北师大版数学八年级上册 7 2 定义与命题(2)教案

合集下载

北师大版八年级数学上册7.2定义与命题优秀教学案例

北师大版八年级数学上册7.2定义与命题优秀教学案例
2.通过设置分层问题,满足不同学生的学习需求,促进他们的思维发展。
3.鼓励学生主动提问,培养学生敢于质疑的精神,提高他们的问题解决能力。
(三)小组合作
1.划分学习小组,鼓励学生相互讨论、交流,提高团队协作能力。
2.设计小组合作任务,使学生在讨论中深入理解定义与命题,提高他们的逻辑思维能力。
3.注重小组评价,激发学生的竞争意识,提高他们的学习积极性。
北师大版八年级数学上册7.2定义与命题优秀教学案例
一、案例背景
北师大版八年级数学上册7.2节“定义与命题”的教学,旨在让学生理解概念的含义,掌握命题的构成要素,培养学生的逻辑思维能力。本节课内容是学生对数学语言和基本概念的深入学习,是建立良好数学思维的基础。
在这个阶段,学生已经掌握了初步的数学概念和简单的逻辑推理,但对定义与命题的深层含义理解不足,容易混淆概念,对命题的真假判断缺乏准确性。因此,在教学过程中,我以学生已有的知识为基础,通过丰富的教学活动和实例,引导学生深入理解定义与命题的关系,提高他们的逻辑思维和判断能力。
这些亮点体现了我在教学过程中的创新与实践,注重启发式教学,关注学生的全面发展,培养他们的自主学习能力和团队协作能力。同时,我也注重激发学生的学习兴趣,让他们在轻松愉快的氛围中掌握知识,提高他们的数学素养。
2.感受数学的严谨性和逻辑性,培养学生的求真精神。
3.认识到数学在实际生活中的应用价值,提高学生运用数学解决实际问题的能力。
4.培养学生热爱祖国,为祖国的繁荣富强而努力学习的情感。
在教学过程中,我将以学生为主体,关注每个学生的个体差异,充分调动他们的积极性,引导他们主动参与课堂讨论,培养他们的自主学习能力。同时,注重启发式教学,引导学生发现定义与命题之间的内在联系,提高他们的逻辑思维能力。

