定积分与不定积分定义

合集下载

一元函数积分学——不定积分与定积分的概念、性质及应用

一元函数积分学——不定积分与定积分的概念、性质及应用


原式=∫
x2 − x
1 dx

2∫
1 dx
1− x2
=

xdx


dx x

2
arcsin
x
= 1 x2 − ln x − 2arcsin x + C
2
例4
求积分

1
+
1 cos
2
x
dx.

原式=

1+
1 2 cos2
x
dx −1
=
1 2

1 cos2
x
dx
= 1 tan x + C.
2
13
∫ 例5 求积分
如 cos x 的原函数的一般表达式为
sin x + C(C为任意常数)
1 在(0,+∞)的原函数的一般表达式为
x ln x + C(C为任意常数)
4
定义3.2(不定积分的定义)
若F(x) 是 f (x)在区间I内的一个原函数,则 f (x) 的原函数的一般表达式 F(x) + C (C为任意常数)
∫3
2
例2 求积分
( x2 −
)dx. 1− x2
1
1

原式= 3∫ x2 dx − 2∫
dx 1− x2
= − 3 − 2arcsin x + C x
9
2. 基本积分公式
实例
x µ+1 ′ = x µ
µ +1
∫ ⇒ xµdx = xµ+1 + C . µ+1 (µ ≠ −1)

定积分分部积分法和不定积分分部积分法的区别

定积分分部积分法和不定积分分部积分法的区别

定积分分部积分法和不定积分分部积分法
的区别
1、不定积分和定积分的区别是定积分确切的说是一个数,或者说是关于积分上下限的二元函数,也可以成为二元运算,不定积分也可以看成是一种运算,但最后的结果不是一个数,而是一类函数的集合.不定积分是微分的逆运算,而定积分是建立在不定积分的基础上把值代进去相减。

2、在应用上,积分作用不仅如此,它被大量应用于求和,通俗的说是求曲边三角形的面积,这巧妙的求解方法是积分特殊的性质决定的。

一个函数的不定积分(亦称原函数)指另一族函数,这一族函数的导函数恰为前一函数。

3、定积分与不定积分的运算法则相同,并且积分公式,计算方法也相同。

从牛顿-莱布尼茨公式看出,定积分与不定积分联系紧密,相互转换共用。

积分的定义与基本性质

积分的定义与基本性质

积分的定义与基本性质积分是高等数学中的一个重要概念,是微积分的核心内容之一。

积分的定义与基本性质是我们学习微积分的基础,下面我们来详细了解一下。

一、积分的定义积分是微积分中的一种重要概念,它是求解曲线下面的面积、求解函数的平均值、求解图形的重心等问题的工具。

积分的定义可以分为定积分和不定积分两种。

1. 定积分对于一个函数 f(x),如果其在区间 [a,b] 内的任意一个小区间内都是有界的并且连续的,那么我们就可以在这个区间内求出这个函数的面积。

这时候,我们就可以使用积分的概念来求出该区间内 f(x) 函数的定积分。

具体而言,定积分的定义如下:若函数 f(x) 在区间 [a,b] 内连续,则将 [a,b] 分成 n 个等分,即:a = x0 < x1 < x2 < … < xn-1 < xn = b并令Δ xi = xi+1 - xi,Δ xi 是区间 [xi, xi+1] 的长度。

则若存在一个极限 I,满足当 n 趋近于无穷时,有:I = lim ∑f(xi*) * Δxin → ∞ i = 0其中,xi*是区间 [xi, xi+1] 内任意一点,上式中的极限值 I 就是 f(x) 在区间 [a,b] 内的定积分,可以表示为:∫b∫ f(x) dxa该式意思是对 f(x) 在 [a,b] 区间内的所有小区间的面积求和,得到的总面积就是该函数在该区间内的定积分。

2. 不定积分不定积分也叫原函数或者积分常数,是指函数的某一导函数。

具体而言:若函数 y = F(x) 的导数是 f(x),则 f(x) 就是 y = F(x) 的不定积分,可以表示为:∫ f(x) dx = F(x) + C其中,C 是任意常数,称为积分常数。

二、积分的基本性质积分有许多基本性质,这些性质在进行积分运算的时候非常实用。

下面,我们来介绍一下积分的基本性质:1. 积分的线性性设 f(x) 和 g(x) 是区间 [a,b] 上的两个连续函数,k 是任意常数,则有:∫ (k f(x) + g(x)) dx = k ∫ f(x) dx + ∫ g(x) dx这条性质表明,积分运算具有线性性,可以将常数提出来进行运算。

不定积分与定积分的区别与联系

不定积分与定积分的区别与联系

不定积分与定积分的区别与联系不定积分计算的是原函数(得出的结果是一个式子)定积分计算的是具体的数值(得出的借给是一个具体的数字)不定积分是微分的逆运算,而定积分是建立在不定积分的基础上把值代进去相减积分积分,时一个积累起来的分数,现在网上,有很多的积分活动。

象各种电子邮箱,qq等。

在微积分中,积分是微分的逆运算,即知道了函数的导函数,反求原函数。

在应用上,积分作用不仅如此,它被大量应用于求和,通俗的说是求曲边三角形的面积,这巧妙的求解方法是积分特殊的性质决定的.一个函数的不定积分(亦称原函数)指另一族函数,这一族函数的导函数恰为前一函数。

其中:[F(x) + C]' = f(x)一个实变函数在区间[a,b]上的定积分,是一个实数。

它等于该函数的一个原函数在b的值减去在a的值.定积分就是把直角坐标系上的函数的图象用平行于y轴的直线把其分割成无数个矩形,然后把某个区间[a,b]上的矩形累加起来,所得到的就是这个函数的图象在区间[a,b]的面积。

实际上,定积分的上下限就是区间的两个端点a,b.不定积分设F(x)是函数f(x)的一个原函数,我们把函数f(x)的所有原函数F(x)+C(C为任意常数)叫做函数f(x)的不定积分,记作,即∫f(x)dx=F(x)+C.其中∫叫做积分号,f(x)叫做被积函数,x叫做积分变量,f(x)dx叫做被积式,C叫做积分常数,求已知函数的不定积分的过程叫做对这个函数进行积分.由定义可知:求函数f(x)的不定积分,就是要求出f(x)的所有的原函数,由原函数的性质可知,只要求出函数f(x)的一个原函数,再加上任意的常数C,就得到函数f(x)的不定积分.定积分与不定积分看起来风马牛不相及,但是由于一个数学上重要的理论的支撑,使得它们有了本质的密切关系。

