15.数学第13讲反比例函数的图象和性质(最新整理)
合集下载
反比例函数的图像和性质课件

曲线运动问题
通过给定物体的速度和运 动轨迹的曲率半径,利用 反比例关系求解物体在不 同位置的速度。
浓度问题建模与求解
溶液稀释问题
通过给定溶液的初始浓度 和稀释后的体积,利用反 比例关系求解稀释后的浓 度。
溶液混合问题
通过给定两种不同浓度的 溶液的体积和浓度,利用 反比例关系求解混合后的 浓度。
物质溶解问题
通过给定三角形的面积和底边长度,利用反比例关系求解高。
平行四边形面积问题
03
通过给定平行四边形的面积和一组对边的长度,利用反比例关
系求解另一组对边的长度。
速度问题建模与求解
01
02
03
匀速直线运动问题
通过给定物体的速度和运 动时间,利用反比例关系 求解物体运动的距离。
变速直线运动问题
通过给定物体的加速度和 运动时间,利用反比例关 系求解物体在不同时间点 的速度。
在第一象限和第三象限内,随着 $x$ 的增大 ,$y$ 值逐渐减小。
函数图像关于原点对称。
函数值变化规律
01
当 $k < 0$ 时
在第二象限和第四象限内,随着 $x$ 的增大,$y$ 值逐渐增大。
无论 $k$ 取何值,反比例函数 在其定义域内总是连续的,且在 其定义域内没有极值点。
02
03
04
函数图像关于原点对称。
2
反比例型复合函数图像
反比例型复合函数的图像形状和位置取 决于 $f(x)$ 的性质和取值范围。一般来 说,其图像可能不再是双曲线,但仍然 具有一些反比例函数的特性。
3 反比例型复合函数性质
反比例型复合函数具有一些特殊的性质 ,如单调性、奇偶性等,这些性质与 $f(x)$ 的性质和取值范围密切相关。在 实际应用中,需要根据具体情况进行分 析和判断。
第13讲 反比例函数

考点知识梳理 中考典例精析 基础巩固训练 考点训练
宇轩图书
考点知识梳理
中考典例精析
基础巩固训练
考点训练
宇轩图书
1.已知反比例函数的图象经过点(-1,2),则它的 解析式是 ( B ) 2 B. y=- x 1 D. y = x
1 A. y=- 2x 2 C. y = x
考点知识梳理
中考典例精析
基础巩固训练
如图①和②,S 矩形 PAOB=PA· PB= |y |· |x|= |xy|= |k|, 1 1 同理可得 S△ OPA= S△ OPB= |xy|= |k|. 2 2 温馨提示 根据图象描述性质、根据性质大致画出图象及求 解析式是一个难点,要逐步理解和掌握 .
考点知识梳理
中考典例精析
基础巩固训练
考点训练
宇轩图书
考点五
反比例函数的应用
解决反比例函数的实际问题时,要先确定函数解 析式,再利用图象找出解决问题的方案,要特别注意 自变量的取值范围 .
考点知识梳理
中考典例精析
基础巩固训练
考点训练
宇轩图书
考点知识梳理
中考典例精析
基础巩固训练
考点训练
宇轩图书
考点一
反比例函数的性质
m+2 例 1 (2013· 衢州)若函数 y= x 的图象在其所在的 每一象限内,函数值 y 随自变量 x 的增大而增大,则 m 的取值范围是( A.m<-2 C. m>-2 ) B.m<0 D.m>0
考点知识梳理 中考典例精析 基础巩固训练 考点训练
宇轩图书
考点知识梳理
中考典例精析
基础巩固训练
考点训练
宇轩图书
(1)恒温系统在这天保持大棚内温度 18 ℃的时间有 多少小时? (2)求 k 的值; (3)当 x= 16 时,大棚内的温度约为多少摄氏度?
