定积分的精确定义

合集下载

高等数学 定积分

高等数学 定积分

第五章 定积分第一节 定积分的概念第二节 定积分的性质和中值定理第三节 微积分基本公式第四节 定积分的换元法第五节 定积分的分部积分法第六节 定积分的近似计算第七节 广义积分问题的提出定积分的定义 几何意义定积分存在定理第一节 定积分的概念abxyo?=A 曲边梯形由连续曲线实例1 (求曲边梯形的面积))(x f y =)0)((≥x f 、x 轴与两条直线a x =、b x =所围成.一、问题的提出)(x f y =ab xyoab x yo用矩形面积近似取代曲边梯形面积显然,小矩形越多,矩形总面积越接近曲边梯形面积.(四个小矩形)(九个小矩形)观察下列演示过程,注意当分割加细时,矩形面积和与曲边梯形面积的关系.观察下列演示过程,注意当分割加细时,矩形面积和与曲边梯形面积的关系.观察下列演示过程,注意当分割加细时,矩形面积和与曲边梯形面积的关系.观察下列演示过程,注意当分割加细时,矩形面积和与曲边梯形面积的关系.观察下列演示过程,注意当分割加细时,矩形面积和与曲边梯形面积的关系.曲边梯形如图所示,,],[1210b x x x x x a b a n n =<<<<<=- 个分点,内插入若干在区间a bxyoi ξi x 1x 1-i x 1-n x ;],[],[11---=∆i i i i i x x x x x n b a 长度为,个小区间分成把区间形面积,曲边梯形面积用小矩上任取一点在每个小区间i i i x x ξ-],[1ii i x f A ∆ξ≈)(:))(],[(1近似为高为底,以i i i f x x ξ-(1)分割(2)近似ini i x f A ∆≈∑=)(1ξ曲边梯形面积的近似值为ini i x f A ∆=∑=→)(lim 10ξλ时,趋近于零即小区间的最大长度当分割无限加细)0(},,max{,21→∆∆∆=λλn x x x 曲边梯形面积为(3)求和(4)取极限实例2 (求变速直线运动的路程)设某物体作直线运动,已知速度)(t v v =是时间间隔],[21T T 上t 的一个连续函数,且0)(≥t v ,求物体在这段时间内所经过的路程.思路:把整段时间分割成若干小段,每小段上速度看作不变,求出各小段的路程再相加,便得到路程的近似值,最后通过对时间的无限细分过程求得路程的精确值.(1)分割212101T t t t t t T n n =<<<<<=- 1--=∆i i i t t t ii i t v s ∆≈∆)(τ部分路程值某时刻的速度(3)求和ii ni t v s ∆≈∑=)(1τ(4)取极限},,,max{21n t t t ∆∆∆= λini i t v s ∆=∑=→)(lim 10τλ路程的精确值(2)近似设函数)(x f 在],[b a 上有界,记},,,max{21n x x x ∆∆∆= λ,如果不论对],[b a 在],[b a 中任意插入若干个分点bx xx x x a nn =<<<<<=-121把区间],[b a 分成n 个小区间,各小区间的长度依次为1--=∆i i i x x x ,),2,1( =i ,在各小区间上任取一点i ξ(i i x ∆∈ξ),作乘积i i x f ∆)(ξ ),2,1( =i 并作和i i ni x f S∆=∑=)(1ξ,二、定积分的定义定义怎样的分法,⎰==ba I dx x f )(ii ni x f ∆∑=→)(lim 10ξλ被积函数被积表达式积分变量积分区间],[b a 也不论在小区间],[1i i x x -上点i ξ怎样的取法,只要当0→λ时,和S 总趋于确定的极限I ,我们称这个极限I 为函数)(x f 在区间],[b a 上的定积分,记为积分上限积分下限积分和几点说明:(1) 定积分是一个数值,它仅与被积函数及积分区间有关,⎰b a dx x f )(⎰=b a dt t f )(⎰=ba duu f )(而与积分变量的字母无关.)( ,)()( 2⎰⎰⎰=-=aaabbadx x f dx x f dx x f 规定:)(.],[)(],[)( 3的取法无关的分法及的和式的极限与所表示上可积,则在区间若)(i bab a dx x f b a x f ξ⎰,0)(≥x f ⎰=ba Adx x f )(曲边梯形的面积,0)(≤x f ⎰-=ba Adx x f )(曲边梯形的面积的负值a b xyo)(x f y =AxyoabA -)(x f y =三、定积分的几何意义1A 2A 3A 4A 4321)(A A A A dx x f ba ⎰=-+-,],[)(变号时在区间b a x f 三、定积分的几何意义.)(是面积的代数和⎰badx x f几何意义:积取负号.轴下方的面在轴上方的面积取正号;在数和.之间的各部分面积的代直线的图形及两条轴、函数它是介于x x b x a x x f x ==,)(++--当函数)(x f 在区间],[b a 上连续时,定理1定理2 设函数)(x f 在区间],[b a 上有界,且只有有限个间断点,则)(x f 在四、定积分的存在定理区间],[b a 上可积.