把一个图形无限细分再累加,这似乎是不可能的事情,但是由于这个理论,可以转化为计算积分。

这个重要理论就是大名鼎鼎的牛顿-莱布尼兹公式,它的内容是:如果定积分与不定积分看起来风马牛不相及,但是由于一个数学上重要的理论的支撑,使得它们有了本质的密切关系。

不定积分与定积分的计算方法

不定积分与定积分的计算方法

不定积分与定积分的计算方法在数学中,积分是求解函数定积分和不定积分的一种重要方法。

不定积分和定积分之间有着不同的计算方法和应用场景。

本文将介绍不定积分和定积分的计算方法及其应用。

一、不定积分的计算方法不定积分,又称为原函数,是求解函数的反导函数。

不定积分记作∫f(x)dx,其中f(x)为被积函数,dx表示对x的积分。

不定积分的计算方法主要有以下几种:1. 常数项法则:如果f(x)是常函数,即f(x) = C,那么∫f(x)dx = Cx + k,其中k为常数。

2. 幂函数法则:对于幂函数f(x) = x^n,其中n≠-1,那么∫f(x)dx = (1/(n+1))x^(n+1) + k。

3. 三角函数法则:对于三角函数f(x) = sin x、cos x、tan x等,以及其倒数,可以利用基本积分公式进行计算。

4. 代换法则:当被积函数比较复杂时,可以通过代换变量来简化计算过程。

常用的代换包括三角代换、指数代换、倒数代换等。

二、定积分的计算方法定积分是对给定区间上的函数进行积分,可以得到一个数值结果。

定积分记作∫[a,b]f(x)dx,表示在区间[a,b]上对函数f(x)进行积分。

定积分的计算方法主要有以下几种:1. 几何意义法:定积分可以表示函数f(x)与x轴之间的有向面积,利用几何图形的面积计算方法来求解定积分。

2. 分割求和法:将积分区间[a,b]分成若干个小区间,通过求和来逼近定积分的值。

常用的分割求和方法有矩形法、梯形法、辛普森法等。

3. 牛顿-莱布尼兹公式:如果函数F(x)是f(x)的一个原函数,那么∫[a,b]f(x)dx = F(b) - F(a)。

利用牛顿-莱布尼兹公式,可以通过求解原函数来计算定积分。

三、不定积分与定积分的应用不定积分和定积分在数学和各个应用领域都有广泛的应用。

1. 几何应用:定积分被广泛用于计算曲线与x轴之间的面积、曲线长度、曲线的旋转体体积等几何问题。

2. 物理学应用:定积分在物理学中有着重要的应用,例如计算质点的位移、速度、加速度等问题。

不定积分与定积分的计算与应用

不定积分与定积分的计算与应用
与应用方法。假设我们需要计算函数f(x) = 2x在区间[1, 3]上的定积分。根据定积分的定义,我们可以计算如下:
∫[1, 3] 2x dx
根据定积分的运算规则法,我们可以得到:
= [x^2]1^3
= (3^2) - (1^2)
= 9 - 1
= 8
因此,函数f(x) = 2x在区间[1, 3]上的定积分为8。
不定积分与定积分的计算与应用
在数学中,积分是微积分的重要概念之一。不定积分与定积分是积分的两种形式,它们在实际问题求解中具有广泛的应用。本文将深入探讨不定积分与定积分的计算方法以及它们在应用中的具体应用。
一、不定积分的计算与应用
不定积分,也叫原函数或者反导数,是求导运算的逆运算。不定积分的计算方法主要有一些常见的积分公式和积分技巧,例如线性积分法、换元积分法、分部积分法等等。在应用中,不定积分可以用来求函数的原函数,进而求解定积分或者解微分方程。
除了计算曲线下的面积之外,定积分还可以用来解决一些变化率相关的问题。例如,在物理学中,可以通过对速度函数进行定积分,求解位移函数,进而分析物体的运动情况。在经济学中,可以通过对需求函数进行定积分,求解消费总量,进而分析市场的变化情况。
结论
综上所述,不定积分与定积分是积分的两种形式,它们在数学中具有重要的地位和广泛的应用。通过合理的计算方法和技巧,可以准确地求解函数的不定积分和定积分,并在实际问题中得到具体的应用。不定积分可以用来求函数的原函数,解微分方程等;定积分可以用来计算曲线下的面积,求解平均值,分析变化率等。在学习和应用中,我们应该深入理解积分的概念和性质,掌握不同类型积分的计算方法和应用技巧,提高数学分析和问题求解的能力。
下面我们通过一个具体的例子来说明不定积分的计算与应用方法。假设我们需要计算函数f(x) = 3x^2 + 2x + 1的不定积分。首先我们可以利用幂函数积分的常见公式来计算x的幂函数的不定积分:

不定积分、定积分与反常积分及定积分的应用

不定积分、定积分与反常积分及定积分的应用

不定积分、定积分与反常积分及定积分的应⽤不定积分、定积分与反常积分不定积分⼀、不定积分概念1.定义\begin{align} &原函数:设对于区间I上的任意⼀点x均有F'(x)=f(x),则称F(x)为f(x)在区间I上的⼀个原函数\\ &不定积分:设函数f(x)于区间I上有原函数,则其余原函数的全体称为f(x)于区间I上的不定积分,记为\int{f(x)dx}\\ &线性:\int[\alpha f(x)+\beta g(x)]dx=\alpha\int f(x)dx+\beta\int g(x)dx\\ \end{align}2.计算\begin{align} &计算⽅法\begin{cases}&1.基本公式\\&2.线性\\&3.积分法\begin{cases}&1.换元法\\&2.分部积分法\\\end{cases}\\\end{cases}\\ \end{align}(1)第⼀换元法(凑微分)\begin{align} &设F'(u)=f(u),则\int{f(\Phi(x))\Phi'(x)}dx=\int{f(\Phi(x))d(\Phi(x))}=F(\Phi(x))+C\\ &注解:找到合适的凑微分\Phi'(x)dx=d(\Phi(x)) \end{align}常见凑微分:\begin{align} &1.\int{f(ax+b)dx=\frac{1}{a}\int{f(ax+b)d(ax+b)}}(a\neq0)\\ &eg1.\int{\sin (2x+3)}dx=\frac{1}{2}\int\sin (2x+3)d(2x+3)=\frac{1}{2}\cos{(2x+3)}+C\\\ &2.\int{f(ax^n+b)x^{n-1}dx}=\frac{1}{na}\int{f(ax^n+b)d(ax^n+b)}\\ &eg2.\int{\cos(2x^4+3)x^3dx}=\frac{1}{4*2}\int{\cos(2x^4+3)d(2x^4+3)}=\frac{1}{8}\cos{(2x^4+3)}+C\\ &3.\int{f(a^x+c)a^xdx}=\frac{1}{\ln{a}}\int{f(a^x+c)}d(a^x+c)\\ &eg3.\int{\sin(2^x+3)2^xdx}=\frac{1}{\ln2}\int{\sin{(2^x+3)}d(2^x+3)}=\frac{1}{\ln 2}\cos{(2^x+3)}\\ &4.\int{f(\frac{1}{x})\frac{1}{x^2}}dx=-\int{f(\frac{1} {x})}d(\frac{1}{x})\\ &eg4.\int{\ln(\frac{1}{x})}\frac{1}{x^2}dx=-\int\ln (\frac{1}{x})d({\frac{1}{x}})+C\\ &5.\int{f(\ln |x|})\frac{1}{x}d(x)=\int{f(\ln{|x|)}}{d(\ln|x|)}\\ &eg5.\int{\sin ({\ln{|x|}}})\frac{1} {x}dx=\int{\sin(\ln(|x|)d(\ln{|x|})}=\cos(\ln x)+C\\ &6.\int{f(\sqrt x)\frac{1}{\sqrt x}}dx=2\int{f(\sqrt x)}d(\sqrt x)\\ &7.\int f(\sin x)\cos xdx=-\int{(\sin x)}d(\sin x)\\ &8.\int{f(\cos x)\sin dx}=\int{f(\cos x)d(\cos x)}\\ &9.\int{f(\tan x)\sec^2 xdx}=\int{f(\tan x)d(\tan x)}\\ &10.\int{f(\cot x)\csc^2xdx}=-\int{f(\cot x)d{(\cot x)}}\\ &11.\int{f{(\arcsin x)\frac{1}{\sqrt{1-x^2}}}}dx=\int{f(\arcsin x)d({\arcsin x})}\\ &12.\int{f(\arccos x)(-\frac{1}{\sqrt{1-x^2}}})dx=\int{f(\arccos x)d(\arccos x)}\\ &13.\int{f(\arctan x)\frac{1}{1+x^2}dx}=\int{f(\arctan x)d(\arctan x)}\\ &14.\int{f(\sqrt{x^2+a})}\frac{x} {\sqrt{x^2+a}}dx=\int{f(\sqrt{x^2+a})}d(\sqrt{x^2+a})\\ &注解:(\sqrt{x^2\pm a})'=\frac{x}{\sqrt{x^2+a}},(\sqrt{a^2-x^2})'=\frac{-x}{\sqrt{a^2-x^2}}\\ \end{align}(2)第⼆换元法\begin{align} &设F'(u)=f(\Phi(u))\Phi'(u),则\\ &\int{f(x)dx}\overset{x=\Phi(u)}{=}\int{f(\Phi(u))\Phi'(u)du}=F(u)+C=F(\Phi^{-1}(x))+C\\ &注解:找到合适的x=\Phi(u)\\ \end{align}1)三⾓换元\begin{align} &x=a\sin u,x=a\tan u,x=a \sec u\\ &\sqrt{a^2-x^2}\overset{x=a\sin u}{=}a\cos u,u\in[-\frac{\pi}{2},\frac{\pi}{2}],x\in[-a,a]\\ &\sqrt{a^2+x^2}\overset{x=a\tan u}{=}a\sec u,u\in{(-\frac{\pi}{2},\frac{\pi}{2})},x\in{(-\infty,\infty)}\\ &\sqrt{x^2-a^2}\overset{x=a\sec u}{=}a\tan u,u\in(\frac{\pi}{2},\pi]\cup(0,\frac{\pi}{2}]\\ \end{align}2)倒变换\begin{align} &x=\frac{1}{u}常⽤于含\frac{1}{x}的函数\\ \end{align}3)指数(或对数)变换\begin{align} &a^x=u或x=\frac{\ln u}{\ln a}常⽤于含a^x的函数\\ \end{align}4)⽤于有理化的变换\begin{align} &\frac{1}{\sqrt{x}+\sqrt[3]{x}}⽤x=u^6\\ &\sqrt[n]{\frac{ax+b}{cx+d}}⽤u=\sqrt[n]{\frac{ax+b}{cx+d}}或x=-\frac{du^n-b}{cu^n-a}\\ \end{align}(3)分部积分法\begin{align} &\int{u(x)v'(x)dx}=\int{u(x)d(v(x))}=u(x)v(x)-\int{v(x)u'(x)dx}\\ &注解:找到合适的u(x),v(x)\\ \end{align}1)降幂法\begin{align} &\int{x^ne^{ax}dx},\int{x^n\sin axdx},\int{x^n\cos ax dx}\\ &取u(x)=x^n\\ \end{align}2)升幂法\begin{align} &\int{x^a\ln xdx},\int{x^a\arcsin xdx},\int{x^a\arccos x dx},\int{x^a\arctan x dx}\\ &取u(x)=\ln x\\ \end{align}3)循环法\begin{align} &\int{e^{ax}\sin ax dx},\int{e^{ax}\cos {ax} dx}\\ &取u(x)=e^{ax}或\sin{ax} \end{align}4)递推公式法\begin{align} &与n有关的结果I_n,建⽴递推关系I_n=f(I_{n-1})或f(I_{n-2})\\ \end{align}定积分⼀、定积分概念1.