宇轩图书
考点知识梳理
中考典例精析
基础巩固训练
考点训练
宇轩图书
1.已知反比例函数的图象经过点(-1,2),则它的 解析式是 ( B ) 2 B. y=- x 1 D. y = x
1 A. y=- 2x 2 C. y = x
考点知识梳理
中考典例精析
基础巩固训练
如图①和②,S 矩形 PAOB=PA· PB= |y |· |x|= |xy|= |k|, 1 1 同理可得 S△ OPA= S△ OPB= |xy|= |k|. 2 2 温馨提示 根据图象描述性质、根据性质大致画出图象及求 解析式是一个难点,要逐步理解和掌握 .
考点知识梳理
中考典例精析
基础巩固训练
考点训练
宇轩图书
考点五
反比例函数的应用
解决反比例函数的实际问题时,要先确定函数解 析式,再利用图象找出解决问题的方案,要特别注意 自变量的取值范围 .
考点知识梳理
中考典例精析
基础巩固训练
考点训练
宇轩图书
考点知识梳理
中考典例精析
基础巩固训练
考点训练
宇轩图书
考点一
反比例函数的性质
m+2 例 1 (2013· 衢州)若函数 y= x 的图象在其所在的 每一象限内,函数值 y 随自变量 x 的增大而增大,则 m 的取值范围是( A.m<-2 C. m>-2 ) B.m<0 D.m>0
考点知识梳理 中考典例精析 基础巩固训练 考点训练
宇轩图书
考点知识梳理
中考典例精析
基础巩固训练
考点训练
宇轩图书
(1)恒温系统在这天保持大棚内温度 18 ℃的时间有 多少小时? (2)求 k 的值; (3)当 x= 16 时,大棚内的温度约为多少摄氏度?
数学反比例函数的图象及性质知识点归纳

注意:反比例函数的图象不会与坐标 轴相交或重合。
03
反比例函数性质分析
单调性
01
02
在每一象限内,从左到右,随着x的增大,y值逐渐减小,即函数单调 递减。
反比例函数在第一、三象限为减函数,在第二、四象限也为减函数。
奇偶性
反比例函数是奇函数,即满足f(-x)=-f(x)。 奇函数的图象关于原点对称,因此反比例函数的图象也关于原点对称。
反比例函数的比例系数k和直线 的斜率都不能为0,否则交点不
存在。
反比例函数的图象是双曲线,而 直线的图象是直线,因此只有当 直线与双曲线有交点时,才能确
定交点的存在。
05
反比例函数在实际问题中 应用
面积问题
01
矩形面积
当矩形的长度和宽度成反比例 关系时,可以通过反比例函数
来描述其面积变化。
02
三角形面积
数学反比例函数的图象及性 质知识点归纳
汇报人:XXX
汇报时间:2024-01-26
目录
• 反比例函数基本概念 • 反比例函数图象特征 • 反比例函数性质分析 • 反比例函数与直线交点问题
目录
• 反比例函数在实际问题中应用 • 反比例函数与其他知识点联系
01
反比例函数基本概念
定义与表达式
01
反比例函数定义
形如 $y = frac{k}{x}$ (其中 $k$ 为非零常数) 的函数称为
反比例函数。
$y = frac{k}{x}$,其中 $k neq 0$,$x neq 0$。
02
表达式
自变量取值范围
自变量 $x$ 的取值范围是所有 不等于零的实数,即 $x neq
0$。
02
函数及其图象反比例函数反比例函数的图象和性质

反比例函数图像的变换规律
伸缩变换
当k值变化时,反比例函数的图像 会沿着x轴或y轴方向伸缩。当k增 大时,图像会向原点靠近;当k减 小时,图像会远离原点。
平移变换
当反比例函数沿x轴或y轴平移时 ,其图像也会相应地沿x轴或y轴 方向移动。
03
反比例函数的性质
反比例函数的单调性
递减性
当$k > 0$时,反比例函数在$(\infty,0)$和$(0,+\infty)$上单调递 减。
溶质溶解度