北师版八年级上册 第七章 7.2.2 定义与命题 教案

北师版八年级上册 第七章 7.2.2 定义与命题 教案

北师版八年级上册第七章7.2.2 定义与命题教案7.2.2定义与命题(教案)教学目标知识与技能:1.理解公理、证明、定理的概念.2.掌握公理、证明、定理的联系与区别.过程与方法:1.通过对公理的认识,明确证明需要公理和定理.2.经历实际情境,初步体会公理化的思想和方法.情感态度与价值观:1.通过从具体例子中提炼数学概念,培养学生思维的严密性和逻辑性.2.结合实例让学生意识到证明的必要性,培养学生做到有理有据,有条理地表达自己的想法的良好意识,培养学生的语言表达能力.教学重难点【重点】理解公理、证明和定理的概念.【难点】准确找出命题的条件和结论,公理与定理的区别,写出步步有理有据的证明过程.教学准备【教师准备】教材第168页情景图和第169页例题的投影图片.【学生准备】复习命题等相关概念.教学过程生1:李老师不是峄城人,所以李老师可能是市中人或薛城人;李老师不教数学,所以李老师可能教语文或英语;因为峄城人教语文,所以李老师只能教英语;而薛城人不教英语,所以李老师是市中人.生2:(补充)因为王老师不是薛城人,所以王老师可能是市中人或峄城人;李老师已经判断是市中人了,所以王老师只能是峄城人,范老师就是薛城人了.生3:(接着说)王老师是峄城人,所以王老师教语文,而范老师教的课程是数学.师:三位同学推理非常合理,我们为他们鼓掌.(学生鼓掌)解决这样的逻辑推理题目的关键是:根据条件,进行依次判断,进而得出正确结论.那么,如何证实一个命题是真命题呢?我们今天继续来探究.(板书课题)[设计意图]加深学生对逻辑推理的理解,可激发学生学习本课时的兴趣,从而引出本课时的问题.二、新知构建[过渡语]怎样判断一个命题是真命题还是假命题?你判断的依据是什么?(1)、公理、证明、定理的有关概念思路一(多媒体出示)公理、证明、定理的有关概念.问题1【课件1】公理的概念是什么?证明、定理的概念是什么?完成下列填空:(1)叫做公理.除了公理外,其他命题的真假都需要通过的方法进行判断.(2)的过程称为证明.经过证明的称为定理.每个定理都只能用、和已经证明为的命题来证明.问题2【课件2】本套教科书选用的公理有哪些?本套教科书选用九条基本事实(公理)作为证明的出发点和依据,我们已经认识了其中的八条:(1);(2);(3);(4);(5);(6);(7);(8).思路二师: (投影出示)公元前3世纪,人们已经积累了大量的数学知识,在此基础上,古希腊数学家欧几里得编写了一本书,书名叫《原本》,为了说明每一结论的正确性,他在编写这本书时进行了大胆创造:挑选了一部分数学名词和一部分公认的真命题作为证实其他命题的出发点和依据,其中的数学名词称为原名,公认的真命题称为公理.除了公理外,其他真命题的正确性都需要通过演绎推理的方法证实.演绎推理的过程称为证明.经过证明的真命题称为定理,而证明所需的定义、公理和其他定理都编写在要证明的这个定理的前面.《原本》问世之前,世界上还没有一本数学书籍像《原本》这样编排,因此,《原本》是一部具有划时代意义的著作.欧几里得生:老师,我知道了,除公理、定义外,其他的真命题必须通过证明才能证实.师:(投影出示)我们这套教材中已经认识了有如下命题作为基本事实:1.两点确定一条直线.2.两点之间线段最短.3.同一平面内,过一点有且只有一条直线与已知直线垂直.4.两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.5.过直线外一点有且只有一条直线与这条直线平行.6.两边及其夹角分别相等的两个三角形全等.7.两角及其夹边分别相等的两个三角形全等.8.三边分别相等的两个三角形全等.[设计意图]让学生明确有哪些公理,给学生留出一定的思维空间,让他们思考如何证实真命题的问题,在此基础上,引出数学家欧几里得《原本》的编写思路.另外一条基本事实我们将在后面的学习中认识它.等式的有关性质和不等式的有关性质都可以看作公理,在等式或不等式中,一个量可以用它的等量来代替.例如,如果a=b,b=c,那么a=c,这一性质也看作公理,称为“等量代换”.问题3【课件3】还有哪些有关性质可以作为证明的依据?[处理方式](1)让学生自学3分钟(要求根据多媒体出示的问题逐一回答),并独立思考.(2)对于未完成的问题,小组内交流自己的想法并完善,教师巡视,检查完成情况.(3)完成多媒体出示的内容,借助多媒体展示正确答案,学生完成后及时点评,让学生对出现的问题进行矫正.(教师可以根据学生回答问题的情况给予适时点拨)(2)、公理、定理、定义及它们之间的关系(多媒体出示)问题1【课件1】公理的来源是什么?问题2【课件2】定理是怎么得到的?证明定理的依据是什么?问题3【课件3】最初的定理是怎么得到的?问题4【课件4】你能否通过图表把这个关系画出来?[处理方式]首先学生自主思考,挨个回答上面的问题,然后学生交流合作试画图表,此时教师给予必要的指导.巡视同时注意看有没有同学能够画出较为合理的图表,有的话就给予全班展示.最后再多媒体展示,出示答案.[设计意图]通过自主学习、合作交流、优秀图表展示等环节,既可以锻炼学生的自主学习能力,又发展了学生的合作交流能力、有条理思考的能力和语言表达能力.(3)、定理的证明[过渡语]从这些基本事实出发,我们就可以证明已经探索过的结论了,我们已经知道:同角的补角相等.怎么利用你刚才整理的公理进行证明呢?问题1【课件1】你能书写证明下面这个定理的规范步骤吗?(多媒体出示)证明:同角的补角相等.已知:∠1+∠2=180°,∠1+∠3=180°.求证:∠2=∠3.证明:∵∠1+∠2=180°,∠1+∠3=180°(已知),∴∠2=180°-∠1,∠3=180°-∠1(等式的性质),∴∠2=∠3(等量代换).注意:符号“∵”读作“因为”,“∴”读作“所以”.[处理方式]先让学生独立思考,然后学生试着写出证明过程,最后老师在黑板上板书.说明符号“∵”读作“因为”,“∴”读作“所以”.强调“刚开始学习证明,最好在每一步的后面注明依据”.