例1 利用定义计算定积分.12dx x ⎰解将]1,0[n 等分,分点为nix i =,(n i ,,2,1 =)小区间],[1i i x x -的长度nx i 1=∆,(n i ,,2,1 =)取i i x =ξ,(n i ,,2,1 =)i i n i x f ∆∑=)(1ξi i ni x ∆=∑=21ξ,12i ni ix x ∆=∑=.,102的选取无关及法故和式极限与区间的分可积因为i dx x ξ⎰n n i ni 121⋅⎪⎭⎫ ⎝⎛=∑=∑==n i i n 12316)12)(1(13++⋅=n n n n ,121161⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=n n ∞→⇒→n 0λdx x ⎰102i i ni x ∆=∑=→210lim ξλ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=∞→n n n 121161lim .31= 几何上是曲线y=x 2,直线x=1及x 轴围成的曲边三角形面积.例2 利用定义计算定积分.121dx x⎰解在]2,1[中插入分点 12,,,-n q q q ,典型小区间为],[1ii q q -,(n i ,,2,1 =)小区间的长度)1(11-=-=∆--q qq q x i i i i ,取1-=i i qξ,(n i ,,2,1 =)i i ni x f ∆∑=)(1ξi ni ix ∆=∑=11ξ)1(1111-=-=-∑q q q i ni i ∑=-=ni q 1)1()1(-=q n 取2=nq即nq 12=),12(1-=n n )12(lim 1-+∞→xx x x xx 112lim1-=+∞→,2ln =)12(lim 1-∴∞→nn n ,2ln =dx x ⎰211i ni ix ∆=∑=→101lim ξλ)12(lim 1-=∞→n n n .2ln =i i ni x f ∆∑=)(1ξ原式⎥⎦⎤⎢⎣⎡π+π-++π+π=∞→n n n n n n n nsin )1(sin 2sin sin 1lim π=∑=∞→n i n n i n 1sin 1lim n n i ni n π⋅⎪⎭⎫ ⎝⎛ππ=∑=∞→1sin lim 1.sin 10⎰ππ=xdx ix ∆i ξ例3:将下列和式极限表示成定积分.⎥⎦⎤⎢⎣⎡-+++∞→n n n n n n πππ)(sin sin sin lim121 :五、小结1.定积分的实质:特殊和式的极限.2.定积分的思想和方法:分割化整为零求和积零为整取极限精确值——定积分求近似以直(不变)代曲(变)取极限Z .思考n n n n f n f n f ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛⋅⎪⎭⎫ ⎝⎛∞→ 21lim 试证.1)(ln ⎰=dxx f e 2:将和式极限,表示成定积分.⎥⎦⎤⎢⎣⎡-++-+-∞→2222241241141lim n n n n n 证明n n n n f n f n f ⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛⋅⎪⎭⎫⎝⎛∞→ 21lim ⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛⋅⎪⎭⎫ ⎝⎛∞→=n n n n f n f n f e21lim ln n n n n f n f n f ⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛⋅⎪⎭⎫ ⎝⎛∞→ 21lim 试证.1)(ln ⎰=dx x f e 利用对数的性质得⎪⎭⎫⎝⎛∑==∞→n i f n ni n e1ln 1lim n n i f ni n e1ln lim 1⋅⎪⎭⎫ ⎝⎛∑==∞→ 指数上可理解为:)(ln x f 在]1,0[区间上的一个积分和.分割是将]1,0[n 等分分点为nix i =,(n i ,,2,1 =)⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛⋅⎪⎭⎫ ⎝⎛∞→=n n n n f n f n f e21ln lim 极限运算与对数运算换序得nn i f n i n 1ln lim 1⋅⎪⎭⎫ ⎝⎛∑=∞→⎰=10)(ln dx x f 故nn n n f n f n f ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛⋅⎪⎭⎫ ⎝⎛∞→ 21lim.10)(ln ⎰=dxx f e 因为)(x f 在区间]1,0[上连续,且0)(>x f 所以)(ln x f 在]1,0[上有意义且可积 ,2:将和式极限,表示成定积分.⎥⎦⎤⎢⎣⎡-++-+-∞→2222241241141lim n n n n n ⎰∑-=-=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-++-+-=⎥⎦⎤⎢⎣⎡-++-+-=∞→∞→∞→1021222222222411)(41lim )(41)2(41)1(411lim 41241141lim dxx n ni n n n n n n n n n n i n n n 解第二节 定积分的性质、中值定理1.定积分性质2.中值定理对定积分的补充规定:(1)当b a =时,0)(=⎰ba dx x f ;(2)当b a >时,⎰⎰-=abb adx x f dx x f )()(.