在溶质溶解度中,溶解度 与温度也成反比关系,即 温度越高,溶解度越低。
反比例函数在经济问题中的应用
供需关系
在市场经济中,供需关系 呈反比关系,即供应量越 大,需求量越小;反之亦 然。
货币流通速度
在货币流通中,货币流通 速度与货币供应量也成反 比关系,即货币供应量越 大,货币流通速度越慢。
热力学中的气体定律
在热力学中,气体的压强与体积也成反比关系,即压强越大,体积 越小。
反比例函数在化学问题中的应用
01
02
03
化学反应速率
在化学反应中,反应速率 与反应物的浓度成反比关 系,即浓度越高,反应速 率越快。
化学平衡
在化学平衡中,反应物的 转化率与反应温度成反比 关系,即温度越高,转化 率越低。
04
反比例函数的图像是双 曲线。
反比例函数的应用场景
在物理学中,反比例函数可以用来描述一些物理量之间的关系,例如电 流与电阻之间的关系可以表示为 $I = \frac{V}{R}$。
在化学中,反比例函数可以用来描述一些化学反应速率与反应物浓度之 间的关系。
在经济学中,反比例函数可以用来描述一些经济现象之间的关系,例如 需求与价格之间的关系可以表示为 $D = \frac{N \times P}{M}$。
反比例函数的图象和性质课件

函数值的无限性
01
由于x不能为0,所以y的值是无限 的,即反比例函数图像上存在无穷 多个点。
02
在每一个象限内,随着x的增大或 减小,y的值会趋近于无穷大或无 穷小。
函数值的单调性
当k>0时,函数在(0, +∞)区间内单调 递减,在(-∞, 0)区间内也单调递减。
当k<0时,函数在(0, +∞)区间内单调递 增,在(-∞, 0)区间内也单调递增。
反比例函数的定义
反比例函数是指形如 y = k/x (k ≠ 0) 的函数,其中 k 是 常数。
反比例函数的性质
反比例函数的图象是双曲线,当 k > 0 时,双曲线的两支 分别位于第一、第三象限;当 k < 0 时,双曲线的两支分 别位于第二、第四象限。
反比例函数的单调性
在各自象限内,反比例函数是单调递减的。
反比例函数的图象和性质课件
目录
• 反比例函数概述 • 反比例函数的图像性质 • 反比例函数的性质 • 反比例函数的应用 • 反比例函数的扩展知识
01 反比例函数概述
反比例函数的定义
反比例函数是指函数形式为$f(x) = frac{k}{x}$(其中$k neq 0$)的函数。
当$k > 0$时,反比例函数的图像分布在 第一象限和第三象限;当$k < 0$时,图 像分布在第二象限和第四象限。
经济问题
在经济学中,反比例函数可以用 于描述商品价格与市场需求之间 的关系,通过分析反比例函数的 特性,可以预测市场价格的变动
趋势。
在物理中的应用
磁场问题
在电磁学中,磁场与电流之间的 关系可以用反比例函数描述,通 过分析反比例函数的特性,可以 解决与磁场和电流相关的问题。
反比例函数的图象与性质-ppt课件

方 ■ 方法:利用数形结合思想解决反比例函数与几何的综
法
技 合问题
巧
解决这类问题,一般先设出几何图形中未知边的长,然
点
拨 后结合函数图象,用含未知数的代数式表示出几何图形与
图象的交点坐标,再由函数表达式及几何图形的性质列方
程(组)求几何图形中的未知量或函数表达式.
6.2 反比例函数的图象与性质
例
如图,在平面直角坐标系中,菱形 ABCD 的边
B. y2<y3<y1
C. y1<y2<y3
D. y1<y3<y2
6.2 反比例函数的图象与性质
[解析]
易
错
∵k=-6<0,∴ 图象位于第二、四象限,在每一象限内
易
混 ,y 随 x 的增大而增大,∵x >x >0,∴y <y <0,∵x
1
3
3
1
2
分
析 <0,∴y2>0,∴y3<y1<y2.
