保守力与势能
浅谈保守力

一、力的分类1.保守力。
所做功只与物体的相对起始和终点所在之处相关联,而与其物体的过程轨迹无关的力,即为保守力[1]。
假若一力学体系里,所有的作用力都是保守力,则称此系统为保守系统。
若场力的积分,则W ABC=W ADC,由此W ABCDA= W ABC+W CDA=W ABC-W ADC=0。
从其定义已经了解到对象的相对起始和终点所在之处决定了保守力做功的多少,假若在此力的作用下,物体的运动在一个封闭的路径绕行一个周期后回到起始位置,则作功是零。
假若空间中存在某一质点,质点不论在其周围任何位置,其所受到的力f与向量同向或反向,即受到吸引力或排斥力,力的大小是标量的单值函数,我们称这样的力为有心力。
所有的有心力都是保守力,如万有引力(重力)。
如果在一个孤立的系统中,所有的作用力都是保守力,则为机械能守恒的系统。
2.非保守力。
力所做的功与其运动轨迹有关的作用力即为非保守力。
通常由于能量守恒原理,非保守力做功的能量损耗被转移到其他地方。
例如,物体间摩擦力做功会使机械能转变为热能,有时候也伴随着声能等。
游船在水中移动时,水对船身的阻力将船所具有的机械能转变,如热能、声能和波能等。
从热力学第二定律可推断出,非保守力的能量损耗不可逆。
3.耗散力。
作用力对质点体系做功为负,从此导致整个系统的机械能总体减少的力即为耗散力。
耗散力做功与力使物体运动所经过的轨迹有关[2-4]。
力的划分根据力做功与运动轨迹是否相关而区分为保守力与非保守力;耗散力、非耗散力是非保守力的两个组成部分。
我们在力学体系内了解的非保守力基本上都为耗散型力,因而长久以来耗散力就几乎等同于非保守力的代替词。
然而非保守力并不都是耗散力,这二者是有区别的,例如,一根绳子跨过一个上端固定的轻质滑轮,此绳两端分别连接有两个重量不相等的重物,在放开物体令其自由运动后,绳子的拉力对下降的物体做功为负,对上升的物体做功为正。
但是根据能量守恒定律,在整个过程中机械能并无损失,而是转变为相应内能等,所以此拉力既不是属于保守力之列,也不是属于耗散力之列,即为非耗散力。
势能函数与保守力的关系

势能函数与保守力的关系势能函数与保守力的关系势能函数和保守力是两个重要的物理概念,它们之间有着密切的关系。
势能函数描述了物体所处的位置的势能大小,而保守力则是指一类物理力,其做功与物体所经过的路径无关。
在本文中,我们将探讨势能函数与保守力之间的关系。
首先,我们需要了解什么是势能函数。
如果一个物体在场中的位置发生了变化,那么它的势能也会发生变化。
在一定条件下,物体的势能与位置之间存在一种确定的数学关系,这种关系就是势能函数。
在物理中,势能函数常常用U(x)来表示,其中X是物体的位置。
其次,我们需要明白什么是保守力。
保守力是指其做功与路径无关的力,也就是说,无论物体经历了怎样的路径,保守力所做的功都是相同的。
在物理中,保守力常常被描述为一类势力,它们的势能变化与位置之间存在确定的数学关系。
接着,我们来看一下势能函数与保守力之间的关系。
势能函数与保守力之间存在着一种紧密的联系,也就是说,如果一个力是保守力,那么它所描述的势能函数一定存在。
反之亦然,如果一个势能函数存在,那么它所描述的力一定是保守力。
这是因为在物理中,只有保守力才能描述为一类势力,保守力的存在必然导致势能函数的存在。
同样的,势能函数的存在也必然说明描述这种情形的力是保守力。
此外,我们还需要了解,保守力的势能函数在很多方面都是唯一的。
也就是说,对于一个特定的保守力,存在着唯一一个势能函数可以描述它,并且这个势能函数的形式是确定的。
这是由保守力的基本特性所决定的。
总结一下,势能函数与保守力之间存在着密切的关系。
保守力可以描述为一类势力,保守力的存在必然导致势能函数的存在。
同样的,势能函数的存在也必然说明所描述的力是保守力。
在大多数情况下,保守力的势能函数都是唯一的,这是由保守力的基本特性所决定的。
