反比例函数的图象与性质

合集下载

反比例函数的图像和性质课件

反比例函数的图像和性质课件

曲线运动问题
通过给定物体的速度和运 动轨迹的曲率半径,利用 反比例关系求解物体在不 同位置的速度。
浓度问题建模与求解
溶液稀释问题
通过给定溶液的初始浓度 和稀释后的体积,利用反 比例关系求解稀释后的浓 度。
溶液混合问题
通过给定两种不同浓度的 溶液的体积和浓度,利用 反比例关系求解混合后的 浓度。
物质溶解问题
通过给定三角形的面积和底边长度,利用反比例关系求解高。
平行四边形面积问题
03
通过给定平行四边形的面积和一组对边的长度,利用反比例关
系求解另一组对边的长度。
速度问题建模与求解
01
02
03
匀速直线运动问题
通过给定物体的速度和运 动时间,利用反比例关系 求解物体运动的距离。
变速直线运动问题
通过给定物体的加速度和 运动时间,利用反比例关 系求解物体在不同时间点 的速度。
在第一象限和第三象限内,随着 $x$ 的增大 ,$y$ 值逐渐减小。
函数图像关于原点对称。
函数值变化规律
01
当 $k < 0$ 时
在第二象限和第四象限内,随着 $x$ 的增大,$y$ 值逐渐增大。
无论 $k$ 取何值,反比例函数 在其定义域内总是连续的,且在 其定义域内没有极值点。
02
03
04
函数图像关于原点对称。
2
反比例型复合函数图像
反比例型复合函数的图像形状和位置取 决于 $f(x)$ 的性质和取值范围。一般来 说,其图像可能不再是双曲线,但仍然 具有一些反比例函数的特性。
3 反比例型复合函数性质
反比例型复合函数具有一些特殊的性质 ,如单调性、奇偶性等,这些性质与 $f(x)$ 的性质和取值范围密切相关。在 实际应用中,需要根据具体情况进行分 析和判断。

反比例函数的图像和性质

反比例函数的图像和性质

反比例函数的图像和性质反比例函数是数学中的一种基本函数类型,其图像和性质具有一定的特点。

本文将从图像和性质两个方面进行论述。

一、图像反比例函数的基本形式为y=k/x,其中k为常数,且k不等于0。

根据函数的定义域和值域,可得反比例函数的图像具有如下特点:1. 对称轴:对于反比例函数y=k/x来说,其对称轴为y轴和x 轴,即函数图像关于y轴和x轴对称。

2. 渐近线:反比例函数的图像会与y轴、x轴以及非对称轴(y=k/x中对称轴为y轴和x轴)形成三条渐近线。

当x趋近于正无穷大或负无穷大时,函数值趋近于0;当y趋近于正无穷大或负无穷大时,函数值趋近于0。

3. 图像形状:反比例函数的图像呈现双曲线的形状,即左右两侧趋近于无穷大而且不相交。

二、性质除了图像特点外,反比例函数还具有以下性质:1. 变化趋势:反比例函数的特殊之处在于当自变量x增大时,因为分母逐渐增大,所以函数值y会逐渐减小;反之,当x减小时,函数值y会逐渐增大。

