高数大一复习总结
大一高数知识点总结全

大一高数知识点总结全一、导数与微分1. 函数极限和连续性1.1 函数极限的定义和性质1.2 无穷大与无穷小1.3 函数的连续性与间断点2. 导数与微分2.1 导数的定义与性质2.2 常见函数的导数2.3 高阶导数与隐函数求导二、微分中值定理与高阶导数应用1. 中值定理1.1 罗尔定理1.2 拉格朗日中值定理1.3 柯西中值定理2. 泰勒公式与函数的局部性质2.1 泰勒公式及余项2.2 函数的单调性与极值2.3 函数的凹凸性与拐点3. 高阶导数的应用3.1 曲率与曲线的切线与法线3.2 凸函数与凹函数的判定三、定积分与不定积分1. 定积分的意义与性质1.1 定积分的定义1.2 定积分的性质与运算法则1.3 可积条件与Newton-Leibniz公式2. 不定积分2.1 不定积分的定义与基本公式2.2 基本不定积分的计算方法2.3 图形与面积的应用四、微分方程1. 常微分方程基本概念1.1 微分方程的定义与基本概念1.2 一阶线性微分方程1.3 可分离变量的微分方程2. 常系数线性微分方程2.1 齐次线性微分方程2.2 非齐次线性微分方程2.3 变量变换与常系数线性微分方程3. 高阶线性微分方程3.1 n阶齐次与非齐次线性微分方程3.2 常系数线性齐次微分方程的特征方程 3.3 可降阶的线性非齐次微分方程五、多元函数微分学1. 二元函数的极限与连续性1.1 二元函数的极限定义1.2 二元函数的连续性1.3 多元函数的极限与连续性2. 偏导数与全微分2.1 偏导数的定义与计算方法2.2 高阶偏导数与混合偏导数2.3 全微分与微分近似3. 隐函数与参数方程求导3.1 隐函数与参数方程的基本概念3.2 隐函数求导与相关性质3.3 参数方程求导与相关性质以上是大一高数的知识点总结,通过学习这些内容,能够掌握基本的导数与微分、定积分与不定积分、微分方程以及多元函数微分学的知识。
希望这份总结对你的学习有所帮助。
高数大一必考知识点归纳

高数大一必考知识点归纳高数是大一必考的一门重要课程,全面掌握其中的知识点对于大家的学习和未来的学习生涯都至关重要。
为了帮助大家更好地备考高数,本文将对大一必考的高数知识点进行归纳总结,希望能对大家的学习有所帮助。
1. 函数与极限1.1 函数的概念与性质:函数的定义、函数的图像、函数的奇偶性、函数的周期性等。
1.2 极限的概念与性质:函数极限的定义、左极限和右极限、极限的四则运算性质等。
1.3 无穷大与无穷小:无穷小的定义、无穷小的性质、无穷大的定义、无穷大的性质等。
2. 导数与微分2.1 导数的概念与计算方法:导数的定义、导数的基本公式、常见函数的导数、高阶导数等。
2.2 微分的概念与计算方法:微分的定义、微分的运算法则、微分中值定理等。
2.3 高阶导数与泰勒展开:高阶导数的概念、泰勒展开式的定义与应用等。
3. 不定积分与定积分3.1 不定积分的概念与计算方法:不定积分的定义、基本积分法、换元积分法等。
3.2 定积分的概念与计算方法:定积分的定义、定积分的性质、定积分的计算方法等。
3.3 微积分基本定理:微积分基本定理的概念、反导数与不定积分、定积分与面积计算等。
4. 微分方程4.1 微分方程的基本概念:微分方程的定义、微分方程的阶、常微分方程与偏微分方程等。
4.2 一阶微分方程:可分离变量的微分方程、一阶线性微分方程等。
4.3 高阶线性微分方程:二阶齐次线性微分方程、二阶非齐次线性微分方程等。
5. 多元函数与偏导数5.1 多元函数的概念与性质:多元函数的定义、多元函数的图像、多元函数的极限、多元函数的连续性等。
5.2 偏导数的概念与计算方法:偏导数的定义、偏导数的几何意义、偏导数的运算法则等。
5.3 高阶偏导数与全微分:高阶偏导数的概念、全微分的定义与计算方法等。
综上所述,以上列举的知识点是大一必考的高数知识点的主要内容。
大家在备考过程中可以根据这些知识点进行系统性的学习和复习,理解每个知识点的概念、性质和计算方法,并通过大量的练习题加深对知识点的理解和掌握。
高数大一最全知识点

高数大一最全知识点高等数学作为大一学生的必修课程,是一门基础而又重要的学科。
掌握好高数知识点,不仅对后续的学习有着重要的影响,也对提高数理思维和解决实际问题具有重要的帮助。
下面将为大家整理总结大一高数中最全的知识点。
第一章:函数与极限1. 函数的概念和性质函数定义、定义域和值域、函数的图像和性质等。
2. 极限的概念和性质数列极限、函数极限、几何意义以及重要的极限性质。
3. 连续与间断连续函数的概念、连续函数的性质、间断点和间断函数等。
第二章:导数与微分1. 导数的概念和计算导数的定义、导数的计算方法、各种函数导数的计算公式等。
2. 高阶导数与导数的应用高阶导数的定义、高阶导数的计算、导数在几何和物理问题中的应用等。
3. 微分学基本定理微分中值定理、极值与最值、凹凸性等重要的微分学定理。
第三章:积分与不定积分1. 定积分和不定积分的概念和性质定积分的定义、定积分的计算、不定积分的定义和基本积分表等。
2. 定积分的应用定积分的几何应用、定积分的物理应用、定积分的概率统计应用等。
3. 反常积分反常积分的概念和性质、反常积分判敛方法、特殊函数的反常积分等。