深入了解势能函数与保守力之间的关系有助于我们更好地理解物理学的基本概念,进一步提高我们的学术水平。
浅议物理学中的保守力和势能

浅议物理学中的保守力和势能【摘要】保守力和势能在物理学中扮演着重要的角色。
保守力是指不依赖路径的力,其所做的功与路径无关。
势能则是对保守力的一种描述,是可用于确定力学系统状态的函数。
保守力和势能之间存在着密切的关系,一般通过势能函数来确定。
根据保守力和势能的关系,我们可以推导出机械能守恒定律,即在只受保守力的情况下,力学系统的机械能保持不变。
保守力和非保守力的区别在于是否可以用势能来描述。
保守力和势能的重要性体现在它们对力学系统的描述和分析中起到了关键作用,而在物理学中也有着广泛的应用。
为了更深入地理解和探索保守力和势能,未来的研究方向可能会集中在更复杂系统下的运用和拓展。
【关键词】保守力、势能、物理学、性质、关系、确定、守恒定律、区别、重要性、应用、未来研究方向。
1. 引言1.1 保守力的基本概念保守力是物理学中一个非常重要的概念,它在描述物体运动和相互作用过程中起着至关重要的作用。
保守力是一种在物体运动中所做的功与路径无关的力,即对于沿着任意闭合路径作功的保守力,总是零。
这意味着保守力对物体的位移所做的功只依赖于起点和终点,而与具体路径无关。
保守力的基本概念包括以下几个要点:1. 保守力与势能的关系:保守力可以用势能来描述和计算。
势能是对物体在某个力场中位置所储存的能量,而保守力则是通过势能的梯度来定义和推导的。
具体来说,对于一个保守力F,其对应的势能函数为U,满足F = -∇U。
这里的负号表示力是势能的负梯度方向,即力的方向指向势能减小的方向。
2. 势能的引入:为了便于描述和计算保守力对物体的作用,我们引入了势能这一概念。
势能可以是位置的函数,也可以是速度和其他物理量的函数。
通过引入势能,我们可以将关于保守力的问题转化为寻找势能函数和利用势能函数进行计算的问题。
保守力的基本概念包括了与势能的关系和势能的引入。
这些概念在物理学中有着广泛的应用和重要性,对于解决各种运动和相互作用问题都起着至关重要的作用。
大学物理-保守力和势能

e rdr dr co srdr
Wa bG r2M d rm GM (r1 a m r1 b)
But if M~m, what is the work?
Example: 质量为M、m的两球原来相距为a,在万有引力作
用下逐渐靠近至相距为b,求在此过程中引力所作的功。
When only gravitation does work:
(1) Near the earth’s surface 质点高度变化不大:
12m2vmgz常数
(2) High above the earth’s surface 质点高度变化很大:
1 2m2vmg2/R r常数
When only elastic force does work: 弹性力场:
m
m
体作质功心G 占系主里m mm要,M M 内 地(力位1a的。b1)功与质量成r1反0比Mm 。m 对a,小r1' 质M 量m 物mb
引力的功只m与M物1体1系统的初始和最终相对位置 有W 关2,G 与路M m 径无M关(a。b)
W 1W 2Gm(a 1M b 1)W W1/W2m/M
Case study 2: Work done by elastic forces
Work done by a conservative force 保守力的功:
(1) Reversible, “work” can be stored in a “BANK”;
(2) Independent of the path of the body;
(3) Zero work for closed path.
ba acbW0 elastriccefo dko wo
保守力和势能

一对力所作的总功的只取决于两质点的相对运动;
一对力做功的代数和与参考系的选择无关;
5
什么条件下, 一对内力做功为零?