说明 在下面的性质中,假定定积分都存在,且不考虑积分上下限的大小.一、定积分性质和中值定理证⎰±ba dxx g x f )]()([i i i ni x g f ∆±=∑=→)]()([lim 10ξξλi i ni x f ∆=∑=→)(lim 10ξλii ni x g ∆±∑=→)(lim 10ξλ⎰=ba dx x f )(.)(⎰±ba dx x g ⎰±b a dx x g x f )]()([⎰=b a dx x f )(⎰±ba dx x g )(.(此性质可以推广到有限多个函数作和的情况)性质1⎰⎰=ba b a dx x f k dx x kf )()( (k 为常数).证⎰ba dx x kf )(ii ni x kf ∆=∑=→)(lim 10ξλi i n i x f k ∆=∑=→)(lim 1ξλii ni x f k ∆=∑=→)(lim 10ξλ.)(⎰=ba dx x f k 性质2⎰ba dx x f )(⎰⎰+=bcca dx x f dx x f )()(.补充:不论 的相对位置如何, 上式总成立.c b a ,,例 若,c b a <<⎰c a dx x f )(⎰⎰+=cb b a dx x f dx x f )()(⎰b a dx x f )(⎰⎰-=cb c a dxx f dx x f )()(.)()(⎰⎰+=bc ca dx x f dx x f (定积分对于积分区间具有可加性)假设bc a <<性质3dx b a ⋅⎰1dx ba⎰=a b -=.则0)(≥⎰dx x f ba. )(b a <证,0)(≥x f ,0)(≥ξ∴i f ),,2,1(n i =,0≥∆i x ,0)(1≥∆ξ∴∑=i i ni x f },,,max{21n x x x ∆∆∆= λi i ni x f ∆∴∑=→)(lim 1ξλ.0)(⎰≥=ba dx x f 性质4性质5如果在区间],[b a 上0)(≥x f ,例1 比较积分值dx e x⎰-20和dx x ⎰-20的大小.解令,)(x e x f x -=]0,2[-∈x ,0)(>x f ,0)(02>-∴⎰-dx x exdx ex⎰-∴2,02dx x ⎰->于是dx e x ⎰-2.20dx x ⎰-<性质5的推论:证),()(x g x f ≤ ,0)()(≥-∴x f x g ,0)]()([≥-∴⎰dx x f x g ba ,0)()(≥-⎰⎰ba ba dx x f dx x g 于是 dx x f ba ⎰)( dx x g ba ⎰≤)(.则dx x f ba ⎰)( dx x g ba ⎰≤)(. )(b a <如果在区间],[b a 上)()(x g x f ≤,(1)dx x f b a ⎰)(dx x f ba⎰≤)(.)(b a <证,)()()(x f x f x f ≤≤- ,)()()(dx x f dx x f dx x f ba ba ba ⎰⎰⎰≤≤-∴即dx x f ba ⎰)(dx x f ba⎰≤)(.说明: 可积性是显然的.|)(x f |在区间],[b a 上的性质5的推论:(2)设M 及m 分别是函数证,)(M x f m ≤≤ ,)(⎰⎰⎰≤≤∴ba ba b a Mdx dx x f dx m ).()()(a b M dx x f a b m ba -≤≤-⎰(此性质可用于估计积分值的大致范围)则 )()()(a b M dx x f a b m ba -≤≤-⎰.)(x f 在区间],[b a 上的最大值及最小值,性质6例2 估计积分dx x⎰π+03sin 31值的范围.解,sin 31)(3xx f +=],,0[π∈∀x ,1sin 03≤≤x ,31sin 31413≤+≤x ,31sin 31410030dx dx x dx ⎰⎰⎰πππ≤+≤.3sin 31403π≤+≤π∴⎰πdx x例3 估计积分dx xx⎰ππ24sin 值的范围.解,sin )(xx x f =2sin cos )(x x x x x f -='2)tan (cos x x x x -=⎥⎦⎤⎢⎣⎡∈2,4ππx ,0<)(x f 在]2,4[ππ上单调下降,,22)4(π=π=f M ,2)2(π=π=f m ,442π=π-π=-a b ,422sin 4224π⋅π≤≤π⋅π∴⎰ππdx x x .22sin 2124≤≤∴⎰ππdx x x 如果函数)(x f 在闭区间],[b a 上连续,上的平均值在],[)()(1b a x f dxx f a b ba⎰-则在积分区间],[b a 上至少存在一个点 ξ,使dx x f b a ⎰)())((a b f -=ξ. )(b a ≤≤ξ性质7(定积分中值定理)积分中值公式证Mdx x f a b m ba≤-≤∴⎰)(1)()()(a b M dx x f a b m ba -≤≤-⎰ 由闭区间上连续函数的介值定理知在区间],[b a 上至少存在一个点 ξ,)(1)(⎰-=ξbadx x f a b f dx x f ba ⎰)())((ab f -=ξ.)(b a ≤≤ξ即在区间],[b a 上至少存在一个点ξ,1. 积分中值公式的几何解释:xyoa b ξ)(ξf 使得以区间],[b a 为以曲线)(x f y =底边,为曲边的曲边梯形的面积等于同一底边而高为)(ξf 的一个矩形的面积。