第四章:常微分方程1. 常微分方程的基本概念常微分方程的定义、初值问题、解的存在唯一性定理等。
2. 一阶常微分方程解法可分离变量方程、齐次方程、一阶线性方程、伯努利方程等解法。
3. 高阶线性微分方程高阶线性齐次和非齐次微分方程的解法、常系数线性微分方程等。
第五章:多元函数与偏导数1. 多元函数的概念和性质多元函数的定义、定义域、值域、图像等基本概念。
2. 偏导数与全微分偏导数的定义和计算、全微分的定义以及全微分近似等。
3. 隐函数与参数方程隐函数的存在定理、隐函数的求导、参数方程的定义和性质等。
第六章:多元函数的积分学1. 二重积分的概念和性质二重积分的定义、二重积分的计算、二重积分的性质等。
2. 三重积分和曲线、曲面积分三重积分的定义、三重积分的计算、曲线积分、曲面积分的概念与计算等。
高数大一知识点总结基础

高数大一知识点总结基础一、函数与极限1. 函数的定义与性质:函数是一种对应关系,将一个自变量的取值映射到一个因变量的取值上。
函数具有定义域、值域、奇偶性、周期性等性质。
2. 极限的概念与性质:极限是函数在某一点或无穷远处的趋近值。
极限的存在性与唯一性可以通过数列极限的定义来判定。
3. 函数的连续性:连续性是指函数在定义域内没有突变、间断点的性质。
连续函数具有局部性质及整体性质。
4. 导数与函数的凸凹性:导数是函数在某一点的切线斜率,可以表示函数的变化率。
凸凹性指函数图像在某一区间上的弯曲程度。
二、微分学1. 微分的定义与性质:微分是函数局部线性逼近的结果,是函数在某一点的变化量。
微分的计算可以使用导数。
2. 高阶导数:高阶导数是导数的导数,表示函数变化的快慢程度。
高阶导数的计算可以使用导数的性质和公式。
3. 微分中值定理:微分中值定理包括拉格朗日中值定理、柯西中值定理等,用于描述函数在某一区间的特性。
4. 泰勒展开:泰勒展开是将函数在某一点附近用无穷多项式逼近的结果,用于求函数的近似值。
三、积分学1. 定积分的定义与性质:定积分是函数在某一区间上的面积或有向长度,可以用无穷小分割与极限的思想进行计算。
2. 不定积分与积分常数:不定积分是求解函数的原函数过程,不定积分的结果存在积分常数。
3. 牛顿-莱布尼茨公式:牛顿-莱布尼茨公式将定积分与不定积分联系起来,描述了两者的关系。
4. 微积分基本定理:微积分基本定理包括第一类与第二类,用于计算定积分与不定积分。
四、级数1. 数项级数的收敛性:数项级数是由无穷多个数相加而成的表达式,根据其通项的性质可以判断级数的收敛性。
2. 常用级数:常用级数包括等比级数、调和级数等,可以通过特定的方法求解其和。
3. 幂级数:幂级数是一种特殊的级数,具有收敛域与求解方法。
幂级数常用于函数展开与近似计算。
五、常微分方程1. 常微分方程的基本概念:常微分方程是描述未知函数的导数与自变量之间关系的方程。
大一高数上所有知识点总结

大一高数上所有知识点总结一、函数与极限1. 函数的概念与性质1.1 函数的定义1.2 函数的性质2. 极限的概念与性质2.1 极限的定义2.2 极限存在的充分条件2.3 极限的性质及四则运算法则3. 无穷小量与无穷大量3.1 无穷小量的概念与性质3.2 无穷大量的概念与性质4. 极限的计算4.1 用夹逼准则求极限4.2 用无穷小量比较求极限4.3 用洛必达法则求极限4.4 用泰勒公式求极限二、导数与微分1. 导数的概念与求导法则1.1 导数的概念1.2 导数的计算与求导法则1.3 隐函数的导数1.4 高阶导数2. 函数的微分与高阶导数2.1 函数的微分2.3 高阶导数的概念与计算3. 函数的增减性与凹凸性3.1 函数的单调性3.2 函数的最值与最值存在条件3.3 函数的凹凸性及拐点三、函数的应用1. 泰勒公式在误差估计中的应用2. 函数的极值及其应用3. 函数的图形与曲线的切线方程4. 收敛性与闭区间紧性的概念及应用四、不定积分1. 不定积分的概念与性质1.1 不定积分的定义1.2 不定积分的性质1.3 不定积分的基本公式2. 不定积分的计算2.1 一些特殊函数的不定积分2.2 有理函数的不定积分2.3 有理三角函数的不定积分2.4 特殊的不定积分解法五、定积分1. 定积分的概念与性质1.1 定积分的定义1.2 定积分的性质2. 定积分的几何应用2.1 定积分与曲线下面积2.2 定积分与旋转体的体积计算2.3 定积分与空间几何体的体积计算六、微分方程1. 微分方程的概念与基本性质1.1 微分方程的定义1.2 微分方程的基本性质2. 常微分方程的解法2.1 一阶微分方程的解法2.2 二阶微分方程的解法2.3 高阶微分方程的解法3. 微分方程在物理问题中的应用3.1 弹簧振动问题3.2 电路的动态特性问题3.3 理想气体的状态方程问题七、多元函数微积分1. 多元函数的概念与性质1.1 多元函数的定义1.2 多元函数的导数与偏导数1.3 多元函数的微分2. 多元函数的极值与条件极值2.1 多元函数的极值点2.2 多元函数的条件极值点3. 二重积分与三重积分3.1 二重积分的概念与性质3.2 二重积分的计算3.3 三重积分的概念与性质3.4 三重积分的计算4. 重积分在几何与物理中的应用4.1 重积分与平面图形的面积计算4.2 重积分与曲面旋转体的体积计算4.3 重积分与空间物体的质量与重心计算八、无穷级数1. 数项级数的概念与性质1.1 数项级数的概念1.2 数项级数收敛的充分条件1.3 数项级数的审敛法2. 幂级数2.1 幂级数的概念与性质2.2 幂级数的收敛域2.3 幂级数在收敛域上的一致收敛性3. 函数项级数3.1 函数项级数的概念与性质3.2 函数项级数收敛的判别法3.3 函数项级数的一致收敛性以上是大一高数的知识点总结,总结了函数与极限、导数与微分、函数的应用、不定积分、定积分、微分方程、多元函数微积分、无穷级数等内容。