v
m
M
f
s s
C
f
v
N
C
N
Af Af 0
作用点无相对位移
AN AN 0
相互作用力与相对位移垂直
6
功的大小与参照系有关
功的单位为焦耳 功率(power) 功率:单位时间内力对物体所作的功 平均功率
yb ya
W mgdy mg( yb ya ) mg( ya yb )
重力是保守力。重力的功等于重力势能增量 的负值。重力势能以地面为零势能点。
y dy a p o
12
dr dx
W mg( yb ya ) =-EP 为势能增量
dr
b
EP mgdy mg(0 y) mgy
P
C
y
R
.
o
m
F
解:
F F0 xi F0 yj
r
x
0
dr dxi dyj
2R
r xi yj
2 A F d r F0 x d x F0 y d y 2F0 R
0 0
8
练习2 如图 M =2kg , k =200N m , s = 0.2m , g ≈ 10ms
功(work)
力对空间累积
中学知识恒力作功
F
a
F
A F s cos F s
s
s
ds
dr
保守力与非保守力及势能

§3.6 保守力与非保守力、势能
3. 三种势能函数:
(1) 重力势能:
y y
E p ( y ) F重 d r
(0)
( mg ) ˆ j dy ˆ j
y
( y) 0
o
Ep( y )
mg
E p ( y ) mgy
即:势能零点正上方重力 势能为正,下方为负。
E p ( y ) mgy
m?????epr?f引?drf引mrrorep?0??mm????g2er?drerrreprmmepr?gorrmmepr?gr即
Chapter 3. 守恒定律
§3.6 保守力与非保守力、势能
§3.6 保守力与非保守力、势能
·1 ·
Chapter 3.力,其势能函数为何不同?它们
有何内在关系? 3. 若选地表为万有引力势能零点,则 引力势能表达式如何?
?
( The end ) ·7 ·
Chapter 3. 守恒定律
§3.6 保守力与非保守力、势能
归纳:
1.重力势能: E p ( y ) mgy
1 2 2. 弹性势能: E p ( x ) kx 2
Ep( y )
1 E p ( x ) kx 2 2
o
x
·5 ·
Chapter 3. 守恒定律
§3.6 保守力与非保守力、势能
(3) 万有引力势能:
M
F引 m
E p ( r ) F引 d r
(r )
( )
o
r
Ep( ) 0
Mm ˆ r dr e ˆr ( G 2 )e r r
2. 势能函数选取应遵从的原则:
动量与角动量比较 保守力和势能 质点系的三个运动定理

= (42 . 2 − 29 . 8 ) × 10 3 = 12 .4 × 10 3 ms −1
(c)考虑地球对物体的引力
1 2 GM e m 1 1 2 mv3 − mv2 = mvr2− e 2 2 2 Re
2GM e v2 = = 11.2ms −1 Re
v 32 = v 22 + v r2− e
相对太阳的初速度
(b)考虑地球绕太阳运动 公转速度为 ve − s = 29.8 × 103 ms−1
r ve− s
r v r −e
r r r r r vr−e = vr−s + vs−e = vr −s − ve−s
设物体相对地球的初速度与地球相对太 阳运动速度方向一致,则
Rse
vr−e = vr−s − ve−s
A = −∫
x2 x1
x1 x x2 x
1 1 2 2 kx d x = kx 1 − kx 2 2 2
弹力作功只与始末位置有关。
万有引力作功 r r Mm r r dA = f ⋅ dr = −G 3 r ⋅ dr r
A
r r r r ⋅ dr = r dr cos α = rdr r 注意: dr ≠ dr
动量与角动量的比较
力:
动量 动量定理
t2
r F r r p = mv
力矩:
角动量
r r ∫ F外 d t = ∆ P
t1
r r dp F = dt
r r d L M = 角动量定理 dt
t2
r r r M =r×F r r L = r ×P
对固定点
r r ∫ M外dt = ∆L
t1
与内力无关 角动量守恒
1 1 2 A = kx 1 − kx 弹力作功 2 2 ⎛ Gm 1 m 2 ⎞ ⎟− 万有引力作功 A = ⎜ − ⎜ ⎟ r1 ⎝ ⎠
保守力和势能

xB kxdx
xA
1 2
k xA2
1 2
k xB2
F
l0 o xA xB X
弹力的功与过程无关,只与起始位置和终点位置有关。
• 保守力的数学表达式 L f 保 d r 0
证明
回路L = L1+ L2
b
a
f 保 dr f 保 dr f 保 dr
L
a
b
L1
L2
L1
b
b
f 保 dr f 保 dr 0
Fz
dEp dz
( dEp dx
i
dEp
dy
j
dEp
dz
k ) Ep
微分关系 F Ep
(b)
∫ a点势能 EPa= W保ab=
(1)万有引力势能 Wab G
Mm rb
F保·dr
(a) G
Mm ra
=
EPa-EPb
rb→∞ 势能零点
Mm
Mm
EPa
G
ra
r2
dr G
ra
Mm
EP引 G r
3.2 势 能 Ep
(2) 重力势能 EP重 = mgh
h相对势能零点的高度。
(3) 弹性势能
a
a
L1
L2
a·
·b
L2
• 保守力沿任意闭合回路的功 ≡ 0
L
• 非保守力沿任意闭合回路的功一般 ≠ 0
L f 非保 d r 0
3.2 势 能 Ep
EP引
W保ab=
b
a F保 d r ?