定积分的概念及性质

定积分的概念及性质

---------------------------------------------------------------最新资料推荐------------------------------------------------------定积分的概念及性质图 1 图 2 A B 4.4 定积分的概念及性质课题:定积分的概念及性质目的要求:理解定积分的概念及其性质重点:定积分的概念、定积分的几何意义难点:定积分的概念教学方法:讲授为主、讲练结合教学时数:2 课时教学进程:定积分是积分学的另一个重要的基本概念,和导数概念一样,它也是在解决各种实际问题中逐渐形成并发展起来的,现已成为解决许多实际问题的有力工具.本节将首先从实际问题出发引出定积分的概念,并介绍定积分的几何意义和性质.随后的两节再介绍定积分与微分的内在联系,定积分的计算及其简单应用.一、定积分的概念 1.两个引例例 1 求曲边梯形的面积.初等数学可以计算多边形、圆形和扇形等图形的面积,但对于较复杂的曲线所围成的图形(图 1)的面积计算则无能为力.如图所示,我们总可以用若干互相垂直的直线将图形分割成如阴影部分所示的基本图形,它是由两条平行线段,一条与之垂直的线段,以及一条曲线弧所围成,这样的图形称为曲边梯形.特别地,当平行线之一缩为一点时,称为曲边三角形.现在求由直线0,,===ybxax和连续曲线)(xfy = ) 0)((xf所围成的曲边梯形 AabB (图 2)的面积 S .如1 / 7果曲边梯形的高不变,即Cy =(常数),则根据矩形面积公式面积=底高便可求出它的面积.但如果)(xfy =是一般曲线,则底边上每一点 x 处的高)(xf随 x 变化而变化,上述计算公式就不适用.对于这样一个初等数学无能为力的问题,我们解决的思路是:将曲边梯形分成许多小长条(图 2),每一个长条都用相应的矩形去代替,把这些矩形的面积加起来,就近似得到曲边梯形的面积S .小长条分得越细,近似程度越好,取极限就是面积 S .具体地,分四步来解决. (1) 分割(化整为零) 在区间],[ba内任意添加1n个分点:将区间],[ba分成 n 个子区间,这些子区间的长度记为 1 i=}∆{iixxx ),, 2 , 1=(ni,并用符号i x∆= max表示这些子区间的最大长度.过1n个分点作 x 轴的垂线,于是将曲边梯形分割成n 个小曲边梯形,它们的面积记作i S∆ ),, 2 , 1=(ni.显然=i∆=niSS1. (2) 代替(以直代曲)在第 i 个子区间],[1iixx 上任取一点i ,作以)(if 为高,],[1iixx为底的第 i 个小矩形,小矩形的面积为 iixf∆)( ),, 2 , 1=(ni第i 个小曲边梯形的面积 iiixfS∆∆)( ),, 2 , 1=(ni. (3) 求和(求曲边梯形面积的近似值)将 n 个小矩形的面积加起来,便得到原曲边梯形面积的近似值 nxfS1(4) 取极限(积零为整)不难想到,当分割越来越细(即 n 越来越大,同时最长的子区间长度越来越小时), n 个矩形的面积和就越来越接近于原曲边梯形的面积.于是---------------------------------------------------------------最新资料推荐------------------------------------------------------ 当同时0时,矩形面积之和的极限就是原曲边梯形的面积 S,即nxfS1) 0( =i∆ii)(. n,=i∆=iinlim)(.例 2 求变速直线运动的路程设作变速直线运动物体的速度为路程s.如果物体作匀速直线运动,即速度是常量,那么路程=速度时间但现在物体运动的速度是变量,我们可以采取与计算曲边梯形面积相似的方法来计算要求的路程. ],[ba内任意添加将区间],[ba分成 n 个子区间],[1iitt , 2 , 1(i==∆iiittt , 2 , 1(i=并用符号{}= maxniss1)(tvv =) 0( t,求该物体在时间间隔],[ba 内运动的(1) 分割(化整为零)在时间区间1n个分点:bttnn=,这些子区间的长度记为, it ∆表示这些子区间的最大长度.这样就把路程s分割成 n 段路程is∆),, 2 , 1=(ni.显然 =i∆=. (2) 代替(以匀代变)在第 i 个子区间],[1iitt上任取一点i ,则iitv∆的变化也很小,)(v表示物体在时间段],[1iitt上以匀速)(iv 运动时所经过的路程.当it∆很小时,速度)(t可以近似地看做不变,即在时间段],[1iitt∆上物体近似地以匀速)(iv 运动,于是有 is ∆iitv)( ),, 2 , 1=(ni. (3) 求和(求总路程的近似值)把n 个子区间来,就得到 ],[1iitt上按匀速运动计算出的路程加起=i∆niitvs1)(. (4) 取极限(积零为整)不难想到,当对时间间隔],[ba的分割越来越细,小区段上0时,和式的极限看作匀速运动时的路程之和就越来越接近 s .于是当即为 s 的精确值 n,3 / 7同时 =i) 0∆=niinlim(tvs1)(.上面两个问题,一个是几何问题,一个是物理问题,但从数学的角度来考察,所要解决的数学问题相同:求与某个变化范围内的变量有关的总量问题.数学结构相同:求 n 个乘积nxf1出定积分的概念. iixf∆)(之和=∆iii)(,当n,同时{}0max∆=i x时的极限.