大一高数知识点全总结

大一高数知识点全总结一、导数与微分大一高数的第一个重点知识点是导数与微分。
导数是研究函数变化率的工具,表示函数在某一点处的切线斜率。
微分则是导数的另一种表达方式,它是建立在导数的基础上,用于在某一点附近对函数进行线性逼近。
在学习导数与微分时,需要注意以下几个重要的概念和公式:1. 导数的定义:导数可以用函数的极限表示,即 f'(x) =lim(Δx→0) (f(x+Δx)-f(x))/Δx,其中 f'(x) 表示函数 f(x) 在点 x 处的导数。
2. 常见函数求导法则:常数函数、幂函数、指数函数、对数函数、三角函数等函数的导数可以利用一些基本的求导法则确定。
3. 高阶导数:函数的导数也可以再次求导,得到的导数称为高阶导数。
4. 微分的定义:函数 y = f(x) 在点 x 处的微分可以表示为 dy = f'(x)dx。
5. 微分的应用:微分可以用来进行近似计算,比如在物理上的位移、速度和加速度等问题中的应用。
二、极限与连续极限与连续是大一高数的第二个重点知识点。
极限是数列、函数趋近于某个确定值的概念,连续则是函数在某一区间内无断点的特性。
在学习极限与连续时,需要注意以下几个重要的概念和定理:1. 数列极限的定义:对于一个数列 {an},若存在常数 A,使得当 n 趋于无穷时,an 与 A 的差值无限接近,则称数列 {an} 的极限为 A。
2. 函数极限的定义:对于一个函数 f(x),若存在常数 A,使得当 x 趋于某个值 x0 时,f(x) 与 A 的差值无限接近,则称函数 f(x) 的极限为 A。
3. 极限的性质与四则运算:极限具有唯一性和有界性,并且可利用四则运算法则求解。
4. 无穷小量与无穷大量:无穷小量是指当 x 趋于某个值时,其极限为 0 的量;无穷大量是指当 x 趋于某个值时,其绝对值无限增大的量。
5. 连续函数的定义与性质:函数在某一点 x0 处连续,意味着函数在 x0 处的极限等于函数在 x0 处的取值,并且连续函数的四则运算结果仍然是连续函数。
大一高数主要知识点总结

大一高数主要知识点总结高等数学作为大学必修的一门基础课程,是培养学生数学思维和逻辑推理能力的重要学科。
下面是大一高数的主要知识点总结,帮助同学们复习和回顾。
一、函数与极限1. 函数及其性质:定义域、值域、奇偶性、单调性等。
2. 极限的概念及性质:无穷小量、无穷大量、夹逼准则等。
3. 极限的运算法则:四则运算、复合函数的极限等。
4. 一元函数的连续性:间断点、间断函数等。
二、导数与微分1. 导数的定义及几何意义:斜率、切线、法线等。
2. 常见函数的导数:多项式函数、指数函数、对数函数等。
3. 导数的基本运算法则:和、差、积、商等。
4. 高阶导数与高阶微分。
三、微分应用1. 函数的单调性与极值:临界点、凹凸性、拐点等。
2. 曲线的图形与一阶导数的关系:上升、下降、最值点等。
3. 函数的应用:求最大值与最小值、切线与法线方程等。
四、定积分1. 定积分的定义及几何意义:面积、弧长、体积等。
2. 定积分的性质与基本公式:分段函数、可积性等。
3. 常见函数的不定积分与定积分:多项式函数、三角函数等。
五、微分方程1. 微分方程的基本概念:微分方程的解、初值问题等。
2. 一阶线性微分方程:可分离变量、线性齐次、恰当方程等。
3. 高阶线性常微分方程:二阶常系数齐次、非齐次方程等。
六、级数1. 级数的概念与性质:通项、前n项和、收敛性等。
2. 常见级数:等差数列、等比数列、调和级数等。
3. 级数的收敛判定:比值判别法、根值判别法、积分判别法等。
七、空间解析几何1. 空间直线与平面的方程:点向式、对称式、一般式等。
2. 空间曲线与曲面的方程:参数方程、一般方程等。
3. 空间几何问题的解法:点的位置关系、直线与面的关系等。
八、多元函数与偏导数1. 多元函数的定义与性质:定义域、值域、奇偶性、单调性等。
2. 偏导数的定义与计算:常见函数的偏导数计算等。
3. 多元函数的极值与最值:条件极值、拉格朗日乘数法等。
以上是大一高等数学的主要知识点总结,希望对同学们的学习和复习有所帮助。
大一高数知识点总结可复制

大一高数知识点总结可复制大一高数知识点总结1. 函数与极限函数的定义:函数是一种映射关系,将一个自变量映射到一个因变量上。
极限的定义:当自变量无限接近某个值时,函数的值也无限接近于一个确定的值。
2. 导数与微分导数的定义:导数描述了函数在某一点的变化率。