定义\begin{align} &定义:设函数f(x)在区间[a,b]上有定义且有界\\ &(1)分割:将[a,b]分成n个[x_{i-1},x_{i}]⼩区间\\ &(2)求和:[x_{i-1},x_{i}]上取⼀点\xi_{i},\sum_{i=1}^{n}{f(\xi_{i})\Deltax_i},\lambda=\max{\Delta x_{1},\Delta x_{2},...,\Delta x_{n}}\\ &(3)取极限:若\lim_{\lambda \rightarrow 0}{\sum_{i=1}^{n}f(\xi_{i})\Delta x}\exist,且极值不依赖区间[a,b]分发以及点\xi_{i}的取法,则称f(x)在区间[a,b]上可积,\\ &\int^{b}_{a}{f(x)dx}=\lim_{\lambda \rightarrow 0}{f(\xi)\Delta x_{i}} &\\ &注解:\\ &(1)\lambda \rightarrow0 \rightarrow \nleftarrow n\rightarrow \infty\\ & (2)定积分表⽰⼀个值,与积分区间[a,b]有关,与积分变化量x⽆关\\ &\int_{a}^{b}{f(x)dx}=\int_{a}^{b}{f(t)dt}\\ &(3)如果积分\int_{0}^{1}{f(x)dx}\exist,将[0,1]n等分,此时\Delta{x_{i}}=\frac{1}{n},取\xi_{i}=\frac{i}{n},\\ &\int_{0}^{1}f(x)dx=\lim_{\lambda \rightarrow 0}{\sum_{i=1}{n}{f(\xi_{i})\Delta x_{i}}}=\lim_{n\rightarrow \infty}\sum_{i=1}^{n}f(\frac{i}{n})\\ \end{align}\begin{align} &\int^{b}_{a}{f(x)dx}=\lim_{\lambda \rightarrow 0}\sum^{n}_{i=1}f(\xi_i)\Delta_i=\begin{cases}&\lim_{n\rightarrow \infty}{\sum_{i=1}^{n}{f(a+(i-1)\frac{b-a}{n})\frac{b-a}{n}}},左侧\\&\lim_{n\rightarrow \infty}{\sum_{i=1}^{n}{f(a+i\frac{b-a}{n})\frac{b-a}{n}}},右侧\\\end{cases}\\ &中点:\Phi_i=a+(i-1)\frac{b-a}{n}+\frac{b-a}{2n}\\ \end{align}Processing math: 0%定理:(线性)\begin{align} &\int[\alpha f(x)+\beta g(x)]dx=\alpha\int f(x)dx+\beta\int g(x)dx\\ \end{align}注解:积分⽆⼩事\begin{align} &\int{e^{\pm x^2}dx,\int{\frac{\sin x}{x}}}积不出来\\ &F'(x)=f(x),x\in I,连续函数⼀定存在原函数,⽆穷多个\\ &[F(x)+C]'=f(x) \end{align}2.定积分存在的充分条件\begin{align} &若f(x)在[a,b]上连续,则\int^{b}_{a}{f(x)dx}必定存在\\ &若f(x)在[a,b]上有上界,且只有有限个间断点,则\int^{b}_{a}{f(x)dx}必定存在\\ &若f(x)在[a,b]上只有有限个第⼀类间断点,则\int^{b}_{a}{f(x)dx}必定存在\\ \end{align}3.定积分的⼏何意义\begin{align} &(1)f(x)\geqslant{0},\int_{a}^{b}{f(x)dx}=S\\ \end{align}\begin{align} &(2)f(x)\leqslant{0},\int_{a}^{b}{f(x)dx}=-S\\ \end{align}\begin{align} &(3)f(x)\geqslant{0}\cup f(x)\leqslant{0},\int_{a}^{b}{f(x)dx}=S_1+S_3-S_2\\ \end{align}注解:\begin{align} &(1)当f(x)\geq0时,定积分的⼏何意义是,以区间[a,b]为底,y=f(x)为曲边的曲边梯形⾯积\\ &(2)定积分是⼀个常数,只与f和区间[a,b]有关,与积分变量⽤什么字母⽆关\\ &\int_a^b{f(x)}dx=\int_a^b{f(t)dt}\\ &(3)\int_a^bdx=b-a\\ &(4)\int_{a}^{a}f(x)=0,\int_a^bf(x)dx=-\int_b^a{f(t)}dt \end{align}⼆、定积分的性质1.不等式性质\begin{align} &(1)保序性:若在区间[a,b]上f(x)\leqslant{g(x)},则\int_a^{b}{f(x)dx}\leqslant{\int_a^{b}{g(x)dx}}\\ &推论:\\ &(1)f(x)\geq0,\forall x\in[a,b],则\int_a^b{f(x)dx}\geq0\\ & (2)f(x)\geq0,\forall x\in[a,b],且[c,d]\subset[a,b],则\int_a^b{f(x)dx}\geq\int_c^d{f(x)dx}\\ &(3)|\int_a^bf(x)dx|\leq\int_a^b{|f(x)|dx}\\ &-|f|\leq f\leq |f|\Rightarrow \int_a^b-|f|\leq \int_a^bf\leq \int_a^b|f|\Rightarrow |\int_a^bf|\leq\int_a^b|f|\\ &如:x^2\leq x^3,x\in[0,1],则\int_0^1{x^3dx}\leq\int_0^1{x^2dx}\\ \end{align}\begin{align} &(4)(估值不等式)若M及m分别是f(x)在[a,b]上的最⼤值和最⼩值,\\ &则m(b-a)\leqslant{\int_a^{b}{f(x)dx}\leqslant{M(b-a)}}\\ \end{align}\begin{align} &证明:M(b-a)=S_{AFDC}=S_1+S_2+S_3\\ &m(b-a)=S_{EBDC}=S_3\\ &\int_a^{b}{f(x)dx}=S_{ADBC}=S_2+S_3\\ &S_3\leqslant{S_2+S_3\leqslant{S_1+S_2+S_3}}\\&\Leftrightarrow{m(b-a)\leqslant{\int_a^{b}{f(x)dx}\leqslant{M(b-a)}}}\\ \end{align}\begin{align} &(3)|\int_a^{b}{f(x)dx}|\leqslant{\int_a^{b}{|f(x)|dx}}\\ \end{align}2.