固体物理(2011) - 第3章 晶格的热振动 2 一维单原子链概述
晶格的热振动经典一维单原子链格波

0
Q2
0
0
Q3
d N 1 0
0 dN
QN 1 QN
解:Qq (t) Qqeit
引入“格点傅里叶变换”能实现这个目标!
Qq Qq*
q 取哪些值? 1st-BZ !《固体理论》-第一章 周期性结构
(李正中)
28
把格点傅里叶变换写成矩阵?
q1 =/= q2
1 =/= 2
but
un(q1) = un(q2)
(q1) = (q2)
q1 = 2 / na + q2
只需挑出第一布里渊区(1st BZ)进行计算
20
两个重要的极限情况
长波极限 短波极限
21
长波极限
当
c q —— 回到连续介质中弹性波的色散关系
2121考察结果考察结果qq11uunnqq22qq11只需挑出第一布里渊区只需挑出第一布里渊区11ststbzbz进行计算进行计算2222两个重要的极限情况两个重要的极限情况长波极限长波极限短波极限短波极限2323长波极限长波极限2424相邻原子之间的作用力格波传播速度连续介质的弹性模量和介质密度长波极限下一维单原子晶格格波可以看作是弹性波晶格可以看成是连续介质长波极限情况伸长模量2525一个波长内包含许多原子晶格看作是连续介质短波极限下相邻两个原子振动的位相相反而长波极限下相邻两个原子之间的位相差短波极限短波极限2626长波极限下短波极限下相邻两个原子振动位相差短波反映微观结构短波反映微观结构2727问题二
1
第一出发点
牛顿力学模型
m
d 2un dt 2
(un1 un1 2un )
一维单原子链晶格振动解析步骤

一维单原子链晶格振动解析步骤一维单原子链模型是固体物理中的经典模型之一,用于描述晶体中原子的振动行为。
在这个模型中,原子由质量为m的核和劲度系数为K的弹性相互作用构成。
通过对一维单原子链的晶格振动进行分析,可以更好地理解固体中的声子模式和声子色散关系。
下面将介绍一维单原子链晶格振动解析步骤:第一步:建立模型首先,我们要建立一维单原子链的模型。
假设晶格常数为a,原子间距为a/2,一维晶格中的每个原子都沿着x轴定位。
原子间的相互作用由弹簧模型描述,即相邻原子间的相互作用劲度系数为K。
这个模型是一个简单的原子链模型,可以通过它来研究晶格振动的基本性质。
第二步:求解运动方程接下来,我们需要求解原子在这个一维单原子链中的运动方程。
假设第n个原子的位移为Un(t),那么根据牛顿第二定律,可以得出该原子的运动方程为:m*Un’’(t) = -K*(Un(t+0) - 2*Un(t) + Un(t-0))上式中,Un’’(t)表示Un对时间的二阶导数,-K*(Un(t+0) -2*Un(t) + Un(t-0))表示受到的弹性相互作用力。
第三步:假设解的形式由于原子在一维单原子链中的振动属于谐振动问题,我们可以假设原子的位移满足解的形式为:Un(t) = An*exp(i*(k*n*a - ω*t))其中,An是振幅,k是波数,ω是角频率,n是原子的编号。
将这个解代入到运动方程中,可以得到关于角频率ω和波数k的关系式,即声子色散关系。
声子色散关系描述了声子的能量随波数变化的关系,是描述晶体中声子性质的重要工具。
第四步:得到声子色散关系将解的形式代入运动方程,我们可以得到关于角频率ω和波数k的关系式。
具体地,我们可以得到一维单原子链中的声子色散关系为:ω(k) = 2*sqrt(K/m)*|sin(ka/2)|声子色散关系描述了一维单原子链中的声子能量随波数变化的规律。
从这个关系式可以看出,一维单原子链中的声子有声学支和光学支两种振动模式,它们的能量随波数的变化方式不同。
《固体物理基础》晶格振动与晶体的热学性质

一、三维简单格子
二、三维复式格子
三、第一布里渊区