[答案] A
6.2 反比例函数的图象与性质
考
点
清
单
解
读
■考点一
反比例函数图象的画法
1. 反比例函数图象的画法(描点法)
6.2 反比例函数的图象与性质
考
点
清
单
解
读
2. 反比例函数图象的特点
反比例函数 y=
(k
为常数,且 k≠0)的图象由
双曲线 分别位于两个象限内的两条曲线组成,这样的曲线
叫做双曲线
(1)轴对称图形,对称轴分别是①第二、四象限
解
读 算;
(2)需要注意的是,画反比例函数图象时应尽量多取一
些点,描点越多,图象越准确.
6.2 反比例函数的图象与性质
法
技 合问题
巧
解决这类问题,一般先设出几何图形中未知边的长,然
点
拨 后结合函数图象,用含未知数的代数式表示出几何图形与
图象的交点坐标,再由函数表达式及几何图形的性质列方
程(组)求几何图形中的未知量或函数表达式.
6.2 反比例函数的图象与性质
例
如图,在平面直角坐标系中,菱形 ABCD 的边
B. y2<y3<y1
C. y1<y2<y3
D. y1<y3<y2
6.2 反比例函数的图象与性质
[解析]
易
错
∵k=-6<0,∴ 图象位于第二、四象限,在每一象限内
易
混 ,y 随 x 的增大而增大,∵x >x >0,∴y <y <0,∵x
1
3
3
1
2
分
析 <0,∴y2>0,∴y3<y1<y2.
[答案] A
6.2 反比例函数的图象与性质
考
点
清
单
解
读
■考点一
反比例函数图象的画法
1. 反比例函数图象的画法(描点法)
6.2 反比例函数的图象与性质
考
点
清
单
解
读
2. 反比例函数图象的特点
反比例函数 y=
(k
为常数,且 k≠0)的图象由
双曲线 分别位于两个象限内的两条曲线组成,这样的曲线
叫做双曲线
(1)轴对称图形,对称轴分别是①第二、四象限
解
读 算;
(2)需要注意的是,画反比例函数图象时应尽量多取一
些点,描点越多,图象越准确.
6.2 反比例函数的图象与性质
反比例函数图像和性质教学课件
幂函数和反比例函数在性质上有一些相似之处,例如它们 都是连续的、可微的、有界但无界的。然而,它们的导数 和积分有不同的形式和性质。
THANK YOU
反比例函数图像和性质教学 课件
contents
目录
• 反比例函数简介 • 反比例函数的图像绘制 • 反比例函数的性质分析 • 反比例函数的应用举例 • 反比例函数与其他知识点的关联
01
反比例函数简介
反比例函数的定义
1 2
反比例函数
形如 (f(x) = frac{k}{x}) (其中 (k neq 0)) 的函数 被称为反比例函数。
反比例函数的渐近线
反比例函数的图像没有界限,但可以无限接近两条渐近线,分别是 (y = 0) 和 (x = 0)。
反比例函数的应用
在物理学、工程学和其他科学领域中,反比例函数有广泛的应用,例如电阻、电容和电感 之间的关系。
02
反比例函数的图像绘 制
使用数学软件绘制反比例函数图像
软件选择
选择适合的数学软件,如 GeoGebra、Desmos等,这些
运动与减肥的关系
在减肥过程中,运动量与减肥效果之 间存在反比关系,即当运动量增大时 ,减肥效果不一定更明显,需要合理 控制饮食和运动量。
05
反比例函数与其他知 识点的关联
与一次函数的关联
一次函数是形如y=kx+b的函数,其中k和b是常数,且k≠0。当b=0时,一次函数退化为正比例函数 ,其图像是一条过原点的直线。反比例函数与正比例函数在形式上相似,只是自变量x的次数为-1。 因此,反比例函数的图像也位于坐标轴的两侧,并随着x的增大而趋近于无穷远。
一次函数和反比例函数在图像上都是单调的,但方向相反。一次函数随着x的增大而增大或减小,而 反比例函数则随着x的增大而减小或增大。
THANK YOU
反比例函数图像和性质教学 课件
contents
目录