[设计意图]证明已经探索过的结论,目的是引导学生了解证明要有理有据,规范证明的步骤,发展推理能力;培养学生的合作探究意识.巩固训练1:证明等角的补角相等.[处理方式]教师先让学生独立完成,并请学生板演,其他学生在练习本上完成.做完后小组之间开展互评.教师巡视,适时点拨.学生完成后及时点评,借助多媒体展示正确答案,让学生对出现的问题进行矫正.(多媒体出示下面答案)参考答案:已知:∠1=∠2,∠1+∠3=180°,∠2+∠4=180°.求证:∠3=∠4.证明:∵∠1+∠3=180°,∠2+∠4=180°(已知),∴∠3=180°-∠1,∠4=180°-∠2(等式的性质).又∠1=∠2(已知),∴∠3=∠4(等量代换).[设计意图]在解决这个问题的过程中,帮助学生进一步理解和巩固证明的含义,引导学生利用公理、定义、已经证明的真命题解决实际问题,训练思维的严谨性、逻辑性,强化证明步骤的规范性.为了使我们的解答更为规范和有条理,请同学们根据此题总结一下证明一个命题的一般步骤.证明一个命题的一般步骤:1.已知:写出命题的条件(必要时结合图形).2.求证:写出命题的结论.3.证明:写出演绎推理的过程.[处理方式]在小组交流的基础上,在教师的引导下,首先归纳总结出证明一个命题的一般步骤,然后让学生对照步骤,完善各自的解题过程.[设计意图]出示“证明一个命题的一般步骤”,使学生进一步验证并熟悉“证明一个命题的一般步骤”,然后通过自己观察、思考、争辩,发现规律、归纳总结,加深对“证明一个命题的一般步骤”的认识与理解,培养学生的分析和归纳概括的能力.证明:对顶角相等.已知:如图所示,直线AB与直线CD相交于点O,∠AOC与∠BOD是对顶角.求证:∠AOC=∠BOD.证明:∵∠AOC+∠AOD=180°,∠BOD+∠AOD=180°(平角的定义),∴∠AOC和∠BOD都是∠AOD的补角(补角的定义),∴∠AOC=∠BOD(同角的补角相等).定理:对顶角相等.[处理方式]先找一名学生到黑板板演做题步骤,其余同学在练习本上完成,此时教师在下边巡视、指导.然后师生一起规范做题步骤,并在课件上展示例题的规范步骤.[设计意图]教师先引导学生回想命题的一般证明步骤,再由教师示范,写出例题的过程,理由依据要强调.再找一个同学,到黑板上板演,其余同学在练习本上完成,教师巡视,适时点拨,再次向学生强调证明步骤“三步走”:已知、求证和证明,并强调证明的“三依据”:公理、定义和已经证明的真命题.你还能证明下面定理吗?定理:同角(等角)的余角相等.定理:三角形的任意两边之和大于第三边.[知识拓展] 1.对于公理:①公理是不需要推理证实的真命题,②公理可以作为判断其他命题真假的根据.2.对于定理:①定理都是真命题,但真命题不一定都是定理;②定理可以作为推证其他命题的依据.3.证明的一般步骤:①根据题意,画出图形;②根据条件和结论,结合图形写出已知和求证;③经过分析,找出由已知推出求证的途径,写出证明过程.4.假命题的判断:判断一个命题是假命题,只要举出反例来说明即可.三、课堂总结 证明的依据—||—定义、公理—定理—运算和运算法则—反映大小关系的有关性质四、课堂练习1. 称为公理;真命题称为定理;称为证明.答案:公认的真命题经过证明的演绎推理的过程2.写出两个公理:;.答案:两点确定一条直线两点之间线段最短(答案不唯一)3.“平行于同一条直线的两条直线平行”可以写成:如果,那么.答案:两条直线平行于同一条直线这两条直线平行4.判断“对应角相等的三角形是全等三角形”这一命题的真假性,并给出证明.解析:先判断出这一命题的真假,再举例证明即可.解:对应角相等的三角形是全等三角形,是假命题.举例证明:如图所示,DE∥BC,∠ADE=∠B,∠AED=∠C,∠A=∠A,但ΔADE与ΔABC不全等.五、板书设计第2课时1.公理、证明和定理2.证明的基本依据3.定理的证明六、布置作业(1)、教材作业【必做题】教材随堂练习.【选做题】教材习题7.3第2题.(2)、课后作业【基础巩固】1.下列叙述错误的是()A.所有的命题都有条件和结论B.所有的命题都是定理C.所有的定理都是命题D.所有的公理都是真命题2.下列命题为假命题的是()A.三角形三个内角的和等于180°B.三角形两边之和大于第三边C.三角形两边的平方和等于第三边的平方D.三角形的面积等于一条边的长与该边上的高的乘积的一半3.已知命题:等底等高的两个三角形面积相等,则这个命题的结论是()A.两个三角形B.两个三角形的面积C.两个三角形的面积相等D.两个三角形等底等高4.命题“对顶角相等”的“条件”是.【能力提升】5.如图所示,AB=AE,∠1=∠2,∠C=∠D.求证ΔABC≌ΔAED.【思维拓展】6.如图所示,已知∠AOC与∠BOD都是直角,∠BOC=65°.(1)求∠AOD的度数;(2)求证∠AOB=∠DOC;(3)若不知道∠BOC的具体度数,其他条件不变,(2)的关系仍成立吗?若成立,说明理由.【答案与解析】1.B2.C(解析:直角三角形两直角边的平方和等于斜边的平方,所以C选项为假命题.)3.C4.两个角是对顶角(解析:改写成“如果两个角是对顶角,那么这两个角相等”就容易找到命题的条件和结论了.)5.证明:因为∠1=∠2,所以∠1+∠EAC =∠2+∠EAC ,即∠BAC =∠EAD ,在ΔABC 和ΔAED 中,{∠C =∠D ,∠BAC =∠EAD ,AB =AE ,所以ΔABC ≌ΔAED (AAS).6.解析:(1)先求出∠DOC ,继而得出∠AOD.(2)分别求出∠AOB 和∠DOC 的度数,可得∠AOB =∠DOC.(3)(2)的关系依然成立,根据同角的余角相等可得.(1)解:因为∠DOC =∠DOB-∠BOC =90°-65°=25°,所以∠AOD =∠AOC +∠DOC =90°+25°=115°. (2)证明:因为∠DOC =25°,∠AOB =∠AOC-∠BOC =90°-65°=25°,所以∠AOB =∠DOC. (3)解:成立.因为∠AOB =∠AOC-∠BOC =90°-∠BOC ,∠COD =∠BOD-∠BOC =90°-∠BOC ,所以∠AOB =∠COD.。