= EPa-Epob = -ΔEP
r
W保ab=-ΔEP
保守力的功 = 系统势能减少或增量的负值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
内容摘要详细介绍保守力的特定性质证明以及常见的保守力种类。
定义势能函数,论证了几种常见势能的计算方法。
保守力和势能是经典物理学中极其重要的内容,具有十分重要的研究意义。
为此,学者们在此领域研究十分深入,主要研究保守力和势能之间是怎样的关系,那么什么是保守力呢?保守力的本质是什么?势能又是怎么引入的,势能的定义是什么,以及引入势能后,保守力与势能的关系如何。
关键词:保守力势能势能零点平衡AbstractDetailed introduction of specific properties conservative force proof and common conservative force types. The nature of the potential energy of physical meaning of a deep elaborated, demonstrates the potential of common calculation methodsKey words:Conservative force Potential energy Potential energy zero Balance内容摘要引言 (1)1.保守力 (2)1.1保守力的定义 (2)1.2保守力的性质 (2)1.3保守力的证明 (2)2.势能 (3)2.1势能的定义 (3)2.2势能的性质 (4)2.3势能零点 (5)2.4物体在势能场中的平衡 (7)3.几种常见势能的计算 (7)3.1引力势能 (7)3.2重力势能 (8)3.3弹性势能 (9)3.4电势能 (9)3.5分子势能 (10)4.结束语 (12)5.参考文献 (13)6.致谢 (14)引言保守力和势能是经典物理学中极其重要的内容,具有十分重要的研究意义。
为此,学者们在此领域研究十分深入,主要研究保守力和势能之间是怎样的关系,那么什么是保守力呢?保守力的本质是什么?势能又是怎么引入的,势能的定义是什么,以及引入势能后,保守力与势能的关系如何。
人们对其作了深刻的分析与研究,得到如果一对力所做的功与相对移动的路径无关,而只决定于相互作用的物体的始末相对位置,这样的力称为保守力(conservative force)。
其力场叫保守力场(Conservative Field)。
例如重力场、静电场等,万有引力场都是保守力场。
1.保守力1.1保守力的定义在一个物理系统里,感受到某作用力,一个粒子从初始位置移动到终结位置,而此作用力所做的机械功,跟移动路径无关,则称此力为保守力(conservative force),又称为守恒力。
等价地,假设一个粒子从某位置,移动经过一条闭合路径后,又回到原本位置,则作用与这粒子的保守力所做的机械功(保守力对于整个闭合路径的积分)等于零。
在一个物理系统里,所有的作用力都是保守力,则称此物理系统為保守系统,又称為守恒系统。
对於这种系统,在空间里的每一个位置,都可以给位势设定一个唯一的数值。
当粒子从某位置移动至令一位置时,保守力会改变粒子的势能,前后差值与所经过的路径无关。
例如,重力、弹性力、静电力等等,都是保守力;而摩擦力和空气阻力是经典的非保守力(能量被输送出去后,转换为热能,不能收复回来)。