由此可抽象2.定积分的概念定义 1 设)(xf 是定义在区间],[ba上的有界函数,用点:将区间],[ba任意分成 n 个子区间,这些子区间的长度记为1 i=∆的和式.在每个子区间,[1ix上任取一点i ,作 n 个乘积iixf∆)( =∆niiixf1)(.如果当n,同时最大子区间长度{}0max∆=i x时,和式=∆niiixf1)(的极限存在,并且极限值与区间],[bba的分法以及i 的取法无关,则该极限值称为函数)(xf在区间],[ba上的定积分.记作adxxf)(,即badxxf)(=i) 0∆=niinlim(xf1)(.其中右端的iixf∆)(称为积分元素, =(∆niiixf1)(称为积分和(或和式),左端的符号称为积分号,称为积分区间, a 称为积分下限, b 称为积分上限.定积分存在称为可积,否则称为不可积.有了定积分的概念,前面两个问题可以分别表述为:曲边梯形的面积 S 是曲线)(xf称为被积函数,dxxf)称为被积表达式, x 称为积分变量,],[ba)(xfy =) 0)((xf在区间],[ba上的定积分,即 =S badxxf)(.变速直线运动的物体所经过的路程 s---------------------------------------------------------------最新资料推荐------------------------------------------------------ 是速度)(tvv =在时间区间],[ba上的定积分,即=badttvs)( 由定积分的定义可知 b(1)定积分变量的字母无关,因而 adxxf)(只与函数)(xf的对应法则以及定义区间],[ba有关,而与表示积分 a 、 b 是常数时,定积分badxxf)(=是一常数. badttf )( badxxf)(图 6 图 3 图 4 图 5 (2) 定积分{max∆]的分法无关,与badxxf)(的实质是和式=∆niiixf1)(的极限(n同时}0=,i x[).是一种特殊和式( n 个乘积iixf∆)(之和)的特殊极限(该极限与bai 的取法无关). )可积? )(x在,[ba什么条件下(xff定理设函数]上连续,则函数)(xf在],[ba上可积.(证明从略)二、定积分的几何意义从例子,我们看到当0)(xf时,定积分时,曲边梯形在 x 轴的下方,badxxf)(表示曲边梯形的面积.当bf0)(xf定积分(xfadxx)(在几何上表示上述曲边梯形面积的负值.当)在],[ba上有正、有负时,则定积分)(xfy =,直线几块曲边梯形面积的代数和(图 3),即bbadxxf)(在几何上表示:曲线ax =,bx =及x 轴所围成的321)(SSSdxxfa+=.例 3 利用定积分的几何意义说明:abdxba= () ba .三、定积分的性质由定积分的定义、几何意义以及函数极限的运算法则可以推知定积分有如下性质(设下面所论及的函数在所论及的区间上是可积的):abxfdxxf)()(性质1. =badx.性质2 0)(=aadxxf性5 / 7质3[])=bababadxxgdxxfdxxgxf)()()()(.性质4=babadxxfkdxxkf()( ( k 为常数).性质5(对积分区间的可加性), cbdxxfdxxf)()(,a+=bcaadxxf)( 其中 c 可以在],[ba内,也可以在][ba外. )(图 4),显然有这个性质的几何解释:若bdxxf)(,b(bc+=ccaadxxfdxxf)()(.若c 在],[bba外,如(图5),则有afdx(=+=baccdxxfdxxxf)())(,因为bcaacdxxfdxxf)()(,所以 =caabcdxxfdxxfdxxf)()()(,图 7 图 8 A B 即 (f+=bccabadxxfdxxfdxxf)()()(.性质6(保序性)若在bf],[ba上)()xgx,则 baadxxgdxx)()(.这个性质的几何解释(图 6) :显然曲边梯形 aCDb 的面积不大于曲边梯形 aABb 的面积.性质7(有界性)设 M 和 m 分别是)(xfb性质7的几何解释(图 7):曲边梯形 aABb 的面积介于矩形间.性质8(定积分中值定理)若)(xf在,[ab=在],[ba上的最大值和最小值,则 )()()(abMdxxfabma. bBaA11和bBaA22的面积之]b上连续,则在],[ba上至少存在一点,使 ))(()(abfdxxfa.这个性质的几何意义是,曲边梯形 aABb 的面积等于以的面积(图 8 的阴影部分). ],[ba 为底,)(f为高的矩形注:由性质8 得公式=badxxfabf)(1)(,称badxxfab)(1为函数)(xf在],[ba上的平均值,记作y ,即---------------------------------------------------------------最新资料推荐------------------------------------------------------ =ybadxxfab)(1.例 4 比较定积分21ln xdx 与2x212ln xdx 的大小.例 5 估算定积分 +11dxx值的范围.小结本讲内容:1.定积分的概念2.定积分的性质 3.定积分的几何意义作业:P122~P123 1; 2; 3; 4; 5。