最新初中北师版八年级数学上册7.2定义与命题(2)公开课教案

最新初中北师版八年级数学上册7.2定义与命题(2)公开课教案

(2) 定义与命题7.2 : 教学目标知识技能.了解真命题和假命题的概念。

1 .会在简单的情况下判别一个命题的真假。

2 .了解公理和定理的含义。

3 过程与方法,让学生在自己提出问题、.从生活命题引入数学命题,并通过小组活动1自己解决问题的过程中经历知识的产生过程归纳、并在这个过程中了解类比、, 分类等思维方法。

.在学生总结命题、真命题、定理和公理之间的关系中,感受数学知识间的2 内在联系。

.通过对真假命题的判断,初步体验举反例、推理说明等数学方法。

3 情感态度与价值观让学生在推理中感觉到数学的有用性。

教学重点:命题的真假的概念和判别。

教学难点判别命题的真假其实已涉及证明。

教学过程一、复习也就是给出它们的定,作出明确的规定,对名称和术语的含义加以描述:、定义1 . 义叫做命题,判断一件事情的句子:、命题的定义2命题的结构、3结论是由,条件是已知事项.每个命题都由条件和结论两部分组成: . 已知事项推断出的事项其中“如,那么……”的形式,命题可以写成“如果……,一般地:、命题的特征4 . “那么”引出的部分是结论,果”引出的部分是条件把下列命题改写成“如果┄┄那么┄┄”的形式,并指出命题的条件和结论、相等的角是对顶角;1 、钝角大于它的补角;2 、两直线平行,同位角相等;3 二、新授课想一想如何证实一个命题是真命题呢?:用学过的观察、实验法1生:这些方法往往不可靠2生:能不能根据已知的真命题来证明呢?3生那已知的真命题又是怎么证明的?4:生 . :……5生 . 公认的真命题称为公理推理的过程叫证明。

. 经过证明的真命题称为定理 : 本套教材选用如下命题作为公理两点确定一条直线。

1. 两点之间线段最短。

2.,如果同位角相等,两条直线被第三条直线所截3.; 那么这两条直线平行 ; 同位角相等,两条平行线被第三条直线所截4. ; 两边及其夹角对应相等的两个三角形全等5. ; 两角及其夹边对应相等的两个三角形全等6. ; 三边对应相等的两个三角形全等7. . 对应角相等,全等三角形的对应边相等8. 同角(等角)的补角相等。

北师大版八年级数学上册教学设计:7.2定义与命题(2)

北师大版八年级数学上册教学设计:7.2定义与命题(2)
教学难点
体会公理化思想和方法,了解本教材所采用的公理。
教法学法
引导、启发,合作交流
教学环节
教学过程
设计意图
回顾引入
新知探究
1.什么叫做定义?举例说明。
2.什么叫命题?举例说明。
观察下列命题,发现它们的结构有什么共同特征?
(1)如果两个三角形的三条边对应相等,那么这两个三角形全等。
(2)如果一个三角形是等腰三角形,那么这个三角形的两个底角相等。
巩固训练
归纳小结
探究真假命题的验证:
说明一个命题是假命题,通常举出一个反例就可以了,使之具备命题的条件,而不具有命题的结论,这种例子称为反例,但是要说明一个命题是正确的无论验证多少个特例,也无法保证命题的正确性.如何验证命题的正确性呢?
正确的命题称为真命题,不正确的命题称为假命题。
读一读
介绍《几何原本》、公理、定理等知识:
教师讲解与学生习读相结合。培养学生公理化思想和方法,养成科学、严谨思维习惯。
培养学生逻辑思维能力,推理能力。
归纳本节课所学知识,对本节课有一个系统的认识,从而能准确地区分命题的真假性,了解命题结构中的条件与结论。