中值定理\begin{align} &(1)若f(x)在[a,b]上连续,则\int_a^{b}{f(x)dx}=f(\xi)(b-a),(a<\xi<b)\\ &称\frac{1}{b-a}{\int_{a}^{b}{f(x)dx}为函数y=f(x)在区间[a,b]上的平均值}\\ &注解:F'(x)=f(x),F(b)-F(a)=\int_a^b{f(x)dx},f(\xi)(b-a)=F'(\xi)(b-a)\\ &(2)若f(x),g(x)在[a,b]上连续,g(x)不变号,则\int_{a}^{b}{f(x)g(x)dx}=f(\xi)\int_a^b{g(x)dx}\\ \end{align}注解:\begin{align} &\int_0^1{\frac{x}{\sin x}}dx\\ &f(x)=\begin{cases}&\frac{x}{\sin x},x\in[0,1]\\&1,x=0\\\end{cases}\\ &结论:有限处点的函数不影响定积分\\ &f(x)={\begin{cases}&x+1,[1,2]\\&x, [0,1]\\\end{cases}}\\ &\int_0^2{f(x)dx}=\int_0^1{xdx}+\int_1^2{(x+1)dx}\\ \end{align}\begin{align} &证明:\frac{1}{2}\leq\int_0^{\frac{1}{2}}\frac{1}{\sqrt{1-x^n}}dx\leq\frac{\pi}{6}\\ &估值积分:x\in[0,\frac{1}{2}]\\ &\\ \end{align}例题:\begin{align} &1.求极限\lim_{n\rightarrow \infty}\int_0^1{\frac{x^ne^x}{1+e^x}dx}\\ &根据积分容易知道0\leq\frac{x^ne^x}{1+e^x}\leq x^n,x\in[0,1],n\in N^*\\ &⽤积分的保号性\\&0\leq\int_0^1{\frac{x^ne^x}{1+e^x}dx}\leq \int_0^1{x^n}dx=\frac{1}{n+1}\\ &⽤夹逼定理\\ &\lim_{n\rightarrow\infty}\frac{1}{n+1}=0\\ &\lim_{n\rightarrow \infty}\int_0^1{\frac{x^ne^x}{1+e^x}dx}=0\\ \end{align}\begin{align} &2.设I_1=\int_0^{\frac{4}{\pi}}\frac{\tan x}{x}dx,I_2=\int_0^{\frac{4}{\pi}}\frac{x}{\tan x}dx则\\ &(A)I_1>I_2>1(B)1>I_1>I_2(C)I_2>I_1>1(D)1>I_2>I_1\\ &解:⽤保序性a<b,f(x)\leq g(x),\int_a^b f(x)\leq \int_a^b g(x)\\ &\tan x>x,x\in[0,\frac{\pi}{2}]\\ &\frac{\tan x}{x}>1>\frac{x}{\tan x},x\in[0,\frac{\pi}{4}]\\ &根据保序性\\ &\int_0^{\frac{\pi}{4}}\frac{\tan x}{x}dx>\int_0^{\frac{\pi}{4}}1dx=\frac{\pi}{4}>\int_0^{\frac{\pi}{4}}\frac{x}{\tan x},x\in[0,\frac{\pi}{4}]\\ &证:\int_0^{\frac{\pi}{4}}\frac{\tan x}{x}与1的关系\\ &积分中值定理\\ &\int_0^{\frac{\pi} {4}}\frac{\tan x}{x}=f(\xi)(\frac{\pi}{4}-0)=\frac{\tan \xi}{\xi}*\frac{\pi}{4},\xi\in{[0,\frac{\pi}{4}]}\\ &根据\frac{\tan x}{x}在x\in[0,\frac{\pi}{4}]上单调递增\\ &0<f(\xi)<\frac{4}{\pi},0<\int_0^{\frac{\pi} {4}}\frac{\tan x}{x}<1\\ &选(B)\\ \end{align}三、积分上限函数\begin{align} &如果f(x)在区间[a,b]上连续,则\Phi(x)=\int_a^b{f(t)dt}在[a,b]上可导,且\int_a^b{f(t)dt})\\ &(\int_a^xf(t)dt)'=f(x),(\int_a^{x^2}f(t)dt)'=f(x^2)*2x\\ &如果f(x)在区间[a,b]上连续,\phi_1(x),\phi_2(x)为可导函数,则\Phi(x)=\int_a^b{f(t)dt}在[a,b]上可导,且(\int_{\phi_1(x)}^{\phi_2(x)}{f(t)dt})'\\ &=f[\phi_2(x)]*\phi_2'(x)-f[\phi_1(x)]*\phi_1'(x)=(\int_{\phi_1(x)}^0{f(t)dt}+\int_{\phi_2(x)}^0{f(t)dt})'\\ &设函数f(x)在[-l,l]上连续,则\\ &如果f(x)为奇函数,那么\int_0^xf(t)dt必为偶函数\\ &如果f(x)为偶函数,那么\int_0^xf(t)dt必为奇函数\\\end{align}\begin{align} &任取x\in[a,b),取\Delta x>0,使x+\Delta x\in[a,b)\\ &\frac{\Delta F}{\Delta x}=\frac{F(x+\Delta x)-F(x)}{\Delta x}=\frac{1}{\Delta x}[\int_a^{x+\Delta x}f(t)dt-\int_a^xf(t)dt]=\frac{1} {\Delta x}\int_x^{x+\Delta x}f(t)dt=f(x+\sigma\Delta x)\rightarrow f(x)(\Delta x\rightarrow 0^+)\\ \end{align}推论:\begin{align} &若f(x)、\phi'(x)、\psi(x)于[a,b]上连续,则\\ &(1)(\int_a^{\phi(x)}f(t)dt)'=f(\phi(x))\phi'(x)\\ &(2)(\int_b^{\psi(x)}f(t)dt)'=-f(\psi(x))\psi'(x)\\ &(3)(\int_{\psi(x)}^{\phi(x)}f(t)dt)'=f(\phi(x))\phi'(x)-f(\psi(x))\psi'(x)\\ \end{align}例题\begin{align} &1.