1.2保守力的性质设定F为在空间任意位置良好定义(或空间内单连通的区域)的矢量场,假若它满足以下三个等价的条件中任意一个条件,则可称此矢量场为保守矢量场:1、F的旋度是零:⨯F∇=2、假设粒子从某闭合路径C的某一位置,经过这闭合路径C,又回到原先位置,则力矢量F所做的机械功W等于零:F=⎰C drW∙=3、作用力F是某位势Φ的梯度:=F-∇Φ保守力因为可以保守机械能而得名。
最常见的保守力为重力、电场力(伴随的磁场与时间无关,)、弹簧力。
1.3保守力的证明1⇒2:设定C 为任意简单闭合路径,即初始位置与终结位置相同、不自交的路径。
思考边界为C 的任意曲面S 。
斯托克斯定理表明⎰⎰∙=∙⨯∇CS dr F da F )( 假设F 的旋度等于零,方程左边为零,则机械功W 是零,第二个条件是正确的。
2⇒3:假设,对于任意简单闭合路径C ,F 所做的机械功W 是零,则保守力所做于粒子的机械功,独立于路径的选择。
设定函数⎰∙-=Φxo dr F x )( 其中,x 和o 分别是特定的初始位置和空间内任意位置。
根据微积分基本定理,)()(x X F Φ-∇=所以,第三个条件是正确的。
3⇒1:假设第三个条件是正确的。
思考下述方程:Φ∇⨯-∇=⨯∇Fz xy y x y z x x z x y z z y ˆ)(ˆ)(ˆ)(222222∂∂Φ∂-∂∂Φ∂-∂∂Φ∂-∂∂Φ∂-∂∂Φ∂-∂∂Φ∂-= 0=所以,第一个条件是正确的。
总结,这三个条件彼此等价。
由于符合第二个条件就等于通过保守力的闭合路径考试。
所以,只要满足上述三个条件的任何一条件,施加于粒子的作用力就是保守力。
2.势能2.1势能定义势能,亦称“位能”,是物体由于位置或位形而具有的能量。
动能定理告诉我们, 力做功将使物体(系统)的能量发生变化, 功是物体(系统)在运动过程中能量变化的量度。
那么, 在保守力做功的时候, 是什么形式的能量在发生变化呢? 由保守力做功的特点, 我们已经知道这种形式的能量即势能。
我们将物体从位置a 到位置b 的过程中, 重力的功、弹力的功、万有引力的功表为如下形式:)()(dr a b y y b a mgy mgy j dy j mg F A b a --=-=∙=→→→⎰⎰重重力 ⎪⎭⎫ ⎝⎛--=-=∙=⎰⎰→→→22b 2121)(dr a b x x a kx kx i dx i kx F A b a 弹弹力 →→→→⎰⎰⎪⎭⎫ ⎝⎛-=∙=002b r dr r r GmM dr F A b a r r a 引引力 =⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-22b a r Gm M r Gm M 三式的左侧均为保守力的功, 而右侧则是两项之差, 其中第一项与系统末态时的相对位置相联系,第二项与系统初态时的相对位置相联系, 每一项都与系统的相对位置有关, 因此, 保守力做功改变的是与系统相对位置有关的一种能量。
这种与系统相对位置(一般称作位形) 有关的能量定义为系统的势能或势函数, 用Ep 表示。
对一个质点系而言, 若其内两质点间的作用力都是保守力, 则称该质点系为保守体系。
在保守体系内, 力对质点所做的功只与始末位置有关, 而与路径无关, 因此, 我们总可以相应地引进势能的概念。
在力学中, 按作用性质的不同, 可以分为重力势能、弹性势能、引力势能等。
引入势能概念后, 为我们处理有关的物理问题带来了很多方便, 这是我们将物体间的相互作用分为保守力和非保守力的一个重要的原因。
这样, 与初态位形相关的势能用Pa E 表示, 与末态位形相关的势能用Pb E 表示, 上面三个式子就可以归纳为:)(dr pa pb b aab E E F A --=∙=⎰→→保 即: p E A ∆-=保 上式表明: 在系统由位形a 变化到位形b 的过程中, 保守力做的功等于系统势能的减少(或势能增量的负值)。