7.2定义与命题(2)
回顾引入:……公理、定理:……
命题的结构:……证明:……
命题的类型:……归纳小结:……
7.两角及其夹边对应相等的两个三角形全等。
8.三边对应相等的两个三角形全等。
等式和不等式的有关性质也可看作公理。
定理(P169略)
例题:(P169略)
定理:对顶角相等。
了解命题中的真假命题、公理、定理的含义,通过学习学会区分命题的条件、结论。
学会判别真、假命题,理解反例、证明等概念。

《定义与命题第2课时》示范公开课教学设计【北师大版八年级数学上册】

《定义与命题第2课时》示范公开课教学设计【北师大版八年级数学上册】

第七章平行线的证明学生在以前的学习中接触了不少的几何知识,对很多定理、证明过程有了很深刻的认识,本节课将对定理及定理的证明严格规范.◆教学目标4.【教学重点】命题的概念.【教学难点】命题的概念的理解.几名学生表演引入部分.老师准备多媒体课件.一、创设情境,引入新知活动内容:①什么叫做定义?举例说明;②什么叫命题?举例说明.学生举手发言,提问个别学生.我们知道,举一个反例就可以证明一个命题是假命题,那么如何证实一个命题是真命题呢?用以前学过的观察、实验、验证特例等方法来证明可靠吗?能不能根据已经知道的真命题证实呢?那已经知道的真命题又是如何证实的?二、合作交流,探究新知①介绍《几何原本》、公理、定理等知识.在数学发展史上,数学家们也遇到过类似的问题.公元前 3 世纪,人们已经积累了大量知识,在此基础上,古希腊数学家欧几里得(公元前300 前后)编写了一本书,书名叫《原本》,为了说明每一结论的正确性,他在编写这本书时进行了大胆创新,挑选了一部分数学名词和一部分公认的真命题作为证实其它命题的起始依据,其中的数学名词称为原名,公认的真命题称为公理,除了公理外,其他真命题的正确性都通过推理的方法证实,推理的过程称为证明,经过证明的真命题称为定理,而证明所需要的定义、公理和其他定理都编写在要证明的这个定理的前面.《原本》问世之前,世界上还没有一本数学书籍象《原本》这样编排,因此,《原本》是一部具有划时代意义的著作.②公理、定理、概念和证明的关系.③介绍本教材的公理.1.两点确定一条直线.2.两点之间线段最短.3.同一平面内,过一点有且只有一条直线与已知直线垂直.4.两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.5.过直线外一点有且只有一条直线与这条直线平行.6.两边及其夹角对应相等的两个三角形全等.7.两角及其夹边对应相等的两个三角形全等.8.三边对应相等的两个三角形全等.此八条基本事实前面已详细探索过,不必验证它们的正确性,可以直接用来证实其它命 题的正确性,另外一条我们将在以后认识它.此外等式和不等式的有关性质也可看作公理.比 如:如果 a=b ,b=c ,那么 a=c. ④ 读一读《原本与几何原本》 三、运用新知例 已知:如图,直线 AB 与直线 CD 相交于点 O ,∠AOC 与∠BOD 是对顶角. 求证:∠AOC=∠BOD.证明:∵直线 AB 与直线 CD 相交于点 O , ∴ ∠AOB 和∠COD 都是平角(平角的定义).∴ ∠AOC 和∠BOD 都是∠AOD 的补角(外角的定义). ∴ ∠AOC=∠BOD (同角的补角相等). 四、巩固新知1. “两点之间,线段最短”这个语句是( A.定理B.公理C.定义2. “同一平面内,不相交的两条直线叫做平行线”这个语句是( )D.只是命题)A.定理B.公理C.定义D.只是命题3. 下列命题中,属于定义的是( A.两点确定一条直线; )B.同角的余角相等;C.互补的两个角是邻补角;D.点到直线的距离是该点到这条直线的垂线段的长度 4. 下列句子中,是定理的是( A.若 a=b ,b=c ,则 a=c ; ),是公理的是().B.对顶角相等C.全等三角形的对应边相等,对应角相等略.此八条基本事实前面已详细探索过,不必验证它们的正确性,可以直接用来证实其它命 题的正确性,另外一条我们将在以后认识它.此外等式和不等式的有关性质也可看作公理.比 如:如果 a=b ,b=c ,那么 a=c. ④ 读一读《原本与几何原本》 三、运用新知例 已知:如图,直线 AB 与直线 CD 相交于点 O ,∠AOC 与∠BOD 是对顶角. 求证:∠AOC=∠BOD.证明:∵直线 AB 与直线 CD 相交于点 O , ∴ ∠AOB 和∠COD 都是平角(平角的定义).∴ ∠AOC 和∠BOD 都是∠AOD 的补角(外角的定义). ∴ ∠AOC=∠BOD (同角的补角相等). 四、巩固新知1. “两点之间,线段最短”这个语句是( A.定理B.公理C.定义2. “同一平面内,不相交的两条直线叫做平行线”这个语句是( )D.只是命题)A.定理B.公理C.定义D.只是命题3. 下列命题中,属于定义的是( A.两点确定一条直线; )B.同角的余角相等;C.互补的两个角是邻补角;D.点到直线的距离是该点到这条直线的垂线段的长度 4. 下列句子中,是定理的是( A.若 a=b ,b=c ,则 a=c ; ),是公理的是().B.对顶角相等C.全等三角形的对应边相等,对应角相等略.此八条基本事实前面已详细探索过,不必验证它们的正确性,可以直接用来证实其它命 题的正确性,另外一条我们将在以后认识它.此外等式和不等式的有关性质也可看作公理.比 如:如果 a=b ,b=c ,那么 a=c. ④ 读一读《原本与几何原本》 三、运用新知例 已知:如图,直线 AB 与直线 CD 相交于点 O ,∠AOC 与∠BOD 是对顶角. 求证:∠AOC=∠BOD.证明:∵直线 AB 与直线 CD 相交于点 O , ∴ ∠AOB 和∠COD 都是平角(平角的定义).∴ ∠AOC 和∠BOD 都是∠AOD 的补角(外角的定义). ∴ ∠AOC=∠BOD (同角的补角相等). 四、巩固新知1. “两点之间,线段最短”这个语句是( A.定理B.公理C.定义2. “同一平面内,不相交的两条直线叫做平行线”这个语句是( )D.只是命题)A.定理B.公理C.定义D.只是命题3. 下列命题中,属于定义的是( A.两点确定一条直线; )B.同角的余角相等;C.互补的两个角是邻补角;D.点到直线的距离是该点到这条直线的垂线段的长度 4. 下列句子中,是定理的是( A.若 a=b ,b=c ,则 a=c ; ),是公理的是().B.对顶角相等C.全等三角形的对应边相等,对应角相等略.。