四、周期性边界条件
◇一个原胞内有P
个不同原子,则
有3P个不同的振
动模式,其中3支 声学波。
◇具有N个原胞的 晶体中共有3PN个
振动模式,其中
3N个声学波, 3N(P-1)个光学波。
四、周期性边界条件 总结
§ 3.4 声子
声子:晶格振动中格波的能量量子
二、一维单原子链的振动
格波
二、一维单原子链的振动
色散关系
二、一维单原子链的振动
色散关系
二、一维单原子链的振动
第一布里渊区
二、一维单原子链的振动
第一布里渊区
二、一维单原子链的振动
第一布里渊区
二、一维单原子链的振动
周期性边界条件
玻恩—卡曼边界条件
二、一维单原子链的振动
周期性边界条件
即q有N个独立的取值—晶格中的原胞数第一布
◇非弹性X射线散射、非弹性中子散射、可见光 的非弹性散射。
§ 3.4 声子
§ 3.4 声子
90K下钠晶体沿三个方向的色散关系
§ 3.5 晶格热容
一、晶格振动的平均能量
热力学中,固体定容热容:
根据经典理论,每一个自由度的平均能量是kBT, kBT/2为平均动能,kBT/2为平均势能,若固体有
N个原子,总平均能量: 取N=1摩尔原子数,摩尔热容是:
二、一维单原子链的振动
一维单原子链的振动
二、一维单原子链的振动
简谐近似下的运动方程
二、一维单Hale Waihona Puke 子链的振动简谐近似下的运动方程
在简谐近似下,原子的相互作用像一个弹 簧振子。一维原子链是一个耦合谐振子,各原 子的振动相互关联传播,形成格波。
固体物理05-晶格振动

周期性边界条件(Born-Karman边界条件)
包含N个原子的环状链。当系统移动N个原子后,振动情况完全复原。
i t naq u ( q ) Ae 格波解: n
周期性边界条件要求: e
iNaq
1
或
2 qn Na
n 为整数
周期性边界条件(Born-Karman边界条件)
b1 b 2 b 3 * N1 N 2 N 3 N
每个q 点有3n支模式,总共有3nN支模,正好是nN个 原子的全部自由度,即已包含所以得振动模式。
Pb的格波谱
无光学模 Why?
Cu的格波谱
光学支 金刚石的振动谱
声学支
作
业
1.分别画出 M=m, 1.5m, 2m 的一维双原子链的色散关系图。
上述方程有 解的条件是:
m 2 2 2 cos aq
2 cos aq M 2
2
0
最后解得方程:
2
( M m) Mm
( M m ) 2 4 Mm sin 2 aq
β(M m) 4 Mm 2 sin aq 1 1 2 Mm ( M m)
u ( x, q ) Ae i t qx
连续介质波中的x表示为空间中的任意一点,而晶格中的格波只 能取na格点的位置。在格波中将aq改变2π的整数倍,原子的实 际振动没有任何不同。可以将q的取值范围限制在:
a
q
a
第一布里渊区
q 取第一布里渊区外的值,不能提供新的波解。
对于格波白色和黑色的这两种波动解是等价的(只在离散 的晶格上有振动),但对连续介质波来说,这两个波是不 一样的。
固体物理(第5课)晶格振动一维单原子链

例题1 例题 解 答
β a qa ω sin sin q ⇒ ∴ =2 =2 m 2 m 2
2 1/ 2 qa a β β m ω dq cos ⋅ d q = a⋅ ⋅ 1− dω = 2 m 2 2 m 4β 2 1/ 2 ω cos qa = 1−sin2 qa = 1− m 2 4β 2
′ ′ δ = (rn+1 −rn) −(rn+1 −rn) ∴f = −β(xn+1 − xn) = r′+1 −r +1 −(r′ −r ) = xn+1 − xn n n n n
简谐近似下的运动方程
n号 子 受 : 原 的 力 = β f左 - (xn − xn−1) = β f右 - (xn+1 − xn ) Qf左 f右 向 反 与 方 相 ∴f = f左− f右