设函数f(x)在R上连续,且是奇函数,则其原函数均是偶函数.当f(x)是偶函数时?是周期函数?\\ &证:\\ &令F_0(x)\int_0^xf(t)dt,x\in R\\ &F_0(-x)=\int_0^{-x}f(t)dt\overset{t=-u} {=}\int_0^xf(-u)d(u)=\int_0^xf(u)du=F_0(x)\Rightarrow F_0(x)为偶函数\\ \end{align}\begin{align} &求变现积分导数\\ &(1)F(x)=\int_x^{e^{-x}}f(t)dt\\ &(2)F(x)=\int_0^{x^2}(x^2-t)f(t)dt\\ &(3)F(x)=\int_0^{x}f(x^2-t)dt\\ &(4)设函数y=y(x)由参数⽅程\begin{cases}&x=1+2t^2\\&y=\int_1^{1+2\ln t}\frac{e^u}{u}du\\\end{cases}(t>1),求\frac{d^2y}{dx^2}|_{x=9}\\ &解:\\ &(1)F(x)'=(\int_x^{e^{-x}}f(t)dt)'=f(e^{-x})(-e^{-x})-f(x)\\ &(2)F(x)'=(\int_0^{x^2}(x^2-t)f(t)dt)'=(\int_0^{x^2}x^2f(t)dt-\int_0^{x^2}tf(t)dt)'\\ &=2x\int_0^{x^2}f(t)dt+x^2f(x^2)2x-x^2f(x^2)2x=2x\int_0^{x^2}f(t)dt\\ &(3)F(x)=\int_0^{x}f(x^2-t)dt=-\frac{1}{2}\int_0^xf(x^2-t^2)d(x^2-t^2)\overset{u=x^2-t^2}{=}-\frac{1}{2}\int_0^xf(u)du\\ &F(x)'=\frac{1}{2}f(x^2)2x=xf(x^2)\\ &(4)\frac{dy}{dx}=\frac{\frac{e^{1+2\ln t}}{1+2\ln t}\frac{2}{t}}{4t^2}=\frac{e}{2(1+2\ln t)}\\ &\frac{d^2y}{dx^2}=\frac{d(\frac{dy}{dx})}{dx}=\frac{e}{2}(-\frac{\frac{2}{t}}{(1+2\ln t)^2})\frac{1}{4t}\\ \end{align}\begin{align} &2.求变现积分的积分:\\ &(1)设f(x)=\int_0^x{\frac{\sin t}{\pi -t}dt},求\int_0^\pi{f(x)}dx\\ &解:\\ &\int_0^\pi{f(x)}dx=\int_0^{\pi}\int_0^x\frac{\sin t}{\pi -t}dt\space dx\\&=x\int_0^x\frac{\sin t}{\pi t}|_0^{\pi}-\int_0^{\pi}x\frac{\sin x}{\pi -x}dx\\ &=\pi\int_0^{\pi}\frac{\sin x}{\pi t}+\int_0^{\pi}\frac{[(\pi-x)-\pi]\sin x}{\pi-x}dx=\int_0^{\pi}\sin xdx=2\\ &(2)\lim_{x\rightarrow\infty}{\frac{(\int_0^x{e^{t^2}}dt)^2}{\int_0^xe^{2t^2}dt}}=\lim_{x\rightarrow\infty}{\frac{(2\int_0^{x}e^{t^2}dt)e^{x^2}}{e^{2x^2}}}=\lim_{x\rightarrow\infty}\frac{2\int_0^{x}e^{t^2}}{e^{x^2}}=\lim_{x\rightarrow\infty}\frac{1}{2x}=0\\ \end{align}\begin{align} &(3)设f(x)连续,\phi(x)=\int_0^1{f(tx)dt},且\lim_{x\rightarrow0}\frac{f(x)}{x}=A(常数),求\phi'(x)并讨论\phi'(x)在x=0处的连续性\\ &当x\neq0时\\ &令u=tx,t\in[0,1],u=tx\in[0,x],\phi(x)=\int_0^1f(tx)dt\overset{tx=u}{=}\int_0^x{f(u)d(\frac{u}{x})}=\frac{\int_0^xf(u)du}{x}\\ &\phi'(x)=\frac{xf(x)-\int_0^xf(u)du}{x^2}\\ &当x=0时,f(0)=0,\phi(0)=f(0)=0,\phi'(0)=\lim_{x\rightarrow0}\frac{\phi(x)\phi(0)}{x-0}=\lim_{x\rightarrow0}\frac{\int_0^xf(u)du}{x^2}=\lim_{x\rightarrow 0}\frac{f(x)}{2x}=\frac{1}{2}A\\&\lim_{x\rightarrow0}\phi'(x)=\lim_{x\rightarrow 0}{\frac{xf(x)-\int_0^xf(u)du}{x^2}}=A-\frac{1}{2}A=\frac{1}{2}A=\phi'(0)\Leftrightarrow\phi'(x)在x=0处连续\\ \end{align}注解:\begin{align} &注意变限积分进⾏正逆运算时上下限的映射\\ &例如F(x)=\int_0^x{f(t)dt}\overset{t=-u}{=}\int_{-a}^{x}f(-u)d(-u)\\ \end{align}四、定积分的计算1.⽜顿莱布尼茨公式\int_a^bf(x)dx=F(x)|_a^b=F(b)-F(a)2.换元积分法\int_a^bf(x)dx=\int_\alpha^\beta{f(\Phi(t))\Phi'(t)dt}3.分部积分法\int_a^budv=uv|_a^b-\int_a^bvdu4.奇偶性和周期性\begin{align} &直接使⽤奇偶性周期性定义证明\\ &(1)设f(x)为[-a,a]上的连续函数(a>0),则\\ &\int_{-a}{a}f(x)dx=\begin{cases}0,&f(x)奇函数\\2\int_0^af(x)dx,&f(x)偶函数\end{cases}\\ &证:\int_{-a}^0{f(x)dx}\overset{x=-t}{=}\int_0^a{f(-t)d(-t)}=-\int_{0}^{a}f(t)d(t)=-\int_0^a{f(x)dx}\\ \end{align}\begin{align} &(2)设f(x)是以T为周期的连续函数,则对\forall A,有\int_a^{a+T}f(x)=\int_0^T{f(x)dx}\\ &\int_a^{a+T}f(x)dx\overset{x=a+t}{=}\int_0^T{f(a+t)d(a+t)}=\int_0^{a+t}f(a+t)dt\\\end{align}\begin{align} &\Phi:x\in[a,b]\rightarrow y\in[c,d],令\frac{x-a}{b-a}=\frac{y-c}{d-c},y=c+\frac{d-c}{b-a}(x-a)\\ \end{align}\\5.