最新北师大版数学八年级上册《7.2 定义与命题 (第2课时)》精品教学课件

最新北师大版数学八年级上册《7.2 定义与命题 (第2课时)》精品教学课件
找出由已知推出结论的途径,写出证明过程,并注明依据. 证明过程的注意事项:
证明的每一步推理都要有根据,不能“想当然”. 这些根据,可以是已知条件,也可以是学过的定义、 基本事实、定理等.
巩固练习
证明定理 :同角的补角相等.
已知:∠2是∠1的补角, ∠3是∠1的补角.
求证:∠2=∠3.
1
证明:∵∠2是∠1的补角(已知 ),
求证∠ B+ ∠D=180°.
证明:
∵ AB ∥ CD,
C
D
∴ ∠B= ∠C( 两直线平行,内错角相等 ).
∵ CB ∥ DE, ∴ ∠ C+ ∠ D=180°( 两直线平行,同旁内角互补 ).
∴ ∠ B+ ∠ D=180°( 等量代换
).
课堂检测
基础巩固题
5. 已知:b∥c, a⊥b .
求证:a⊥c.
∴AB∥CD(同位角相等,两直线平行).
巩固练习
变式训练
如图所示,直线AB和直线CD,直线BE和直线CF都被直线BC所 截,在下面三个式子中,请你选择其中两个作为题设,剩下的 一个作为结论,组成一个真命题并写出对应的推理过程 ①AB∥CD,②BE∥CF,③∠1=∠2 题设(已知): ①② . 结论(求证): ③ .
绎推理的方法证实.演绎推理的过程称为证明. 4.定理: 经过证明的真命题称为定理.
探究新知
归纳总结
一些条件 +
原名、公理
演绎推理的 过程叫证明
经过证明的真 命题叫定理
推 理 证实其他命 题的正确性
探究新知
本套教科书选用九条,我们已经认识了其中的八条: 公理 1.两点确定一条直线;
2.两点之间线段最短; 3.同一平面内,过一点有且只有一条直线与已知直线垂直; 4.两条直线被第三条直线所截,如果同位角相等,那么这 两条直线平行(简述为:同位角相等,两直线平行); 5.过直线外一点有且只有一条直线与这条直线平行; 6.两边及其夹角分别相等的两个三角形全等; 7.两角及其夹边分别相等的两个三角形全等; 8.三边分别相等的两个三角形全等.