微分的定义:微分表示函数在某一点的局部线性近似。
3. 积分与微积分基本定理积分的定义:积分计算了函数在一定区间上的累积效果。
微积分基本定理:微积分基本定理将导数与积分联系在一起,通过积分可以找到函数的原函数。
4. 微分方程微分方程的定义:微分方程描述了一个函数与其导数之间的关系。
常微分方程与偏微分方程:常微分方程中的未知函数只是一个变量的函数,而偏微分方程中的未知函数是多个变量的函数。
5. 无穷级数收敛与发散:无穷级数可以有收敛和发散两种情况。
收敛级数的判别法:常见的判别法有比较判别法、比值判别法、根值判别法等。
6. 多项式函数与有理函数多项式函数的定义:多项式函数由常数与自变量的幂次方的乘积组成。
有理函数的定义:有理函数是多项式函数与整式函数的商。
7. 三角函数与反三角函数三角函数的定义:三角函数描述了角度与边长之间的关系。
反三角函数的定义:反三角函数可以计算出一个已知比值的角度。
8. 一元函数的极值与最值极值点与最值的定义:函数在某个点附近取得的最大值或最小值。
导数与极值的关系:当函数的导数为零或不存在时,可能存在极值点。
9. 常微分方程的基本解法常微分方程的解法:常微分方程可以通过变量分离、齐次方程、一阶线性方程等方法求解。
10. 空间解析几何空间直线与平面的方程:直线可以用点向式、对称式、参数式等来表示,平面可以用一般式、点法式等形式来表示。
空间曲线与曲面的方程:曲线可以用参数式、隐式方程等表示,曲面可以用隐式方程、参数式等表示。
11. 重积分二重积分的计算方法:可以使用直角坐标系和极坐标系进行计算。
三重积分的计算方法:可以使用直角坐标系和柱面坐标系进行计算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高等数学(本科少学时类型)第一章 函数与极限第一节 函数○函数基础(高中函数部分相关知识)(★★★)○邻域(去心邻域)(★)第二节 数列的极限○数列极限的证明(★)【题型示例】已知数列{}n x ,证明{}lim n x x a →∞=【证明示例】N -ε语言1.由n x a ε-<化简得()εg n >,∴()N g ε=⎡⎤⎣⎦2.即对0>∀ε,()N g ε∃=⎡⎤⎣⎦,当N n >时,始终有不等式n x a ε-<成立, ∴{}a x n x =∞→lim第三节 函数的极限○0x x →时函数极限的证明(★) 【题型示例】已知函数()x f ,证明()A x f x x =→0lim【证明示例】δε-语言1.由()f x A ε-<化简得()00x x g ε<-<,∴()εδg =2.即对0>∀ε,()εδg =∃,当00x x δ<-<时,始终有不等式()f x A ε-<成立, ∴()A x f x x =→0lim○∞→x 时函数极限的证明(★) 【题型示例】已知函数()x f ,证明()A x f x =∞→lim【证明示例】X -ε语言1.由()f x A ε-<化简得()x g ε>,∴()εg X =2.即对0>∀ε,()εg X =∃,当X x >时,始终有不等式()f x A ε-<成立,∴()A x f x =∞→lim第四节 无穷小与无穷大○无穷小与无穷大的本质(★)函数()x f 无穷小⇔()0lim =x f 函数()x f 无穷大⇔()∞=x f lim○无穷小与无穷大的相关定理与推论(★★)(定理三)假设()x f 为有界函数,()x g 为无穷小,则()()lim 0f x g x ⋅=⎡⎤⎣⎦(定理四)在自变量的某个变化过程中,若()x f 为无穷大,则()1f x -为无穷小;反之,若()x f 为无穷小,且()0f x ≠,则()x f 1-为无穷大【题型示例】计算:()()0lim x x f x g x →⋅⎡⎤⎣⎦(或∞→x )1.∵()f x ≤M ∴函数()f x 在0x x =的任一去心邻域()δ,0x U内是有界的;(∵()f x ≤M ,∴函数()f x 在D x ∈上有界;)2.()0lim 0=→x g x x 即函数()x g 是0x x →时的无穷小;(()0lim =∞→x g x 即函数()x g 是∞→x 时的无穷小;)3.由定理可知()()0lim 0x x f x g x →⋅=⎡⎤⎣⎦(()()lim 0x f x g x →∞⋅=⎡⎤⎣⎦)第五节 极限运算法则○极限的四则运算法则(★★)(定理一)加减法则(定理二)乘除法则关于多项式()p x 、()x q 商式的极限运算设:()()⎪⎩⎪⎨⎧+⋯++=+⋯++=--nn n mm m b x b x b x q a x a x a x p 110110 则有()()⎪⎪⎩⎪⎪⎨⎧∞=∞→0lim 0b a x q x p x m n m n m n >=<(特别地,当()()0limx x f x g x →=(不定型)时,通常分子分母约去公因式即约去可去间断点便可求解出极限值,也可以用罗比达法则求解)【题型示例】求值233lim9x x x →-- 【求解示例】解:因为3→x ,从而可得3≠x ,所以原式()()2333331limlim lim 9333x x x x x x x x x →→→--====-+-+其中3x =为函数()239x f x x -=-的可去间断点倘若运用罗比达法则求解(详见第三章第二节):解:()()00233323311lim lim lim 9269x L x x x x x x x '→→→'--===-'- ○连续函数穿越定理(复合函数的极限求解)(★★)(定理五)若函数()x f 是定义域上的连续函数,那么,()()00lim lim x x x x f x f x ϕϕ→→⎡⎤=⎡⎤⎣⎦⎢⎥⎣⎦【题型示例】求值:93lim23--→x x x 【求解示例】36x →=== 第六节 极限存在准则及两个重要极限○夹迫准则(P53)(★★★)第一个重要极限:1sin lim0=→xxx∵⎪⎭⎫⎝⎛∈∀2,0πx ,x x x tan sin <<∴1sin lim0=→xxx(特别地,000sin()lim1x x x x x x →-=-) ○单调有界收敛准则(P57)(★★★)第二个重要极限:e x xx =⎪⎭⎫⎝⎛+∞→11lim(一般地,()()()()lim lim lim g x g x f x f x =⎡⎤⎡⎤⎣⎦⎣⎦,其中()0lim >x f )【题型示例】求值:11232lim +∞→⎪⎭⎫⎝⎛++x x x x【求解示例】第七节 无穷小量的阶(无穷小的比较)○等价无穷小(★★)1.()~sin ~tan ~arcsin ~arctan ~ln(1)~1UU U U U U U e +-2.U U cos 1~212-(乘除可替,加减不行)【题型示例】求值:()()xx x x x x 31ln 1ln lim 20++++→【求解示例】第八节 函数的连续性○函数连续的定义(★)○间断点的分类(P67)(★)⎩⎨⎧∞⋯⋯⎩⎨⎧)无穷间断点(极限为第二类间断点可去间断点(相等)跳越间断点(不等)限存在)第一类间断点(左右极(特别地,可去间断点能在分式中约去相应公因式)【题型示例】设函数()⎩⎨⎧+=x a e x f x 2 ,00≥<x x 应该怎样选择数a ,使得()x f 成为在R 上的连续函数【求解示例】1.∵()()()2010000f e e e f a a f a --⋅++⎧===⎪⎪=+=⎨⎪=⎪⎩2.由连续函数定义()()()e f x f x f x x ===+-→→0lim lim 0∴e a =第九节 闭区间上连续函数的性质○零点定理(★)【题型示例】证明:方程()()f x g x C =+至少有一个根介于a 与b 之间【证明示例】1.(建立辅助函数)函数()()()x f x g x C ϕ=--在闭区间[],a b 上连续;2.∵()()0a b ϕϕ⋅<(端点异号)3.∴由零点定理,在开区间()b a ,内至少有一点ξ,使得()0=ξϕ,即()()0f g C ξξ--=(10<<ξ)4.这等式说明方程()()f x g x C =+在开区间()b a ,内至少有一个根ξ第二章 导数与微分第一节 导数概念○高等数学中导数的定义及几何意义(P83)(★★)【题型示例】已知函数()⎩⎨⎧++=bax e x f x 1 ,>≤x x 在0=x 处可导,求a ,b 【求解示例】1.∵()()0010f e f a -+'⎧==⎪⎨'=⎪⎩,()()()00001120012f e e f b f e --+⎧=+=+=⎪⎪=⎨⎪=+=⎪⎩2.由函数可导定义()()()()()0010002f f a f f f b -+-+''===⎧⎪⎨====⎪⎩ ∴1,2a b ==【题型示例】求()x f y =在a x =处的切线与法线方程(或:过()x f y =图像上点(),a f a ⎡⎤⎣⎦处的切线与法线方程)【求解示例】1.()x f y '=',()a f y a x '='=|2.切线方程:()()()y f a f a x a '-=-法线方程:()()()1y f a x a f a -=--'第二节 函数的和(差)、积与商的求导法则○函数和(差)、积与商的求导法则(★★★)1.线性组合(定理一):()u v u v αβαβ'''±=+特别地,当1==βα时,有()u v u v '''±=±2.函数积的求导法则(定理二):()uv u v uv '''=+3.函数商的求导法则(定理三):2u u v uv v v '''-⎛⎫= ⎪⎝⎭第三节 反函数和复合函数的求导法则○反函数的求导法则(★)【题型示例】求函数()x f 1-的导数 【求解示例】由题可得()x f 为直接函数,其在定于域D 上单调、可导,且()0≠'x f ;∴()()11f x f x -'⎡⎤=⎣⎦' ○复合函数的求导法则(★★★)【题型示例】设(ln y e =,求y '【求解示例】第四节 高阶导数○()()()()1n n f x f x -'⎡⎤=⎣⎦(或()()11n nnn d y d y dx dx --'⎡⎤=⎢⎥⎣⎦)(★)【题型示例】求函数()x y +=1ln 的n 阶导数【求解示例】()1111y x x-'==++, ()()()12111y x x --'⎡⎤''=+=-⋅+⎣⎦, ……第五节 隐函数及参数方程型函数的导数○隐函数的求导(等式两边对x 求导)(★★★)【题型示例】试求:方程y e x y +=所给定的曲线C :()x y y =在点()1,1e -的切线方程与法线方程【求解示例】由y e x y +=两边对x 求导即()y y x e '''=+化简得1y y e y ''=+⋅∴ee y -=-='11111 ∴切线方程:()e x ey +--=-1111 法线方程:()()e x e y +---=-111○参数方程型函数的求导【题型示例】设参数方程()()⎩⎨⎧==t y t x γϕ,求22dx yd【求解示例】()()t t dx dy ϕγ''=.