• 反比例函数简介 • 反比例函数的图像绘制 • 反比例函数的性质分析 • 反比例函数的应用举例 • 反比例函数与其他知识点的关联
01
反比例函数简介
反比例函数的定义
1 2
反比例函数
形如 (f(x) = frac{k}{x}) (其中 (k neq 0)) 的函数 被称为反比例函数。
反比例函数的渐近线
反比例函数的图像没有界限,但可以无限接近两条渐近线,分别是 (y = 0) 和 (x = 0)。
反比例函数的应用
在物理学、工程学和其他科学领域中,反比例函数有广泛的应用,例如电阻、电容和电感 之间的关系。
02
反比例函数的图像绘 制
使用数学软件绘制反比例函数图像
软件选择
选择适合的数学软件,如 GeoGebra、Desmos等,这些
运动与减肥的关系
在减肥过程中,运动量与减肥效果之 间存在反比关系,即当运动量增大时 ,减肥效果不一定更明显,需要合理 控制饮食和运动量。
05
反比例函数与其他知 识点的关联
与一次函数的关联
一次函数是形如y=kx+b的函数,其中k和b是常数,且k≠0。当b=0时,一次函数退化为正比例函数 ,其图像是一条过原点的直线。反比例函数与正比例函数在形式上相似,只是自变量x的次数为-1。 因此,反比例函数的图像也位于坐标轴的两侧,并随着x的增大而趋近于无穷远。
一次函数和反比例函数在图像上都是单调的,但方向相反。一次函数随着x的增大而增大或减小,而 反比例函数则随着x的增大而减小或增大。
反比例函数的图象和性质课件
02
当 k > 0 时,反比例函数的图像 分布在第一象限和第三象限;当 k < 0 时,反比例函数的图像分 布在第二象限和第四象限。
反比例函数的基本形式
反比例函数的基本形式是 y = k/x (k ≠ 0),也可以表示为 xy = k。
在这个函数中,x 和 y 的乘积始终等 于 k,而 k 的值决定了函数的图像在 哪个象限分布。
反比例函数的图像
反比例函数的图像通常是以原点为中心的双曲线,分布在四个象限。
当 k > 0 时,图像在第一象限和第三象限;当 k < 0 ,图像在第二象限和第四象 限。
反比例函数的图像不会与坐标轴相交,因为当 x 或 y 趋于无穷大时,y 或 x 将趋于 0。
CHAPTER 02
反比例函数的图像性质
人口增长与资源消耗的关 系
随着人口的增长,资源消耗也相应增加,但 这种增加并不是线性的,而是呈现出反比例 关系。这意味着人口增长得越快,资源消耗 得也越快,进一步加剧了资源紧张的局面。
在数学问题中的应用
解决几何问题
在几何学中,反比例函数经常被用来描述和解决与面积、体积和角度等相关的数学问题 。通过利用反比例关系,可以简化复杂问题的求解过程。
压强与体积的关系
在气体压力问题中,压强与体积成反比,即当体积增大时, 压强减小;反之亦然。这是解释和预测气体压力和体积关系 的基础。
在实际生活中的应用
药物剂量与效果的关系
在药物研究中,药物的剂量与其效果之间往 往存在反比例关系。这意味着当剂量增加时 ,效果可能减弱;反之亦然。了解这种关系 对于药物设计和使用非常重要。
反比例函数的图象和 性质ppt课件
contents
目录
• 反比例函数简介 • 反比例函数的图像性质 • 反比例函数的数学性质 • 反比例函数的应用 • 反比例函数与其他知识点的联系
当 k > 0 时,反比例函数的图像 分布在第一象限和第三象限;当 k < 0 时,反比例函数的图像分 布在第二象限和第四象限。
反比例函数的基本形式
反比例函数的基本形式是 y = k/x (k ≠ 0),也可以表示为 xy = k。
在这个函数中,x 和 y 的乘积始终等 于 k,而 k 的值决定了函数的图像在 哪个象限分布。
反比例函数的图像
反比例函数的图像通常是以原点为中心的双曲线,分布在四个象限。
当 k > 0 时,图像在第一象限和第三象限;当 k < 0 ,图像在第二象限和第四象 限。
