,∠B比∠C大25°,则∠B的度数为A.50° B.75° C.100° D.125°9.如图,直线MA∥NB,∠A=70°,∠B=40°,则∠P= .10.如图,则∠α=_______第9题第10题11.如图,在△ABC中,∠A=36°,∠C=72°,BD平分∠ABC,求∠DBC的度数.能力提高1.如图,∠A =40°,∠1+∠2+∠3+∠4=_______.2.在一个三角形中,有一个角等于另外两个角的和,则这个三角形一定是 A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰三角形3.如图,∠A 、∠1、∠2的大小关系是 A .∠A >∠1>∠2 B .∠2>∠1>∠A C .∠A >∠2>∠1 D .∠2>∠A >∠14.如图,△ABC 中,∠A =50°,点D,E 分别在AB,AC 上,则∠1+∠2的大小为 A .130° B .230° C .180° D .310°第1题 第3题 第4题5.已知等腰三角形的一个外角是120°,则它是A.等腰直角三角形B.一般的等腰三角形C.等边三角形D.等腰钝角三角形 6.已知△ABC 中,∠A,∠B,∠C 的外角度数之比为2∶3∶4,则这个三角形是A .直角三角形B .等边三角形C .钝角三角形D .等腰三角形 7.已知三角形的三个外角的度数比为2∶3∶4,则它的最大内角的度数 . A. 90° B. 110° C. 100° D. 120° 8.若一个三角形的一个外角小于与它相邻的内角,则这个三角形是 . A.直角三角形 B.锐角三角形 C.钝角三角形 D.无法确定 9.已知等腰三角形的一个外角为150°,则它的底角为_______.10.2013·重庆中考如图,AB ∥CD,AD 平分∠BAC,若∠BAD=70°,那么∠ACD 的度数为 _______ 11.如图,将三角尺的直角顶点放在直线a 上,a ∥b,∠1=50°,∠2=60°,则∠3的度数为 A .50° B .60° C .70° D .80°第10题 第11题12.如图4,在△ABC 中,已知点D,E,F 分别为边BC,AD,CE 的中点,且ABCS = 42cm ,则S 阴影等于432110题图CB ADEAAAA .22cm B. 12cm C. 122cm D. 142cm13.如图5在△ABC 中,∠ACB=900,CD 是边AB 上的高;那么图中与∠A 相等的角是 A. ∠B B. ∠ACD C. ∠BCD D. ∠BDC14.如图,在△ABC 中,D 是BC 边上一点,∠1=∠2,∠3=∠4,∠BAC=63°,求∠DAC 的度数.15.如图,已知点P 在△ABC 内任一点,试说明∠A 与∠P 的大小关系16.如图,∠1+∠2+∠3+∠4等于多少度;考点二、三角形中线、角平线、高的考查 基本应用1.对下面每个三角形,过顶点A 画出中线,角平分线和高.APCBADCBA2.下列说法错误的是 .A .三角形的三条高一定在三角形内部交于一点B .三角形的三条中线一定在三角形内部交于一点C .三角形的三条角平分线一定在三角形内部交于一点D .三角形的三条高可能相交于外部一点3.如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是 A. 锐角三角形 B. 钝角三角形 C. 直角三角形 D.不能确定 能力提高1.三角形的下列线段中能将三角形的面积分成相等的两部分是 A.中线 B.角平分线 C.高 D.中位线2.2012·梧州中考如图,AE 是△ABC 的角平分线,AD ⊥BC 于点D,若∠BAC=128°,∠C=36°,则∠DAE 的度数是° ° ° °3.如图,已知在△ABC 中,∠ABC 与∠ACB 的平分线相交于点O,若∠BOC =140°,求∠A 的度数.4.如图,在△ABC 中,AD 是∠BAC 的平分线,∠B=54°, ∠C=761求∠ADB 和∠ADC 的度数. 2若DE ⊥AC,求∠EDC 的度数.考点三、多边形相关知识 基本应用1.如果一个多边形的每一外角都是24°,那么它是______边形.CBA (2)CBA(3)2.正n边形的一个外角的度数为60°,则n的值为______.3.