7.2(2)定义与命题 徐利华

7.2(2)定义与命题   徐利华
…………………………… 师:其实,在数学发展史上,数学家们也遇到过类似的问题,公元前3世纪,人们已经积累了大量的数 学知识,在此基础上,古希腊数学家欧几里得(Euclid,公元前300前后)编写了一本书,书名叫《原本 》(Elements),为了说明每一结论的正确性,他在编写这本书时进行了大胆创造:挑选了一部分数学 名词和一部分公认的真命题作为证实其他命题的起始依据.其中的数学名词称为原名,公认的真命题称 为公理(axiom)..除了公理外,其他真命题的正确性都通过推理的方法证实.推理的过程称为证明(p roof).经过证明的真命题称为定理(theorem).而证明所需的定义、公理和其他定理都编写在要证 明的这个定理的前面.《原本》问世之前,世界上还没有一本数学书籍像《原本》这样编排.因此,《 原本》是一部具有划时代意义的著作. 生:老师,我知道了,除公理、定义外,其他的真命题必须通过证明才能证实. 师:对,我们这套教材有如下命题作为公理:
教学过程:
一、创设情境,导入新课
师:上节课我们研究了命题,那么什么叫命题呢? 生:判断一件事情的句子,叫做命题. 师:那么如何判断一个命题的真假呢? 生:举反例就可以. 师:好,下面我们来做一组练习:
下列各命题哪些是真命题?哪些是假命题?请说出你的理由. (1)如果两个角相等,那么它们是对顶角; (2)如果a>b,b>c,那么a=c; (3)两角和其中一角的对边对应相等的两个三角形全等; (4)菱形的四条边都相等; (5)全等三角形的面积相等. 师:大家思考后,来分组讨论.
师:很好,同学们不仅能辨别命题的正确与否,还能举例说明命题的错误.真棒!由大家刚才分析可以
知道:要说明一个命题是一个假命题,通常举出一个例子就可以.
师:那么请同学们思考一下,如何证实一个命题是真命题呢?下面开始我们今天的主要的探究任务(

北师大版八年级数学7.2定义与命题(2)教案

北师大版八年级数学7.2定义与命题(2)教案

3.同一平面内,过一点有且只有一条直线与直线垂直.4.两条直线被条直线所截,如果同位角相等,那么这两条直线平行〔即:同位角相等,两直线平行〕5.过直线外一点有且只有一条直线与这条直线平行.6.两边及其夹角分别相等的两个三角形全等.〔SAS)7.两角及其夹边分别相等的两个三角形全等. (ASA)8.三边分别相等的两个三角形全等. (SSS)另外一条根本领实我们将在后面的学习中认识它.9.平行线截线段成比例.【设计:总结学生学过的根本领实,并以它们作为证明的出发点,初步构建几何证明的“公理化体系〞,培养学生逻辑推理能力.用数学的三种语言〔文字语言、符号语言、图示语言〕表达“九条根本领实〞,提高学生数学语言的表达能力.】思考四:代数知识中是否也有“公理〞呢?能举例说明吗?探究活动三:感受代数中的公理数与式的运算律和运算法则、等式的有关性质和不等式的有关性质都可以看作公理.在等式或不等式中,一个量可以用它的等量来代替.例如:如果a=b,b=c,则a=c,这一性质也可以作为证明的依据,称为“等量代换〞.如果a>b,b>c,那么a>c, 称为“不等式的传递性.〞【设计:用学生学过的具体实例,感受代数的公理化思想.】思考五:请同学们结合所学知识,谈谈你对“根本领实〞或“公理〞的理解?〔1〕公理是通过长期实践反复验证过的,不需要再进行推理论证而都成认的真命题.〔2〕公理可以作为判定其他命题真假的依据.【设计:深刻理解公理的独立性、完备性、和谐性.】教学活动三: 典例分析例:如下图,直线AB与直线CD相交于点O,∠AOC与∠BOD是对顶角. 求证:∠AOC=∠BOD.证明:∵直线AB与直线CD相交于点O〔〕,∴∠AOB和∠COD都是平角〔平角的定义〕.∴∠AOC和∠BOD都是∠AOD的补角〔补角的定义〕.∴ ∠AOC=∠BOD〔同角的补角相等〕.定理:对顶角相等.【设计:严格证明几何定理“对顶角相等〞,初步感受证明的思路和书写过程.】随堂练习:证明定理: 三角形的任意两边之和大于边.:如图,△ABC.求证:AB+BC>AC,BC+CA>AB,CA+AB>BC.证明:∵AC是以点A、点C为端点的线段〔〕,∴AB+BC>AC〔两点之间,线段最短〕.∵AB是以点A、点B为端点的线段〔〕,∴ BC+CA>AB 〔两点之间,线段最短〕.∵BC是以点B、点C为端点的线段〔〕,∴ CA+AB>BC 〔两点之间,线段最短〕.【设计:证明定理,感受证明的思路和书写过程.】教学活动四: 文化拓展数学文化阅读材料一:数学家欧几里得;数学文化阅读材料二:《几何原本》;数学文化阅读材料三:徐光启与《几何原本》.【设计:了解《几何原本》和数学家欧几里得、徐光启,感受公理化方法对数学开展和促进人类文明进步的价值.】板书设计一.公理、证明和定理的含义二.数学的“九条根本领实〞三.代数中的公理作业设计定义与命题〔二〕作业单。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2 定义与命题 (2)
教学目标
知识技能:
1.了解真命题和假命题的概念。