反比例函数的图像不会与坐标轴相交,因为当 x 或 y 趋于无穷大时,y 或 x 将趋于 0。
CHAPTER 02
反比例函数的图像性质
人口增长与资源消耗的关 系
随着人口的增长,资源消耗也相应增加,但 这种增加并不是线性的,而是呈现出反比例 关系。这意味着人口增长得越快,资源消耗 得也越快,进一步加剧了资源紧张的局面。
在数学问题中的应用
解决几何问题
在几何学中,反比例函数经常被用来描述和解决与面积、体积和角度等相关的数学问题 。通过利用反比例关系,可以简化复杂问题的求解过程。
压强与体积的关系
在气体压力问题中,压强与体积成反比,即当体积增大时, 压强减小;反之亦然。这是解释和预测气体压力和体积关系 的基础。
在实际生活中的应用
药物剂量与效果的关系
在药物研究中,药物的剂量与其效果之间往 往存在反比例关系。这意味着当剂量增加时 ,效果可能减弱;反之亦然。了解这种关系 对于药物设计和使用非常重要。
反比例函数的图象和 性质ppt课件
contents
目录
• 反比例函数简介 • 反比例函数的图像性质 • 反比例函数的数学性质 • 反比例函数的应用 • 反比例函数与其他知识点的联系
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 0 时,y=x;②△OPQ 的面积为定值;③x>0 时,y 随 x 的增大而增大;④MQ=2PM;⑤∠POQ
可以等于 90°.其中正确的结论是(B)
第 4 题图
A. ①②④ B. ②④⑤ C. ③④⑤ D. ②③⑤
2 【解析】 根据程序图可知,当 x<0 时,y=- ,图象是位于第二象限的双曲线;当 x>0
4 针对训练 2 已知点 A(2,y1),B(1,y2)都在反比例函数 y=x的图象上,则(A)
A. y1<y2 B. y1>y2 C. y1=y2 D. 不能确定
4 【解析】 ∵k=4>0,∴反比例函数 y=x的图象位于第一、三象限.∵在第一象限内,y 随 x 的增大而减小,且 2>1,∴y1<y2.
x
4
时,y= ,图象是位于第一象限的双曲线,y x
随
x
的增大而减小.故①③错误.S△OPQ=S△OPM+S
2
4
△OQM=1+2=3.故②正确.设点
P,Q
的纵坐标为
a,则
PM= ,MQ= ,∴MQ=2PM.故④
a
a
正确.观察图象,点 M 由低向高平移过程中,PQ 的长度逐渐减小,∠POQ 的度数逐渐减小,
第 13 讲 反比例函数的图象和性质
1
{ )x(x>0),
1. (2019,河北)如图,函数 y= 1
的图象所在坐标系的原点是(A)
- (x<0)
x
第 1 题图
A. 点 M B. 点 N C. 点 P D. 点 Q
1
{ )(x>0),
x
【解析】 因为函数 y= 1
的图象关于 y 轴对称,且 x≠0,y≠0,所以点 M 是
例 4 (2019,雅安)如图,在平面直角坐标系中,一次函数 y=-x+m 的图象与反比例函 k
数 y=x(x>0)的图象相交于 A,B 两点,已知点 A(2,4). (1)求一次函数和反比例函数的解析式; (2)求点 B 的坐标; (3)连接 AO,BO,求△AOB 的面积.
在图象上,则点 P′(-x,-y)也在图象上.其中正确的是(C)
第 3 题图 A. ①② B. ②③ C. ③④ D. ①④ 【解析】 ∵反比例函数的图象位于第一、三象限,∴m>0.故①错误.当反比例函数的
1
图象位于第一、三象限时,在每一个象限内,y 随 x 的增大而减小.故②错误.将 A(-1,h),B(2,k)
k
k
5.∴C(4,4).将点
C(4,4)的坐标代入
y=x,得
4= .∴k=16. 4
例 3 答图 2k-3 针对训练 3 已知反比例函数 y= 的图象经过点(1,1),则 k 的值为(D)
x A. -1 B. 0 C. 1 D. 2
3
【解析】 由题意,得 2k-3=1.解得 k=2.