定积分的定义

定积分的定义

误差更小
定积分的定义
v 右图是正弦在一个周 期上的积分示意。为 20等分情形,取左端 点处的函数值
左端点型
定积分的定义
v 右图是正弦在一个周 期上的积分示意。为 20等分情形,取右端 点处的函数值
右端点型
定积分的定义
v 右图是正弦在一个周 期上积分梯形公式的 示意。为8个分点情形。
梯形公式
定积分的定义
v 右图是正弦在一个周 期上积分梯形公式的 示意。为15个分点情 形。
v 可以看到,梯形公式 比矩形公式精确度高。
梯形,15个分点
定积分的定义
v 现在看看分成40份的 情形。
v 可以看到误差变小了。
v 有理由相信:随着分 点的增加,的定义
v 当然,小区间上的面 积也可以用其他容易 求出面积的图形的面 积来表示,比如梯形。
v 这就是定积分的梯形 算法。
v 右图是取5等分的情形, 就已经非常精确了。

定积分的概念

定积分的概念

设某质点作直线运动,速度 v v (t ) 是时间间 隔[T1 , T2 ]上 t 的一个连续函数,物体在这段时 间内所经过的路程.
S v(t )dt
T2 T1
例1 利用定义计算定积分 x 2dx.
0
1
i 解 将[0,1]n 等分,分点为 x i ,(i 1,2, , n ) n 1 小区间[ x i 1 , x i ]的长度x i ,(i 1,2, , n ) n 取 i x i ,(i 1,2,, n )
f ( x ) |在区间[a , b] 上的可积性是显然的.
(3) 设 M 及m 分别是函数
f ( x ) 在区间[a , b] 上的最大值及最小值,
则 m(b a ) a f ( x )dx M (b a ) .
b
6) (积分中值定理)若函数f ( x)在区间[a, b]上连续 . 则在[a, b]上至少存在一点 , 使得下式成立 :
o a
x1
x i 1 i x i
xn1 b
x
以 [ xi 1 , xi ]为底, (i ) 为高的小矩形面积为 f
Ai f ( i )xi
近似
曲边梯形面积的近似值为
A f ( i )xi
i 1
n
求和
当分割无限加细即小区间的最大长度 ,
max{x1 , x2 ,xn }
b
x
a f ( x )dx A
曲边梯形的面积
a f ( x )dx A
曲边梯形的面积 的负值
b
y
a
o

A2

A1
A3

b
x
它 是 介 于x 轴 、 函 数 f ( x ) 的 图 形 及 两 条 直 线 x a, x b 之 间 的 各 部 分 面 积 的数 和 . 代 在 x 轴 上 方 的 面 积 取 正 号在 x 轴 下 方 的 面 ; 积取负号.

第六章 定积分的概念及应用

第六章 定积分的概念及应用

解: 画图,求得交点(-1,1)及(3,9) 3 32 2 由公式 A ( 2 x 3 x )dx 1 3
1 2 A ( y 4 y )dy 18 2 2 问:若选x为积分变量如何?
4
mathsoft
二.参数方程情况 例3. 求椭圆 x a cos t , y b sin t 所围成的面积。 第 解: 由对称性 二
若干个分点
a x 0 x1 x 2 x n 1 x n b
n 个小区间,各小区间的长度依次为 把区间[a, b]分成
x i x i x i 1 ,( i 1,2,) , 在各小区间上任取
作乘积 f ( i )x i 一点 i ( i x i ),
解: 1 选取变量 [ , ];