2.会在简单的情况下判别一个命题的真假。

3.了解公理和定理的含义。

过程与方法:
1.从生活命题引入数学命题,并通过小组活动,让学生在自己提出问题、自己解决问题的过程中经历知识的产生过程, 并在这个过程中了解类比、归纳、分类等思维方法。

2.在学生总结命题、真命题、定理和公理之间的关系中,感受数学知识间的内在联系。

3.通过对真假命题的判断,初步体验举反例、推理说明等数学方法。

情感态度与价值观:
让学生在推理中感觉到数学的有用性。

教学重点
命题的真假的概念和判别。

教学难点
判别命题的真假其实已涉及证明。

教学过程
一、复习
1、定义:对名称和术语的含义加以描述,作出明确的规定,也就是给出它们的定义.
2、命题的定义:判断一件事情的句子,叫做命题
3、命题的结构:每个命题都由条件和结论两部分组成.条件是已知事项,结论是由已知事项推断出的事项.
4、命题的特征:一般地,命题可以写成“如果……,那么……”的形式,其中“如果”引出的部分是条件,“那么”引出的部分是结论.
把下列命题改写成“如果┄┄那么┄┄”的形式,并指出命题的条件和结论
1、相等的角是对顶角;
2、钝角大于它的补角;
3、两直线平行,同位角相等;
二、新授课
想一想
如何证实一个命题是真命题呢?
生1:用学过的观察、实验法
生2:这些方法往往不可靠
生3:能不能根据已知的真命题来证明呢?
生4:那已知的真命题又是怎么证明的?
生5:…….
公认的真命题称为公理.
推理的过程叫证明。

经过证明的真命题称为定理.
本套教材选用如下命题作为公理:
1.两点确定一条直线。

2.两点之间线段最短。

3.两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行;
4.两条平行线被第三条直线所截,同位角相等;
5.两边及其夹角对应相等的两个三角形全等;
6.两角及其夹边对应相等的两个三角形全等;
7.三边对应相等的两个三角形全等;
8.全等三角形的对应边相等,对应角相等.
定理同角(等角)的补角相等。

定理同角(等角)的余角相等。

定理三角形的两边之和大于第三边
例已知:如图直线AB与直线CD相交于O, ∠AOC与∠BOD是对顶角。

求证:∠AOC=∠BOD
证明:∵直线AB与CD相交于O,
∴∠AOC+ ∠AOD=180°
∠BOD+∠AOD=180°
∴∠AOC=180°- ∠AOD
∠BOD=180°-∠AOD
∴∠AOC=∠BOD(等量代换)
等式的有关性质和不等式的有关性质都可以看作公理
在等式或不等式中,一个量可以用它的等量来代替.例如:如果a=b , b=c ,那么a=c , 这一性质也看作公理,称为“等量代换”
三、练习
1、下列命题中,属于定义的是()
A、两点确定一条直线
B、同角的余角相等
C、两直线平行,内错角相等
D、直线外一点到这条直线的垂线段的长度叫做这点到这条直线的距离
2、“同一平面内,不相交的两条直线叫做平行线”这个语句是()
A、定理
B、公理
C、定义
D、只是命题
4、下列句子中,是定理的是(),
是公理的是(),
是定义的是()
A、若a=b,b=c,则a=c;
B、对顶角相等
C、全等三角形的对应边相等,对应角相等
D、有一组邻边相等的平行四边形叫做菱形
E、两条平行直线被第三条直线所截,同位角相等
四、小结
这节课你学习了哪些知识?
五、作业
习题7.3 1、2题。

相关文档
最新文档