若一个多边形的边数为8条,则这个多边形的内角和是°°°°4.2014·南京模拟如图,∠1,∠2,∠3,∠4是五边形ABCDE的4个外角,若∠A=120°,则∠1+∠2+∠3+∠4= ______.5.2013·泰安如图,五边形ABCDE中,AB∥CD,∠1,∠2,∠3分别是∠BAE,∠AED,∠EDC的外角,则∠1+∠2+∠3等于°°°°6.多边形每一个内角都等于150°,则该多边形的边数是条 B.11条条条7.一个多边形的内角和是720°,这个多边形的边数是条条条条8.一个多边形内角和是10800,则这个多边形的边数为9.若凸n边形的内角和为1260°,则从一个顶点出发引的对角线条数是______.10.若从一多边形的一个顶点出发,最多可引10条对角线,则它是A.十三边形B.十二边形C.十一边形D.十边形11.下列正多边中,能铺满地面的是A.正方形B.正五边形C.等边三角形D. 正六边形12.下列正多边形的组合中,能够铺满地面的是A.正六边形和正三角形B.正三角形和正方形C.正八边形和正方形D.正五边形和正八边形13.装饰大世界出售下列形状的地砖:错误!正方形;错误!长方形;错误!正五边形;错误!正六边形;若只选购其中某一种地砖镶嵌地面,可供选用的地砖有A. 错误!错误!错误!B. 错误!错误!错误!C. 错误!错误!错误!D. 错误!错误!错误!14.用三个不同的正多边形能够铺满地面的是A.正三角形、正方形、正五边形B.正三角形、正方形、正六边形C.正三角形、正方形、正七边形D.正三角形、正方形、正八边形能力提高1.一个多边形的内角和等于它的外角和,这个多边形是A.三角形B.四边形C.五边形D.六边形2.一个多边形的边数增加一倍,它的内角和增加° ° C.n-2·180° ·1803.多边形的每一个内角都等于150°,则从此多边形一个顶点出发引出的对角线有 条;4.如图,△ABC 中,∠C =75°,若沿图中虚线截去∠C,则∠1+∠2= ° ° ° °5.一个多边形截去一个角后,所得的新多边形的内角和为2520°,则原多边形有____条边;6.若一个多边形增加一条边,那么它的内角和A.增加180°B.增加360°C.减少360°D.不变.7.用正三角形和正四边形作平面镶嵌,在一个顶点周围,可以有_ __个正三角形和__ _个正四边形; 考点四、知识点综合应用 1.下面说法正确的是个数有①如果三角形三个内角的比是1∶2∶3,那么这个三角形是直角三角形; ②如果三角形的一个外角等于与它相邻的一个内角,则这么三角形是直角三角形;③如果一个三角形的三条高的交点恰好是三角形的一个顶点,那么这个三角形是直角三角形; ④如果∠A=∠B=21∠C,那么△ABC 是直角三角形; ⑤若三角形的一个内角等于另两个内角之差,那么这个三角形是直角三角形; ⑥在 ABC 中,若∠A +∠B=∠C,则此三角形是直角三角形; 个 个 个 个2.一个多边形中,它的内角最多可以有 个锐角3.下列图形中具有稳定性有A. 2个B. 3个C. 4个D. 5个4.如图,一扇窗户打开后用窗钩AB 可将其固定,这里所运用的几何原理是 A.三角形的稳定性 B.两点确定一条直线 C.两点之间线段最短 D.垂线段最短5.如图,在△ABC 中,∠B, ∠C 的平分线交于点O. 1若∠A=500,求∠BOC 的度数.AO2设∠A=n 0n 为已知数,求∠BOC 的度数.6.如图,在直角三角形ABC 中,∠ACB=90°,CD 是AB 边上的高,AB=13cm,BC=12cm,AC=5cm,求:1△ABC 的面积; 2CD 的长;3作出△ABC 的边AC 上的中线BE,并求出△ABE 的面积;4作出△BCD 的边BC 边上的高DF,当BD=11cm 时,试求出DF 的长;7.已知:如图,在△ABC 中,∠ACB =90°,CD 为高,CE 平分∠BCD,且∠ACD :∠BCD =1:2,那么CE 是AB 边上的中线对吗 说明理由.8.已知:如图,在△ABC 中有D 、E 两点,求证:BD +DE +EC <AB +AC . A BC D9.如图,AD为△ABC的中线,BE为△ABD的中线.1∠ABE=15°,∠BAD=40°,求∠BED的度数;2在△BED中作BD边上的高;3若△ABC的面积为40,BD=5,则点E到BC边的距离为多少。

相关文档
最新文档