[ , d ]; 2 取微区间
3 面积A



1 2 d 2

mathsoft
例5.
计算心形线(或心脏线 )r a (1 cos ) (a 0)所围图形面积. 第 二 节 解: 0,2 2 1 2 平 A a 1 cos d 面 2 0 图 2 2 对称性 ( 1 2 cos cos )d 形 a 0 的 sin 2 3 2 2 面 a 2 sin a 积 2 4 0 2
错误!为什么?
mathsoft
三、存在定理
第 一 节 定 积 分 的 概 念
定理1 当函数 f ( x ) 在区间[a , b] 上连续时,
则 f ( x ) 在区间[a , b] 上可积.
定理2 设函数 f ( x ) 在区间 [a , b] 上有界, 且只有有限个间断点 (第一类间断点),

定积分2

定积分2
说明: (1)定积分 f ( x )dx 是一个常数,即 Sn 无限
a b
趋近的常数 S ,记为 f ( x )dx ,而不是 Sn .
a
b
(2)用定义求定积分的一般方法是:①分割: n 等分区间 a , b ;②近似代替:取点 i [ xi1 , xi ] ;③求和:
n b a f ( ) ;④取极限: b ba . f ( x ) dx lim f ( ) i i a n n n i 1 i 1
则 x 3dx Sn f ( i ) x 0 n n i 1 n
取 i i (i 1, 2, n n 1
, n),
( i )3 1 14 i 3 14 1 n2 ( n 1)2 1 (1 1 )2 . n n n i 1 4 n n 4 i 1
3.定积分的几何意义及简单应用
1. 5.3 定积分的概念
定积分的定义: 即

b
a
ba f ( x)dx lim f (i ) n n i 1
n
定积分的相关名称: ———叫做积分号, y f(x) ——叫做被积函数, f(x)dx —叫做被积表达式, x ———叫做积分变量, a ———叫做积分下限, O b ———叫做积分上限, [a, b] —叫做积分区间。
o
a
b
x
主页
1. 5.3 定积分的概念
【思考】根据定积分的几何意义,你能 用定积分表示下图中阴影部分的面积吗?
y
A y f1 ( x ) B
S f1 ( x )dx f 2 ( x )dx
a a b b
D y f2 ( x) C bx O a

第一节 定积分的概念和性质


x
用矩形面积近似取代曲边梯形面积
y
y
o
a
(四个小矩形)
b
x o
a
(九个小矩形)
b
x
显然,小矩形越多,矩形总面积越接近 曲边梯形面积.
观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系.
播放
曲边梯形如图所示, 在区间 [a , b]内插入若干
个分点,a x0 x1 x2 xn1 xn b,
a b
(2)当a b 时, f ( x )dx f ( x )dx .
a b
b
a
说明 在下面的性质中,假定定积分都存 在,且不考虑积分上下限的大小.
性质1 证
a [ f ( x ) g( x )]dx a f ( x )dx a g( x )dx .
b
b
b
b
a [ f ( x ) g( x )]dx n lim [ f ( i ) g( i )]xi 0
a f ( x )dx a g( x )dx .
b b
于是
性质5的推论: ( 2) 证
a f ( x )dx a
b
b
b
f ( x )dx . (a b)
f ( x) f ( x) f ( x) ,
a f ( x )dx a f ( x )dx a f ( x )dx ,
lim f ( i )xi lim g( i )xi
i 1 n n
a f ( x )dx a g( x )dx .
(此性质可以推广到有限多个函数作和的情况)
0 i 1 b
0 i 1

定积分概念、性质ppt课件


上例曲边图形的面积用定积分表示
S1x2d x lin m (n 1 )2 (n 1 )1
0
n 6 n 3
3
注意:据定义有如下说明:
(1)定积分是特殊和式极限,它是一个定数;
(2)定积分的大小仅与区间[a,b]和被积函数f(x)有关;
(3)规定:
a
f(x)d x0,
b
a
f(x)d x f(x)dx
b f (x)dx
b
g ( x)dx
a
a
推2 论 :b
.
f(x)d
x
b
f( x) dx,(ab)
a
a
因f(x)f(x)f(x)
.
性质6(介值定理):设f(x)在[a,b]上可取得最大值M和最
小值m, 于是, 由性质5有
b
m (ba)af(x)d xM (ba)
几何意义也很明显
性质 7(积分中值若定函理 f(数 x)) 在[a: ,b]上连续,
S曲
lim n
n i 1
S i矩
lim
n
(n
1)( 2n 6n 2
1)
1 0.333 3
.
总结:求曲边梯形面积的步骤 v
引例1——曲边梯形的面积(演示) 引例2——变速直线运动的路程
设物体的运动速度 vvt
分割区间 作和
取近似值 取极限
T1
ti-1 i ti T2 t
(1)细分区间 [ T 1 ,T 2 ] [ T 1 ,t 1 ] U [ t 1 ,t2 ] U L U [ tn 1 ,T 2 ]
曲边梯形的面积,即:
n
S曲
.
lim
n i1