爱因斯坦:固体比热容理论,将n个原子的振动简 化为3n个谐振子,量子化假设,得到了比热容温度公 式。 玻恩和卡门:原子振动以晶格波的形式存在,创立 了晶格动力学。 德拜:简化了上述理论。 晶格动力学被应用到热力学性质,热传导,电导、 介电、光学和X射线衍射等方面。 声子:晶格振动波的能量量子。
晶格动力学
一维单原子链(一维布喇菲晶格) 3.1 一维单原子链(一维布喇菲晶格) 1. 运动方程:简谐近似下的振动 (简谐振动)
原 质 : 子 量 m 原 标 : 子 号 n 平 间 : 衡 距 a 纵 位 :n 向 移 x 向 右 xn > 0 向 左 xn < 0
1.简谐近似 简谐近似
f ≈ −βδ 常 数 β: 系 δ a = ′ −a δ : , 引 >0 f <0 吸 力 δ : , 斥 <0 f >0 排 力
《固体物理基础教学课件》第3章

n1 n
平衡位置 非平衡位置
a 3
3-1 原子作用力的处理:简谐近似
忽略高阶项,简谐近似考虑原子 V 振动,相邻原子间相互作用势能
v(a)12(ddr2v2)a2
相邻原子间作用力
O
a
r
f ddv, (d dr2v2)a
只考虑相邻原子的作用,第n个原
第2n+1个M原子的方程 M d2 dt2 2n1(22n12n22n)
ቤተ መጻሕፍቲ ባይዱ 第2n个m原子的方程 mdd 2t22n(22n2n12n1)
解也具有平面波 的形式
两种原子振动的 振幅(m取A, M取B)一般来说 是不同的
a 13
3-2 声学波与光学波
色散关系有不同的两种
2(m m M M ) 11(m 4 m M M )2sin2aq12
a 2
3-1 一维单原子链模型
一维单原子链:最简单的晶格模型
晶格具有周期性,晶格的振动具有波的形式 —— 格波
格波的研究方法:
计算原子之间的相互作用力 根据牛顿定律写出原子运动方程,并求解方程
一维单原子链模型:
平衡时相邻原子间距为a (即原胞体积为a)
原子质量为m 原子限制在沿链方向运动
声子
0.1
1 100 10000
a 11
3-2 一维双原子链模型
一维双原子链模型 声学波与光学波 声学波与光学波的长波极限 长光学波的特性
a 12
3-2 一维双原子链模型
两种原子m和M (M > m) 构成一维复式格子 M原子位于2n-1, 2n+1, 2n+3 … m原子位于2n, 2n+2, 2n+4… 晶格常数、同种原子间的距离:2a
固体物理基础第3章 晶格振动理论

第3章 晶格振动理论
基于如下的物理考虑:首先,晶体的宏观热性质取决于 组成晶体的绝大多数原子的运动状态;其次,晶体边界(表 面)原子的数目远小于晶体内部原子数目,因此对晶体热性 质的影响很小;第三,按照近邻作用近似,边界原子对内部 原子运动状态的影响很小。于是,玻恩-卡曼提出了这样的 周期性边界条件:假定由数目巨大的N个原子组成的一维单 原子链首尾衔接(间距也为a),构成一个如图3.3所示的半径 很大的圆环,局部范围内原子沿环方向的振动仍然可以看做
2
第3章 晶格振动理论 μn+2,…表示,第n个原子的实际位移为Xn=na+μn,如图 3.1(b)所示。尽管晶格中任一原子都会受到其他(n-1)个原子 的作用,但是这种作用会随着原子间距的增加而快速减小, 这是比较容易理解的,因此,为了使问题进一步简化,可以 进行近邻作用近似,即假定晶格中任一原子只受到其最近邻 原子的作用。这样的话,由于晶格中相邻原子间的相互作用 (化学键)都相同,就可以把一维单原子链想象成N个原子由 完全相同的弹簧连接的情况,如图3.1(c)所示,于是对于第n 个原子,只受到前后两个原子的作用fn-1,fn+1,它们与原子 的相对位移成正比,并且具有相同的弹性系数(或者叫回复 力系数)β。