2. 强调比值关系:反比例函数中,自变量和因变量之间存在着比值关系。

当自变量增大或减小时,因变量的大小相应呈现相反的变化。

3. 零点和定义域:反比例函数在定义域内除了零点x=0外,它的函数值不为零。

定义域一般为除零点的所有实数。

4. 单调性:反比例函数在定义域内通常是单调的,当自变量增大时,因变量会单调减小;当自变量减小时,因变量会单调增大。

5. 特殊情况:当反比例函数中的常数k为正数时,其图像位于第一象限和第三象限;当k为负数时,图像位于第二象限和第四象限。

这决定了函数图像关于原点的对称性。

综上所述,反比例函数的图像呈现双曲线的形状,具有对称轴、渐近线等特点。

同时,反比例函数的性质包括变化趋势、比值关系、零点和定义域、单调性以及特殊情况等。

在实际问题中,反比例函数具有广泛的应用,比如经济学中的供需关系、物理学中的电阻和电流关系等。

通过研究反比例函数的图像和性质,可以更好地理解和应用数学知识。

反比例函数图像和性质ppt课件

反比例函数图像和性质ppt课件

反比例函数的定义域和值域
定义域
反比例函数的定义域是 x ≠ 0 的所有实数,即 x 可以取任何实数值,除了 0。
值域
反比例函数的值域是除了 y = 0 以外的所有实数,即 y 可以取任何实数值,但 永远不会等于 0。
02
反比例函数的性质
反比例函数的单调性
总结词
反比例函数在其定义域内并非单 调,但在各自象限内具有单调性。
表达式形式
反比例函数的一般形式为 y = k/x (k ≠ 0),其中 x 和 y 是自变量和 因变量,k 是常数。
反比例函数图像的绘制
图像绘制方法
反比例函数的图像通常在二维坐标系 中绘制,通过选择不同的 k 值,可 以绘制出不同的反比例函数图像。
图像特性
反比例函数的图像位于 x 轴和 y 轴的 有限区域,呈现出双曲线的形状,随 着 x 的增大或减小,y 的值会无限接 近于 0 但永远不会等于 0。
积分是数学中计算面积和体积的方法,分为定积分和不定积分。
反比例函数的不定积分
反比例函数y=1/x的不定积分为ln|x|+C(C为常数),这表明反比例函数可以通过对ln|x|进行不定积分得 到。
反比例函数与复数的关系
复数的概念
复数是实数和虚数的组合,形式为a+bi(a,b为实数)。
反比例函数在复数域的表现
投资回报
投资回报与投资风险成反比,即投资风险越大,投资回报越小;反之亦然。
反比例函数在日常生活中的应用
药物剂量
在药物治疗过程中,药物剂量与药效 成反比关系,即当药物剂量增加时, 药效可能会减弱。
体育训练
在体育训练中,训练强度与训练效果 成反比关系,即当训练强度增加时, 训练效果可能会减弱。

反比例函数的图象和性质

反比例函数的图象和性质

P(a,b)
X>0
例5.已知函数y=k/x 的图象如下右图,则y=k x-2 的图象大致是( D )
y y o (B) y y o x x y o x x
(A)
o
x
o
(C)
(D)
练一练
1.所受压力为F (F为常数且F≠ 0) 的物体,所受压 强P与所受面积S的图象大致为( B)
P (A) P (B) O P (C) O S O (D) S S
8. 如图点P 是反比例函数y= 4/x 的图象上的任意 点,PA垂直于x轴,设三角形AOP的面积为S,则 S=_____
4 2
P
-5
O
A
5
-2
9。已知反比例函数y =k/x 和一次函数 y=kx+b 的图象都经过点(2,1) (1)分别求出这个函数的解析式 (2)试判断是A(-2, -1)在哪个函数的图象上 (3)求这两个函数的交点坐标
P C
A B
o Q x
1.5 8 1 1、反比例函数y , y , y 的共同点是 ( C) x x 4x (A)图像位于同样的象限 (B)自变量取值是全体实数 (C)图像都不与坐标轴相交 (D)函数值都大于0
2、以下各图表示正比例函数y=kx与反比例函数 y y o (B) x o (C)
y
0
y x
0
x
如果两个变量x,y之间的关系可以表示成 (k为常数,k≠0)的形式,那么称y是x的反比例 函数,其中自变量不能为0。
y
k x
函数名称
函数解 析式和 自变量 取值范 围
正比例函数 y=kx(k≠0,k是 常数) x取一切实数 K>0 K<0 y x o y随着x 增大而 减小 x o

反比例函数的图像和性质

反比例函数的图像和性质
y
A S1 B
A. B. C. D.
S1 S1 S3 S1
= < < >
S2 S2 S1 S2
= S3 < S3 < S2 >S3
C
o
S2 S3 A1 B1 C1
x
7.如图,过平面直角坐标系中的x轴上的整数 点1、2、3、4、5作x轴的垂线,分别交反比例函数 D、E作y轴的垂线。则图中阴影部分的面积是___.
1 4.如图在坐标系中,直线y=x+ 2
k与ห้องสมุดไป่ตู้
4.如图,点A、C是反比例函数
的图
像上的任意两点,过点A作x轴的垂线,过点C 作y轴的垂线,连接OA、OC,设Rt△OAB和 Rt△OCD(O为坐标原点)的面积分别是M和N, y 则M、N的大小关系是( ) A.M>N B.M<N C.M=N D.M和N的大小关系不能确定.
S1
A
B
o
S2
x
C
D
1 5. .如图, 在 y ( x > 0 )的图像上有三点 A , B , C , x 经过三点分别向 x 轴引垂线 , 交 x 轴于 A1 , B1 , C 1 三点 , 边结 OA , OB , OC , 记 OAA 1 , OBB 1 , OCC 1的 面积分别为 S 1 , S 2 , S 3 , 则有 __ .
3 2
5 D. 2
y A D C O B
x
例1.如图:一次函数y=ax+b的图象与 k 反比例函数y= x 交于M (2,m) 、N (1,-4)两点。(1)求反比例函数和一次 函数的解析式;(2)根据图象写出反比 例函数的值大于一次函数 y 的值的x的取值范围。