第五章 积分 5-1 定积分的概念与基本性质

性质 4 若 f (x) 是 [a, b] 上的连续函数, 则 | f (x) | 也是 [a, b] 上的连续函数, 从而可积, 且
b
b
|
a
f (x)d
x|
|
a
f (x)|d
x.
证明 由于 | f (x) | f (x) | f (x) |, 应用性质 3
b
b
b
a | f (x)|d x | a f (x) d x a | f (x)|d x,
43
4
1
1
1
2
7 1 sin 2
1 sin 2 x 1 sin 2
, 3
3
4
所以
21
3
4
4 7
d
x
3
4
dx 1 sin 2
x
3
4
2 3
d
x
.
18
《高等数学》课件 (第五章第一节)
推论 2 设 f R [a, b], 且在 [a, b] 上 f (x) 0, 则
b
a f ( x) d x 0.
性质 2 (积分对区间的可加性) 设 a c b, f R [a, b], 则 f R [a, c], f R [c, b],

b
c
b
f (x) d x f (x) d x f (x) d x.
a
a
c
一般, 当上式中三个积分都存在时, 无论 a, b, c 之间具有怎样 的大小关系, 等式都成立.
当 f (x) R [a, b] 时, 可在积分的定义中, 对 [a, b] 作特殊的分
划, 并取特殊的 i [x i 1, x i] , 计算和式. 如等分区间 [a, b], 并取 点 i 为 [x i 1, x i] 的右端点 x i 或左端点 x i 1 或中点.

《定积分的概念》课件[精编文档]


a
a
性质2.
b
b
b
[ f ( x ) g( x )]dx f ( x )dx g( x )dx
a
a
a
性质3. 定积分关于积分区间具有可加性
bf(x )dx cf(x )dx bf(x )dx
a
a
c
y yf (x)
Oa

bx
b
f ( x )dx
c1 f ( x )dx
解:由定积分的几何意义知,该积分值等于
曲线y 1 x 2 , x轴,x 0及x 1所围 的面积(见下图)
面积值为圆的面积的 1
y
4
所以 1 1 x 2 dx
0
4
1 x
n
S f (xi )x i1
y=f(x)
(4)逼近:所求曲边梯形的面积S为
n
x 0, f (xi )x S i 1
(n )
Oa
xi-1 xi xi
x
bx
从求曲边梯形面积S的过程中可以看出,通过“四 个步骤”:
分割---以直代曲----求和------逼近.
小矩形面积和Sn
n i1
f (xi )x
如果 x 无限趋近于0时,Sn无限趋近于常数S,那么称
常数S为函数f(x)在区间[a,b]上的定积分,
记作:
.
b
S a f (x)dx
定积分的相关名称:
积分上限
———叫做积分号,
f(x)dx —叫做被积表达式, f(x) ——叫做被积函数, x ———叫做积分变量,
b
S a f (x)dx
a ———叫做积分下限,
(x)dx
A2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

定积分的精确定义
定积分是微积分中的一个重要概念,它是对一个函数在一定区间内的“积分面积”进行定义和计算。

具体来说,定积分可以看作是一个区间内的函数值在该区间上的加权平均值,其中加权的权重是区间上的微小长度。

定积分的计算方法有很多种,其中最常用的方法是使用“黎曼和”的概念。

黎曼和是将一个区间分成若干等分,并在每个等分上取一个函数值,然后将每个等分的函数值与其对应的等分长度相乘,并进行求和。

当等分的数量趋近于无穷大时,黎曼和的极限值就是该函数在该区间上的定积分。

定积分的精确定义可以表示为:若函数f(x)在区间[a,b]上连续,那么存在一个实数I,满足对于任意的ε>0,都存在一个Δ>0,使得当[a,b]上的任意一个分割P满足其最大子区间长度小于Δ时,对应的黎曼和与I的差的绝对值小于ε,即∣S(f,P)-I∣<ε,其中S(f,P)表示黎曼和的值。

定积分的精确定义可以用于证明定积分的存在性和唯一性。

其中存在性指的是对于任意一个连续函数f(x)和一个区间[a,b],都可以通过黎曼和的求和方法来计算该函数在该区间上的定积分。

唯一性则指的是,无论采用何种方法计算定积分,其结果都是唯一的。

除了黎曼积分外,还有其他一些积分方法,例如勒贝格积分和黎曼-
斯蒂尔杰斯积分等。

这些积分方法在一定条件下可以替代黎曼积分,用于计算更加复杂的函数积分。

定积分是微积分中的一个重要概念,它可以用于计算函数在一定区间内的面积、体积、质量等物理量,是数学和物理领域中不可或缺的工具。

相关文档
最新文档