()22dy d y dx dx t ϕ'⎛⎫⎪⎝⎭='第六节 变化率问题举例及相关变化率(不作要求)第七节 函数的微分○基本初等函数微分公式与微分运算法则(★★★)第三章 中值定理与导数的应用第一节 中值定理○引理(费马引理)(★)○罗尔定理(★★★)【题型示例】现假设函数()f x 在[]0,π上连续,在()0,π 上可导,试证明:()0,ξπ∃∈,使得()()cos sin 0f f ξξξξ'+=成立【证明示例】1.(建立辅助函数)令()()sin x f x x ϕ=显然函数()x ϕ在闭区间[]0,π上连续,在开区间()0,π上可导;2.又∵()()00sin00f ϕ==即()()00ϕϕπ==3.∴由罗尔定理知()0,ξπ∃∈,使得()()cos sin 0f f ξξξξ'+=成立○拉格朗日中值定理(★)【题型示例】证明不等式:当1x >时,x e e x >⋅【证明示例】1.(建立辅助函数)令函数()x f x e =,则对1x ∀>,显然函数()f x 在闭区间[]1,x 上连续,在开区间()1,x 上可导,并且()x f x e '=;2.由拉格朗日中值定理可得,[]1,x ξ∃∈使得等式()11x e e x e ξ-=-成立,又∵1e e ξ>,∴()111x e e x e e x e ->-=⋅-,化简得x e e x >⋅,即证得:当1x >时,x e e x >⋅【题型示例】证明不等式:当0x >时,()ln 1x x +<【证明示例】1.(建立辅助函数)令函数()()ln 1f x x =+,则对0x ∀>,函数()f x 在闭区间[]0,x 上连续,在开区间()0,π上可导,并且()11f x x'=+; 2.由拉格朗日中值定理可得,[]0,x ξ∃∈使得等式()()()1ln 1ln 1001x x ξ+-+=-+成立, 化简得()1ln 11x x ξ+=+,又∵[]0,x ξ∈,∴()111f ξξ'=<+,∴()ln 11x x x +<⋅=,即证得:当1x >时,x e e x >⋅第二节 罗比达法则○运用罗比达法则进行极限运算的基本步骤(★★)1.☆等价无穷小的替换(以简化运算)2.判断极限不定型的所属类型及是否满足运用罗比达法则的三个前提条件A .属于两大基本不定型(0,0∞∞)且满足条件, 则进行运算:()()()()lim limx a x a f x f x g x g x →→'=' (再进行1、2步骤,反复直到结果得出)B .☆不属于两大基本不定型(转化为基本不定型)⑴0⋅∞型(转乘为除,构造分式)【题型示例】求值:0lim ln x x x α→⋅【求解示例】(一般地,()0lim ln 0x x x βα→⋅=,其中,R αβ∈)⑵∞-∞型(通分构造分式,观察分母)【题型示例】求值:011lim sin x x x →⎛⎫-⎪⎝⎭ 【求解示例】()()()()00002sin 1cos 1cos sin limlim lim lim 0222L x x L x x x x x x xx x x ''→→→→''---====='' ⑶00型(对数求极限法)【题型示例】求值:0lim x x x →【求解示例】()()0000lim ln ln 000002ln ,ln ln ln 1ln ln 0lim ln lim lim111lim lim 0lim lim 11x x x x x L x yy x x x x x y x y x x x xx xx y xx x x y e e e x→∞∞'→→→→→→→===='→=='⎛⎫ ⎪⎝⎭==-=====-解:设两边取对数得:对对数取时的极限:,从而有 ⑷1∞型(对数求极限法)【题型示例】求值:()10lim cos sin xx x x →+【求解示例】⑸0∞型(对数求极限法)【题型示例】求值:tan1limx x x→⎛⎫⎪⎝⎭【求解示例】○运用罗比达法则进行极限运算的基本思路(★★)⑴通分获得分式(通常伴有等价无穷小的替换)⑵取倒数获得分式(将乘积形式转化为分式形式)⑶取对数获得乘积式(通过对数运算将指数提前)第三节泰勒中值定理(不作要求)第四节函数的单调性和曲线的凹凸性○连续函数单调性(单调区间)(★★★)【题型示例】试确定函数()3229123f x x x x=-+-的单调区间【求解示例】1.∵函数()f x在其定义域R上连续,且可导∴()261812f x x x'=-+2.