反比例函数图像及其性质

反比例函数图像及其性质

易加益教育培训中心——溧阳校区 小学、初中创新教育专家反比例函数图像及其性质一、函数定义一般的,如果两个变量x 、y 之间的关系可以表示成 xk y (k 为常数,k ≠0),其中k 叫做反比例系数,x 是自变量,y 是自变量x 的函数,x 的取值范围是不等于0的一切实数,且y 也不能等于0。

k 大于0时,图像在一、三象限。

k 小于0时,图像在二、四象限。

k 的绝对值表示的是x 与y 的坐标形成的矩形的面积。

二、函数的性质1、单调性当k>0时,图象分别位于第一、三象限,从左往右,y 随x 的增大而减小,为减函数; 当k<0时,图象分别位于第二、四象限,从左往右,y 随x 的增大而增大,为增函数。

2、相交性因为y=k/x(k ≠0)中,x 不能为0,y 也不能为0,所以反比例函数的图象不可能与x 轴相交,也不可能与y 轴相交,只能无限接近x 轴,y 轴。

3、图像表达⑴ 反比例函数的图象既是轴对称图形,又是中心对称图形,它有两条对称轴:y=x 和y=-x (即第一三,二四象限角平分线),对称中心是坐标原点。

⑵ 反比例函数图像不与x 轴和y 轴相交的渐近线为:x 轴与y 轴。

⑶ k 值相等的反比例函数重合,k 值不相等的反比例函数永不相交。

⑷ |k|越大,反比例函数的图象离坐标轴的距离越远。

三、重点知识⑴ 过反比例函数图象上任意一点作两坐标轴的垂线段,这两条垂线段与坐标轴围成的矩形的面积为|k|。

⑵ 对于双曲线y=k/x ,若在分母上加减任意一个实数(即y=k/(x ±m ),m 为常数),就相当于将双曲线图象向左或右平移一个单位。

(加一个数时向左平移,减一个数时向右平移)四、反比例函数图像。

反比例函数图象和性质

反比例函数图象和性质
图 26-1-6
解:∵MN⊥x 轴,点 M(a,1), ∴S△OMN=12a=2,∴a=4. ∴M(4,1). ∵正比例函数 y=k1x 的图象与反比例函数 y=kx2(x>0)的图 象交于点 M(4,1), ∴k1=14,k2=4×1=4. ∴正比例函数的解析式是 y=14x,反比例函数的解析式是 y =4x.
足分别为 B,C,则四边形 OBAC 周长的最小值为( A )
A.4
B.3
C.2
D.1
图 26-1-5
解析:要使四边形的周长最小,则需要四边形为正方形,
此时 OB=AB=AC=OC=1,所以周长为 4.
6.已知:正比例函数 y=k1x 的图象与反比例函数 y=kx2(x>0) 的图象交于点 M(a,1),MN⊥x 轴于点N(如图 26-1-6),若△OMN 的面积等于 2,求这两个函数的解析式.
(1)反比例函数的增减性不是连续的,因此在 涉及反比例函数的增减性时,一般都是指在各自象限内的增减 情况.
(2)反比例函数图象的位置和函数的增减性,都是由反比例 系数 k 的符号决定的;反过来,由双曲线的位置和函数的增减 性,也可以推断出 k 的符号.
(3)解决反比例函数的相关问题时,往往我们需要画出函数 的大致图象(即草图)采用数形结合的方法,解决问题更直观.
(2)当 k<0 时,由于____x_y_____得负,因此可以判断 x,y 的符号__相__反____,所以点(x,y)在__第__二__或__第__四__象限,所以函数 图象位于___二__、__四___象限.
归纳:反比例函数的图象是_双__曲__线__,它有_两__个__分支. 当 k>0 时,函数图象位于____一__、__三____象限; 当 k<0 时,函数图象位于____二__、__四____象限.

反比例函数的图像与性质.

反比例函数的图像与性质.

x
0
y
0
x
如图,函数y=k/x和y=-kx+1(k≠0)在同 一坐标系内的图象大致是 ( D )
6
y
6
y
4
4
2
2
-5
O
-2
5
x
-5
O
-2
5
x
A
-4
B
y
6
-4
先假设某个函数 图象已经画好, 再确定另外的是否 符合条件.
6
y
4
4
2
2
-5
O
-2
5
x
-5
O
-2
5
x
-4
C
D
-4
k 3.已知反比例函数 y (k≠0) x
k>0 当x<0时,y随x的增大而减小,
则一次函数y=kx-k的图象不经过第 二 象限
y
k>0 ,-k<0
o
x
例4:图是反比例函数y= m-5 的图象的一支.根据 x 图象回答下列问题:
(1)图象的另一支在哪个象限?常数m的取值范 围是什么? (2)在这个函数图象的某一支上任取点A(a,b)和 点B(a’,b’).如果a﹥a’,那么b和b’有怎么的大小 y 关系?
则y1与y2的大小关系(从大到小)
x
为 y1 >0>y2
.
A
y
y1
o
x2
x
B
x1
y2
4.已知点 A(-2,y ),B(-1,y ),C(4,y ) 1 2 3 4 y 都在反比例函数 的图象上 , x 则y1、y2与y3的大小关系(从大到小)
为 y3 >y1>y2
.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章反比例函数
5.2反比例函数的图象与性质(一)
执教者:揭东县锡场镇世德初级中学林燕玲
【教学目标】
〈知识目标〉1.进一步熟悉作函数图象的主要步骤,会作反比例函数的图象。