奇偶函数积分后的奇偶性(奇偶函数求导后的奇偶性)1.奇偶函数求导后的奇偶性\begin{align} &(1)f(x)为奇函数:\\ &f(-x)=-f(x)\\ &\Leftrightarrow f'(-x)(-1)=-f'(x)\\ &\Leftrightarrow f'(-x)=f'(x)\\ &\Leftrightarrow f'(x)为偶函数\\ &(2)f(x)为偶函数:\\ &f(-x)=f(x)\\ &\Leftrightarrowf'(-x)=f'(x)\\ &\Leftrightarrow f'(-x)(-1)=f'(x)\\ &\Leftrightarrow f'(-x)=-f'(x)\\ &\Leftrightarrow f'(x)为奇函数\\ \end{align}2.奇偶函数求积分后的奇偶性\begin{align} &设F(x)为f(x)的原函数\\ &(1)f(x)为奇函数:\\ &f(-x)=-f(x)\\ &\Leftrightarrow \int f(-x)dx=-\int f(x)dx\\ &\Leftrightarrow -\int f(-x)d(-x)=-\int f(x)dx\\ &\Leftrightarrow F(-x)=F(x)\\&\Leftrightarrow F(x)为偶函数\\ &(2)f(x)为偶函数:\\ &f(-x)=f(x)\\ &\Leftrightarrow \int f(-x)dx=\int f(x)dx\\ &\Leftrightarrow -\int f(-x)d(-x)=\int f(x)dx\\ &\Leftrightarrow F(-x)=-F(x)\\&\Leftrightarrow F(x)为奇函数\\ \end{align}3.奇偶函数复合后的奇偶性\begin{align} &\exist f(x),g(x),F(x)=f(g(x))\\ &设f(x)为奇函数\\ &(1)g(x)为偶函数\\ &F(-x)=f(g(-x))=f(g(x))=F(x),F(x)为偶函数\\ &(2)g(x)为奇函数\\ &F(-x)=f(g(-x))=f(-g(x))=-f(g(x))=-F(x),F(x)为奇函数\\ &设f(x)为偶函数\\ &(1)g(x)为奇函数\\ &F(-x)=f(g(-x))=f(g(x))=F(x),F(x)为偶函数\\ &(2)g(x)为偶函数\\ &F(-x)=f(g(-x))=f(g(x))=F(x),F(x)为偶函数\\ &注解:外偶全偶,外奇奇偶\\\end{align}例题:\begin{align} &1.设M=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}{\frac{\sin x}{1+x^2}\cos^4xdx},N=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}{(\sin x^3+\cos^4x)dx},P=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}(x^2\sin^3x-\cos^4x)dx,则\\ &(A)N<P<M(B)M<P<N(C)N<M<P(D)P<M<N\\ &根据对称性判断\\ &M:f_M(x)为奇函数,F_M(x)为偶函数\\ &N:N=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}{(\sinx^3+\cos^4x)dx}=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\sin ^3xdx+\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\cos ^4xdx\\ &\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\sin ^3xdx=0,\int_{-\frac{\pi}{2}}^{\frac{\pi} {2}}\cos ^4xdx\geq 0,\Rightarrow N\geq 0\\ &P:P=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}(x^2\sin^3x-\cos^4x)dx=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}x^2\sin^3xdx-\int_{-\frac{\pi}{2}}^{\frac{\pi} {2}}\cos^4xdx\\ &\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}x^2\sin^3xdx=0,\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\cos^4xdx\geq0,\Rightarrow P\leq0\\ &\Leftrightarrow P<M<N,\space\space选(D)\\\end{align}\begin{align} &2.设f(x)=\begin{cases}&kx,0\leq x\leq \frac{1}{2}a\\&c,\frac{1}{2}a<x\leq a\\\end{cases},求F(x)=\int_0^xf(t)dt,x\in[0,a]\\ &F(x)=\begin{cases}&\int_0^xktdt=\frac{1}{2}kt^2|_0^x=\frac{1}{2}kx^2,0\leq x\leq \frac{1}{2}a\\&\int_0^{\frac{1}{2}a}ktdt+\int_{\frac{1}{2}a}^c cdt=\frac{1}{8}ka^2+c^2-\frac{1}{2}ac,\frac{1}{2}a<x\leq a\\\end{cases}\\ \end{align} \begin{align} &3.证明:\int_0^{2\pi}f(|\cos x|)dx=4\int_0^{\frac{\pi}{2}}f(|\cos x|)dx\\ \end{align}6.已有公式\begin{align} &(1)\int_0^{\frac{\pi}{2}}{\sin^nxdx=\int_0^{\frac{\pi}{2}}\cos^n xdx=\begin{cases}\frac{n-1}{n}*\frac{n-3}{n-2}*...*\frac{1}{2}*\frac{\pi}{2},&n为偶数\\\frac{n-1}{n}*\frac{n-3}{n-2}*...