把这些连续量带入方程(3.1)整理后即可得到:
m 2 ( t2 x ,t) 2 x (x 2 ,t)a 2 2 ( t2 x ,t)0 2 2 x (x 2 ,t)
(3.3)
7
第3章 晶格振动理论
这是数理方程中的波动方程,其中
2 0
程的特解为
a2 m
为波速度,该方
(x,t)Aei(tqx)
这是由2N个方程组成的联立方程组。同样,该方程组 应该具有下列形式的格波解,只是由于P原子和Q原子质量 的不同,其格波解的振幅不同:
固体物理--第三章 晶格振动ppt课件

5
2a
2
q2 q1 a
5
三、周期性边界条件(Born-Karman边界条件)
N+1
12
n
N N+2 N+n
N n
n
Aeit N naq Aeitnaq
eiNaq 1 ei2h 1
q 2 h
Na
h =整数
6
在q轴上,每一个q的取值所占的空间为 2
Na
q的分布密度:
q Na L
子数不守恒。
11
§3.2 一维双原子链的振动
考虑由P、Q两种原子等距相间排列的一维双原子链
一、运动方程及其解
a Mm
{
n-1 n n n+1
只考虑近邻原子间的弹性相互作用
{ 运动方程:
M n n n1 2n
m n n n1 2 n
试 解:
it naq
Ae n
{ Bei
q 0
光波: =c0q, c0为光速
对于实际晶体, +(0)在1013 ~ 1014Hz,对应于远 红外光范围。离子晶体中光学波的共振可引起对远红外 光在 +(0)附近的强烈吸收。
18
2. 声学波(acoustic branch)
n n
M
m
2m
cos
1 2
aqei
12aq
M 2 m2 2Mm cosaq
2 2
L=Na ——晶体链的长度
简约区中波数q的取值总数 q 2 Na 2
a 2 a
=N=晶体链的原胞数
晶格振动格波的总数=N·1 =晶体链的自由度数
7
四、格波的简谐性、声子概念
晶体链的动能:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
—— 格波的波形图 —— 向上的箭头代表 原子沿X轴向右振动 —— 向下的箭头代表 原子沿X轴向左振动
如何确定波长?最长是多长?最短是多短? 注意指标 n
怎么猜的解?
第一眼:像一个简谐振动 其次,这是一个波动方程 所以猜“格波”解组
得到一个需要满足的条件
下一个问题: q
4 2 aq sin ( ) m 2
2
=?
类似的数值计算问题:
类似的数值计算问题:
x y( x , t ) A cos[ (t ) 0 ] u
格波方程 格波波长
格波波矢
格波相速度
不同原子间位相差
相邻原子的位相差
格波 波矢的取值和布里渊区 相邻原子位相差 —— 原子的振动状态相同 格波1(Red)波矢 相邻原子位相差 格波2(Green)波矢 相邻原子的位相差
波矢
2 q h Na
h — N个整数值,波矢q —— 取N个不同的分立值 —— 第一布里渊区包含N个状态
N 2 : h 0,1 N 4 : h 1,0,1,2 N 6 : h 2,1,0,1,2,3
波矢密度:单位 q 空间的波矢数 独立波矢数 = N (原胞数)
N个原子头尾相接形成一个环链,保持了所有原子等价的 特点
N很大,原子运动 近似为直线运动
处理问题时要考虑
到环链的循环性
设第n个原子的位移 再增加N个原子之后,第N + n个原子的位移 则有 要求
2 q h Na
波矢的取值范围
—— h为整数
N=even ?
N N h 2 2
当 q1 = 2 / na + q2 会出现什么情况?
—— 两种波矢的格波中, 原子的物理振动完全相同
相邻原子的位相差
—— 恰好是晶格的第一布里渊区 波矢的取值 q a a
巧合?