2.体会函数的三种表示方法的相互转换,对函数进行认识上的整合。

3.培养学生从函数图象中获取信息的能力,初步探索反比例函数的性质。

〈能力训练要求〉通过学生自己动手列表,描点,连线,提高学生的作图能力;通过观察图象,概括反比例函数图象的有关性质,训练学生的概括总结能力. 〈情感与价值观要求〉让学生积极参与到数学学习活动中去,增强他们对数学学习的好奇心和求知欲。

【教学重难点】
教学重点:作反比例函数图象并认识图象的特点。

教学难点:作反比例函数图象。

【教学方法】
1.提出问题—分小组讨论—启发引导—解决问题。

2.多媒体教学。

【教具】
三角板,小黑板。

【教学过程】
(第一环节)回顾交流,问题牵引(幻灯片1)
1.什么叫做反比例函数?
2.反比例函数自变量x 的取值范围是什么?
3.下列等式中,哪个等式表示y 是x 的反比例函数 ( ) (A ) k y x
= (B ) 23y x =
(C ) 121
y x =+ (D ) 21xy -= (第二环节)合作交流(幻灯片2)
1.一次函数 y = kx + b ( k 为常数,k ≠ 0 )的图象是什么形状? 2.用描点法作函数图象的一般步骤是什么形状?
3.对于反比例函数 y= x
k ( k 是常数,k ≠ 0 )的图象,我们能否像探究一次函数的图象那样进行探究? (第三环节)探求新知(幻灯片3) 例题精讲:作反比例函数x
y 4=的图象。

思考:这个函数中自变量x 的取值范围是什么? 解:(1)列表:
x
… … …

(2)描点:(幻灯片4) (3)连线:(幻灯片5)
x y 4
=x
y 4
=
(1)
(2)
(3)(4)
议一议:你认为作反比例函数图象时应注意哪些问题?与同伴进行交流。

(幻灯片6)
(1)如果在列表时所选取的数值不同,那么图象的形状是否相同?
(2)连线时能否连成折线?为什么必须用光滑的曲线连接各点?
(3)曲线的发展趋势如何?
(学生先分小组进行讨论,而后小组汇报) 做一做:作反比例函数x y 4
-=
的图象。

(幻灯片7)
(学生动手画图,相互观摩)(幻灯片8) 想一想:观察函数x
y 4
=和x
y 4
-=的图象,它们有什么相同点和不同点? (幻灯片9)
(学生小组讨论,弄清上述两个图象的异同点) 相同点:
1.图象分别都是由两支曲线组成.它们都不与坐标轴相交。

2.两个函数图象自身都是轴对称图形,它们各有两条对称轴.
3.两个函数图象自身都是中心对称图形,对称中心是坐标原点。

不同点:
当k >0 时,两支曲线分别位于第一、三象限内; 当 k <0 时,两支曲线分别位于第二、四象限内。

(第四环节)归纳与概括(幻灯片10)
反比例函数 y = x k
有下列的性质:反比例函数y = x
k 的图象是由两支曲线组成的。

(这两支曲线简称双曲线)
x
y o
x
y
o
当 k >0 时,两支曲线分别位于第一、三象限内, 当k <0 时,两支曲线分别位于第二、四象限内。

(第五环节 )随堂练习(幻灯片11)
1.
2.反比例函数x
y 4
-=
的图象是________,过点(2-,____),其图象分布在_ __象限内; 3.已知函数1
k y x
+=
的图象分布在第二、四象限内,则k 的取值范围是_________;
4.双曲线k
y x
=经过点(2-,3),则_____=k ; (第六环节)课堂小结(板书设计)(幻灯片12)
反比例函数的图象与性质(一)
反比例函数y = x
k 的图象是由两支曲线组成的。

当 k >0 时,两支曲线分别位于第一、三象限内, 当 k <0 时,两支曲线分别位于第二、四象限内。

(第七环节)布置作业(幻灯片13)
课内:习题5.2 知识技能 第1题
??2
,2
2
为什么的图象吗你知道哪一个是的图象和下图给出了反比例函数
x
y x
y x
y -=
-==
课外:联系拓广(幻灯片14)
2与函数y=x-1 的图象,并利用
1.在同一坐标系内作岀函数y=
x
图象求它们的交点坐标。

相关文档
最新文档