反比例函数与一次函数的综合应用
- (x<0)
x
原点.
a
{ ) 2. (2014,河北)定义新运算:a⊕b=
(b>0), b
a
4
4
例如:4⊕5=5,4⊕(-5)=5.函数 y=
- (b<0).
b
2⊕x(x≠0)的图象大致是(D)
A
B
C
D
2
{ )x(x>0),
2
【解析】 由题意,得 y=2⊕x= 2
当 x>0 时,反比例函数 y=x的图象位于
其度数可以等于 90°.故⑤正确.
反比例函数的图象
k 例 1 (2019,安徽)已知点 A(1,-3)关于 x 轴的对称点 A′在反比例函数 y=x的图象上,
则实数 k 的值为(A)
1
1
A. 3 B. C. -3 D. -
3
3
【解析】 点 A(1,-3)关于 x 轴的对称点 A′的坐标为(1,3).把 A′(1,3)的坐标代入 y= k ,得 k=1×3=3. x
x
知双曲线位于第二、四象限,故选项 B 正确.由反比例函数图象的对称性,知反比例函数 y=-
3
的图象关于直线 x
y=x
对称,故选项
C
正确.由反比例函数的性质,知Biblioteka k<0时,在每个象限
内,y 随 x 的增大而增大,不在同一象限内,不具有此性质,故选项 D 不正确.
反比例函数的性质
1 例 2 (2019,毕节)若点 A(-4,y1),B(-2,y2),C(2,y3)都在反比例函数 y=-x的图象
3 针对训练 1 (2019,天门)关于反比例函数 y=-x,下列说法不正确的是(D)
A. 图象经过点(1,-3)
B. 图象位于第二、四象限
C. 图象关于直线 y=x 对称
D. y 随 x 的增大而增大
2
3 【解析】 点(1,-3)的坐标满足反比例函数的解析式 y=- ,故选项 A 正确.由 k=-3<0,
确定反比例函数的解析式
例 3 (2019,山西)如图,在平面直角坐标系中,点 O 为坐标原点,菱形 ABCD 的顶点 B k
在 x 轴的正半轴上,点 A 的坐标为(-4,0),点 D 的坐标为(-1,4),反比例函数 y=x(x>0) 的图象恰好经过点 C,则 k 的值为 16 .
例 3 题图
【解析】 如答图,过点 D 作 DE⊥AB 于点 E,则 AD=5.∵四边形 ABCD 为菱形,∴CD=
- (x<0).
x
2 第一象限;当 x<0 时,反比例函数 y=- 的图象位于第二象限.∵反比例函数的图象是双
x
曲线,∴选项 D 符合题意.
m 3. (2013,河北)反比例函数 y=x的图象如图所示,以下结论:①常数 m<-1;②在每
一个象限内,y 随 x 的增大而增大;③若点 A(-1,h),B(2,k)在图象上,则 h<k;④若点 P(x,y)
m
m
的坐标代入 y= ,得到 h=-m,k= .∵m>0,∴h<k.故③正确.由反比例函数图象的中心
x
2
对称性知④正确.
4. (2011,河北)根据图①所示的程序,得到了 y 与 x 的函数图象,如图②.若点 M 是 y
轴正半轴上任意一点,过点 M 作 PQ∥x 轴交图象于点 P,Q,连接 OP,OQ,则以下结论:①x<
上,则 y1,y2,y3 的大小关系是(C) A. y1>y2>y3 B. y3>y2>y1 C. y2>y1>y3 D. y1>y3>y2 【解析】 ∵k=-1<0,∴函数图象位于第二、四象限,且在每一象限内,y 随 x 的增
大而增大.∵点 A(-4,y1)和点 B(-2,y2)都在第二象限,且-4<-2,∴0<y1<y2.∵点 C(2,y3) 在第四象限,∴y3<0.∴y3<y1<y2,即 y2>y1>y3.