—— 只需研究清楚第一布里渊区的晶格振动问题 —— 其它区域不能提供新的物理内容
从能谱来看也具有第一布里渊区的周期性:
4 aq q sin( ) m 2
考察结果
q1 =/= q2 1 =/= 2
but
un(q1) = un(q2) (q1) = (q2)
q1 = 2 / na + q2
只需挑出第一布里渊区(1st BZ)进行计算
有限格点和边界问题
N个格点的体系:
开放边界,open boundary condition (OBC) 周期边界,periodic boundary condition (PBC)
—— 根据牛顿定律写出原子运动方程,最后求解方程
一维无限原子链 —— 每个原子质量m,平衡时原子间距a
—— 原子之间的作用力 第n个原子离开 平衡位置的位移
位移前
第n个原子和第n+1 位移后 个原子间的相对位移
第n个原子和第n+1个原子间的距离
平衡位置时,两个原子间的互作用势能
发生相对位移 后,相互作用势能
固体物理
第一章 第二章 第三章 第四章 第五章 第六章 第七章 第八章
So lid S ta te Phy si cs
1 简正模与格波 2 一维单原子链 3 一维双原子链 4 三维晶格 5 纯量子力学表述-声子 6 离子晶体的长光学波 7 晶格振动谱的实验方法 8 非完整晶格振动 - 局域模 9 晶格的比热容 10 晶格状态方程和热膨胀
为何要研究这个问题?
实际体系是怎样的? limit (N infinity) 的计算意义
玻恩-卡门(Born-Karman)周期边界条件
—— 一维单原子晶格看作无限长,所有原子是等价的,每个 原子的振动形式都一样
—— 而实际的晶体为有限,形成的链不是无穷长,链两头 的原子不能用中间原子的运动方程来描述
—— 常数
—— 平衡条件
简谐近似 —— 振动很微弱,势能展式中只保留到二阶项 相邻原子间的作用力
譬如:Lennard-Jones 势!
原子的运动方程
组
—— 只考虑相邻原子的作用,第n个原子受到的作用力
第n个原子的运动方程
d 2 n m 2 ( n 1 n 1 2 n ) dt ( n 1, 2, 3 , N )
N Na L 波矢密度: * 2 2
格波的色散关系
aq q 2 sin( ) m 2
频率是波数的偶函数
色散关系曲线具有周期性
—— q空间的周期
频率极小值 频率极大值
min 0
一维单原子链
一维单原子链的格波解 (经典视角)
出发点:力学运动方程,等价的能量观点 尝试解:格波 1st BZ的角色:能带
从有限到无限的过渡:玻恩-卡门周期性边界条件
长波极限及短波极限的物理
从经典的格波到量子的声子
晶格具有周期性,晶格的振动具有波的形式 —— 格波
格波的进一步研究 —— 先计算原子之间的相互作用力
晶体结构 晶体的结合 晶格的热振动 能带论 金属电子论 半导体电子论 固体磁性 固体超导
重要性
在上一小节,我们似乎没学到实质的东西!
在现代物理研究中,例子 (Prototype/paradigm) 显得非常重要, 本节内容似乎只是一道习题,但是重要得需要用 一节来描述,在下一节我们还会做一道习题 本节的内容或结论将会以各种改头换面的形式出 现在更进一步的现代物理 (包括实验物理和理论物 理) 的各个角落
m 2
—— 一维简单晶格中格波的色散关系,即振动频谱
注意:q怎么来的?
格波的意义 连续介质波
2 波数 q
—— 格波和连续介质波具有完全类似的形式 —— 一个格波表示的是所有原子同时做频率为的振动
n q , t Ae i ( q ) t naq—— 简谐近似下,格波是简谐平面波
—— 每一个原子运动方程类似 —— 方程的数目和原子数相同
插一句:能量观点作为出发点?
下面的 x 换成
方程解和振动频率 设方程组的尝试解
Bloch定理?
naq — 第n个原子振动位相因子
代入得到
Hale Waihona Puke 4 2 aq sin ( ) m 2
2
格波解
n q , t Ae i ( q ) t naq q 4 sin( aq )