若保守力做正功则势能减少; 若保守力做负功则势能增加。
2.2势能的性质势能为能量的一种,具有能量量纲,在国际单位制下的单位是焦耳(J ),另外在涉及到粒子物理时常用到电子伏特(eV ),高斯单位制下为尔格(erg )。
势能一般使用“E p ”表示,也常使用“W ” “U ”和“V ”。
势能是一个标量函数,当一个物体与多个物体共有势能或共有多种势能时,这个物体所具有的总势能为所有势能的代数和。
由定义可知,势能取决于两个或多个物体的相对位形,是两个或多个物体所共有的。
然而,在两物体A 、B 组成的保守体系中,如果我们以其中一个物体A 作为参考系,则势能仅取决于另一物体B 的相对位置。
这时,在不引起混淆的情况下,我们常把“A 、B 具有的势能”称作是“B 的势能”。
比如,在电场中的电荷具有静电势能,或者是在一个天体附近的另一个天体具有引力势能。
除此之外,有时候保守体系中只存在一个物体,势能来自于物体内部各部分间的相对位移,这时候我们也说,势能是这个物体所具有的。
比如,弹簧,或者是具有体分布电荷的绝缘体球。
需要注意的是,即使在同一保守力场中的同一处,不同物体的势能也一般不同,比如在重力作用范围内,物体的重力势能不仅取决于其高度,还取决于其质量。
2.3势能零点当物体在保守力的作用下(但不一定仅受保守力)从a 处沿任意路径移动到b 处时,总势能变化量为保守力作功的相反值,即:⎰∙-=-=-→ba conb a a p dr F W a E b E )()( 通常我们并不在意势能的绝对大小,而是关心其变化量,这从势能的定义可以明显看出;实际上,谈一个物体究竟拥有多少绝对势能是没有意义的。
不过,有时为了计算或者叙述方便,我们也取一个势能零点O ,规定O 处势能E p (O)=0,这样质点在a 点的势能大小为:⎰∙-=-=→acon b a p dr F W a E 0)( 原则上势能零点可任意取,一般依方便而定;如果可能,一般选con F =0点为势能零点。
势能为保守力关于位移的积分,相对地,保守力为相应势能函数关于位移的负梯度,即:p con E F -∇=∑⎰=→-=-=-s ba a ab a p p dq Q W a E b E 1)()(α使用广义坐标描述时,可写为:∑=∂∂-=s p a q E Q 1αα描述势能随位置变化的图称为势能图。
若势能为仅与一个坐标(或广义坐标)有关的函数,这时势能图成为势能曲线,可以在平面直角坐标系上表示出来,这时负梯度退化为负导数:x E F pcon ∂∂-=2.4物体在势能场中的平衡只受保守力作用的物体,总有向总势能更低处运动的趋势。
当物体所处位置不受力作用或合力为零时,即0=∂∂x E p ,则称物体处于平衡。
图(2)A 、B 、C 三点皆处于平衡。
当物体偏离平衡位置时,若受合力背向平衡位置,则物体有离开平衡位置的趋势,则称物体处于不稳定平衡。
势能曲线上,不稳定平衡即满足022<∂∂x E p 的点。
图(1)A 点处于不稳定平衡。
当物体偏离平衡位置时,若受合力指向平衡位置,则物体有回到平衡位置的趋势,则称物体处于稳定平衡。
势能曲线上,稳定平衡即满足022>∂∂x E p 的点。
图(1)B 点处于稳定平衡。
当物体在平衡位置附近时合力恒为零,则称物体处于随遇平衡。
势能曲线上,随遇平衡即满足022=∂∂x E p 的点。
图(1)C 点处于随遇平衡。
图(1)以上只是一种粗略的分析方法,实际上,在二维或高维空间中情况会更加复杂,比如,在不同的方向上具有不同的平衡种类。