令()()()6120f x x x'=--=,解得:121,2x x==3.(三行表)4.∴函数()f x的单调递增区间为(][),1,2,-∞+∞;单调递减区间为()1,2【题型示例】证明:当0x>时,1xe x>+【证明示例】1.(构建辅助函数)设()1x x e x ϕ=--,(0x >)2.()10x x e ϕ'=->,(0x >)∴()()00x ϕϕ>=3.既证:当0x >时,1x e x >+【题型示例】证明:当0x >时,()ln 1x x +<【证明示例】1.(构建辅助函数)设()()ln 1x x x ϕ=+-,(0x >)2.()1101x xϕ'=-<+,(0x >) ∴()()00x ϕϕ<=3.既证:当0x >时,()ln 1x x +<○连续函数凹凸性(★★★)【题型示例】试讨论函数2313y x x =+-的单调性、极值、凹凸性及拐点【证明示例】1.()()236326661y x x x x y x x '⎧=-+=--⎪⎨''=-+=--⎪⎩ 2.令()()320610y x x y x '=--=⎧⎪⎨''=--=⎪⎩解得:120,21x x x ==⎧⎨=⎩3.(四行表)4.⑴函数2313y x x =+-单调递增区间为(0,1),(1,2) 单调递增区间为(,0)-∞,(2,)+∞;⑵函数2313y x x =+-的极小值在0x =时取到,为()01f =,极大值在2x =时取到,为()25f =;⑶函数2313y x x =+-在区间(,0)-∞,(0,1)上凹,在区间(1,2),(2,)+∞上凸;⑷函数2313y x x =+-的拐点坐标为()1,3第五节 函数的极值和最大、最小值○函数的极值与最值的关系(★★★)⑴设函数()f x 的定义域为D ,如果M x ∃的某个邻域()M U x D ⊂,使得对()M x U x ∀∈,都适合不等式()()M f x f x <,我们则称函数()f x 在点(),M M x f x ⎡⎤⎣⎦处有极大值()M f x ; 令{}123,,,...,M M M M Mn x x x x x ∈则函数()f x 在闭区间[],a b 上的最大值M 满足:()(){}123max ,,,,...,,M M M Mn M f a x x x x f b =;⑵设函数()f x 的定义域为D ,如果m x ∃的某个邻域()m U x D ⊂,使得对()m x U x ∀∈,都适合不等式()()m f x f x >,我们则称函数()f x 在点(),m m x f x ⎡⎤⎣⎦处有极小值()m f x ;令{}123,,,...,m m m m mn x x x x x ∈则函数()f x 在闭区间[],a b 上的最小值m 满足:()(){}123min ,,,,...,,m m m mn m f a x x x x f b =;【题型示例】求函数()33f x x x =-在[]1,3-上的最值【求解示例】1.∵函数()f x 在其定义域[]1,3-上连续,且可导∴()233f x x '=-+2.令()()()3110f x x x '=--+=,解得:121,1x x =-=3.(三行表)4.又∵()()()12,12,318f f f -=-==-∴()()()()max min 12,318f x f f x f ====-第六节 函数图形的描绘(不作要求)第七节 曲率(不作要求)第八节 方程的近似解(不作要求)第四章 不定积分第一节 不定积分的概念与性质○原函数与不定积分的概念(★★)⑴原函数的概念:假设在定义区间I 上,可导函数()F x 的导函数为()F x ',即当自变量x I∈时,有()()F x f x '=或()()dF x f x dx =⋅成立,则称()F x 为()f x 的一个原函数⑵原函数存在定理:(★★)如果函数()f x 在定义区间I 上连续,则在I 上必存在可导函数()F x 使得()()F x f x '=,也就是说:连续函数一定存在原函数(可导必连续)⑶不定积分的概念(★★)在定义区间I 上,函数()f x 的带有任意常数项C 的原函数称为()f x 在定义区间I 上的不定积分,即表示为:()()f x dx F x C =+⎰(⎰称为积分号,()f x 称为被积函数,()f x dx 称为积分表达式,x 则称为积分变量)○基本积分表(★★★)○不定积分的线性性质(分项积分公式)(★★★)第二节 换元积分法○第一类换元法(凑微分)(★★★)(()dx x f dy ⋅'=的逆向应用)【题型示例】求221dx a x+⎰【求解示例】222211111arctan 11x x dx dx d Ca x a a aa x x a a ⎛⎫===+ ⎪+⎝⎭⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭⎰⎰⎰解:【题型示例】求 【求解示例】○第二类换元法(去根式)(★★)(()dx x f dy ⋅'=的正向应用)⑴对于一次根式(0,a b R ≠∈)::令t =,于是2t b x a-=,则原式可化为t⑵对于根号下平方和的形式(0a >):tan x a t =(22t ππ-<<),于是arctanxt a=,则原式可化为sec a t ; ⑶对于根号下平方差的形式(0a >):a令sin x a t =(22t ππ-<<),于是arcsinxt a=,则原式可化为cos a t ; b令sec x a t =(02t π<<),于是arccosat x=,则原式可化为tan a t ;【题型示例】求⎰(一次根式)【求解示例】2221tx tdx tdttdt dt t C Ct=-=⋅==+=⎰⎰【题型示例】求【求解示例】第三节分部积分法○分部积分法(★★)⑴设函数()u f x=,()v g x=udv uv vdu=-⎰⎰⑵分部积分法函数排序次序:幂、三、指”本步骤:积函数排序;⑵就近凑微分:(v dx dv'⋅=)⑶使用分部积分公式udv uv vdu=-⎰⎰⑷展开尾项vdu v u dx'=⋅⎰⎰,判断a.若v u dx'⋅⎰是容易求解的不定积分,则直接计算出答案(容易表示使用基本积分表、换元法与有理函数积分可以轻易求解出结果);b.若v u dx'⋅⎰依旧是相当复杂,无法通过a中方法求解的不定积分,则重复⑵、⑶,直至出现容易求解的不定积分;若重复过程中出现循环,则联立方程求解,但是最后要注意添上常数C2xe x dx⋅⎰sinxe xdx⋅⎰()1sin sin cos2x xe xdx e x x C⋅=-+⎰第四节有理函数的不定积分○有理函数(★)设:()()()()101101m m mn n nP x p x a x a x a Q x q x b x b x b --=++⋯+==++⋯+ 对于有理函数()()P x Q x ,当()P x 的次数小于()Q x 的次数时,有理函数()()P x Q x 是真分式;当()P x 的次数大于()Q x 的次数时,有理函数()()P x Q x 是假分式 ○有理函数(真分式)不定积分的求解思路(★)⑴将有理函数()()P x Q x 的分母()Q x 分拆成两个没有公因式的多项式的乘积:其中一个多项式可以表示为一次因式()kx a -;而另一个多项式可以表示为二次质因式()2lx px q ++,(240p q -<);即:()()()12Q x Q x Q x =⋅一般地:n mx n m x m ⎛⎫+=+ ⎪⎝⎭,则参数na m=-则参数,b cp q a a==⑵则设有理函数()()P x Q x 的分拆和式为: 其中参数121212,,...,,,,...,l k lM M M A A A N N N ⎧⎧⎧⎨⎨⎨⎩⎩⎩由待定系数法(比较法)求出⑶得到分拆式后分项积分即可求解【题型示例】求21x dx x +⎰(构造法) 【求解示例】第五节 积分表的使用(不作要求)第五章 定积分极其应用第一节 定积分的概念与性质○定积分的定义(★)(()f x 称为被积函数,()f x dx 称为被积表达式,x 则称为积分变量,a 称为积分下限,b 称为积分上限,[],a b 称为积分区间)○定积分的性质(★★★)⑴()()b baaf x dx f u du =⎰⎰⑵()0aa f x dx =⎰⑶()()bba a kf x dx k f x dx =⎡⎤⎣⎦⎰⎰ ⑷(线性性质)⑸(积分区间的可加性)⑹若函数()f x 在积分区间[],a b 上满足()0f x >,则()0ba f x dx >⎰;(推论一)若函数()f x 、函数()g x 在积分区间[],a b 上满足()()f x g x ≤,则()()bbaaf x dxg x dx ≤⎰⎰;(推论二)()()b baaf x dx f x dx ≤⎰⎰○积分中值定理(不作要求)第二节 微积分基本公式○牛顿-莱布尼兹公式(★★★)(定理三)若果函数()F x 是连续函数()f x 在区间[],a b 上的一个原函数,则○变限积分的导数公式(★★★)(上上导―下下导)【题型示例】求21cos 2limt xx e dt x-→⎰【求解示例】第三节 定积分的换元法及分部积分法○定积分的换元法(★★★)⑴(第一换元法)【题型示例】求2121dx x +⎰【求解示例】()[]222000111121ln 212122121ln 5ln 5ln122解:dx d x x x x =+=⎡+⎤⎣⎦++=-=⎰⎰ ⑵(第二换元法)设函数()[],f x C a b ∈,函数()x t ϕ=满足:a .,αβ∃,使得()(),ab ϕαϕβ==;b .在区间[],αβ或[],βα上,()(),f t t ϕϕ'⎡⎤⎣⎦连续则:()()()ba f x dx f t t dt βαϕϕ'=⎡⎤⎣⎦⎰⎰【题型示例】求4⎰【求解示例】⑶(分部积分法)○偶倍奇零(★★)设()[],f x C a a ∈-,则有以下结论成立:⑴若()()f x f x -=,则()()02aaaf x dx f x dx -=⎰⎰⑵若()()f x f x -=-,则()0a a f x dx -=⎰ 第四节 定积分在几何上的应用(暂时不作要求)第五节 定积分在物理上的应用(暂时不作要求)第六节 反常积分(不作要求)如:不定积分公式21arctan 1dx x C x=++⎰的证明。