*\frac{2}{3},&n为⼤于1的奇数\\\end{cases}}\\ &(2)\int_0^{\pi}xf(\sin x)dx=\frac{\pi}{2}\int_0^{\pi}f(\sin x)dx(f(x)为连续函数)\\ \end{align}7.与定积分有关的证明8.经典例题:例题1:\begin{align} &\lim_{n\rightarrow \infty}{(\frac{1}{n+1}+\frac{1}{n+2}+...+\frac{1}{n+n})}\\ &法1:夹逼定理+基本不等式\\ &\frac{1}{1+x}<\ln(x+1)<x\\ &令x=\frac{1}{n}\\ &得\frac{1}{n+1}=\frac{\frac{1}{n}}{\frac{1}{n}+1}<\ln(\frac{1}{n}+1)=\ln(n+1)-\ln(n)<\frac{1}{n}\\ &得\frac{1}{n+2}<ln(n+2)-ln(n+1)<\frac{1}{n+1}\\ &得\frac{1}{n+n}<\ln(n+n)-\ln(n+n-1)<\frac{1}{n+n-1}\\ &得\frac{1}{n+1}+\frac{1}{n+2}+...+\frac{1}{n+n}<ln(2n)-ln(n)=ln2\\ &法2:\lim_{n\rightarrow \infty}{(\frac{1}{n+1}+\frac{1}{n+2}+...+\frac{1}{n+n})}中\\ &\frac{1}{n+1}中n为主体,1为变体\\ &\frac{变体}{主体}\rightarrow^{n \rightarrow{\infty}}\begin{cases}0,次(夹逼定理)\\A\neq 0,同(定积分)\end{cases}\\ &\lim_{\lambda \rightarrow 0}{\sum_{i=1}^{n}{f(\xi_i)\Deltax_i}=\lim_{n\rightarrow \infty}\frac{1}{n}\sum_{i=1}^{n}f(\xi_i)(b-a)}=\int_0^1\frac{1}{1+x}=\ln(1+x)|_{0}^{1}=\ln2\\ \end{align}例题2\begin{align} &设f(x)=\int_0^{\pi}{\frac{\sin x}{\pi-t}dt},计算\int_0^{\pi}f(x)dx.\\ &法1:分部积分+换元法\\ &原式=xf(x)|_0^{\pi}-\int_0^{\pi}{\frac{x\sin x}{\pi-x}dx}\\ &=\pi{\int_0^{\pi}{\frac{\sin{t}}{\pi-t}dt}-\int_0^{\pi}{\frac{x\sin x}{\pi-x}}dx}\\ &=\int_0^{\pi}{\frac{(\pi-x)\sin x}{\pi-x}dx}=2\\ &法2:\\ &原式=\int_0^\pi{f(x)d(x-{\pi})}=(x-\pi)f(x)|_0^{\pi}-\int_0^{\pi}{\frac{(x-\pi)\sin x}{\pi-x}dx}=2\\ &法3:⼆重积分转化为累次积分\\ &原式=\int_0^{\pi}{\int_0^{\pi}\frac{x\sin t}{\pi-t}dt}dx\\ \end{align}例题3\begin{align} &法1:构造辅助函数\\ &根据题意f(1)=f(-1)=1,f(0)=-1\Rightarrow f(x)为偶函数,f最低点函数值为-1\\ &可以构造符合题意的辅助函数f(x)=2x^2-1\\ &法2:根据函数的性质直接判断 \end{align}例题4\begin{align} &因为\lim_{x\rightarrow 0}{\frac{ax-\sin x}{\int_b^x{\frac{\ln{1+t^3}}{t}dt}}}=c(c\neq 0)\\ &所以\lim_{x\rightarrow 0}{ax-\sin x}=0并且\lim_{x \rightarrow 0}{\int_b^x{\frac{\ln{1+t^3}}{t}dt}}=0\\ &化简,使⽤洛必达法则上下求导\\ &\lim_{x\rightarrow 0}{\frac{ax-\sin x}{\int_b^x{\frac{\ln{1+t^3}}{t}dt}}}=\lim_{x\rightarrow 0}{\frac{a-\cos x}{\frac{\ln{1+x^3}}{x}}}=\lim_{x\rightarrow 0}{\frac{a-\cos x}{x^2}}\\ &\Rightarrow a=1,c=\frac{1}{2},b=0\\ \end{align}反常积分⼀、⽆穷区间上的反常积分\begin{align} &(1)\int_a^{+\infty}{f(x)}dx=\lim_{t\rightarrow +\infty}{\int_{a}^{t}f(x)dx}\\ &(2)\int_{-\infty}^{b}{f(x)}dx=\lim_{t\rightarrow -\infty}{\int_{t}^{b}f(x)dx}\\ &(3)\int_{-\infty}^{0}{f(x)}dx和{\int_{0}^{+\infty}f(x)dx}都收敛,则{\int_{-\infty}^{+\infty}f(x)dx}收敛\\ &且{\int_{-\infty}^{+\infty}f(x)dx}=\int_{-\infty}^{0}{f(x)}dx+{\int_{0}^{+\infty}f(x)dx}\\ &如果其中⼀个发散,结果也发散\\ &常⽤结论:\int_a^{+\infty}{\frac{1}{x^p}dx}\begin{cases}&p>1,收敛\\&p\leq1 ,发散\\\end{cases},(a>0)\\ \end{align}⼆、⽆界函数的反常积分\begin{align} &如果函数f(x)在点a的任⼀领域内都⽆界,那么点a为函数f(x)的瑕点(也称为⽆界点).⽆界函数的反常积分也成为瑕积分\\ &(1)设函数f(x)在(a,b]上连续,点a为f(x)的瑕点.如果极限\lim_{t\rightarrow a^+}{\int_{t}^{b}{f(x)dx}}\exist,\\ &则称此极限为函数f(x)在区间[a,b]上的反常区间,记作\int_{a}^{b}f(x)dx,即\int_{a}^{b}f(x)dx=\lim_{t\rightarrow a^+}{\int_{t}^{b}{f(x)dx}}\\ &这时也称反常积分\int_a^b{f(x)dx}收敛,如果上述极限不存在,则反常积分\int_a^b{f(x)dx}发散\\ &(2)设函数f(x)在[a,b)上连续,点b为函数f(x)的瑕点,则可以类似定义函数f(x)在区间[a,b]上的反常积分\int_a^bf(x)dx=\lim_{t\rightarrow b^-}{\int_a^tf(x)dx}\\ &设函数f(x)在[a,b]上除点c(a<c<b)外连续,点c为函数f(x)的瑕点,如果反常积分\int_a^c{f(x)dx}和\int_c^b{f(x)dx}都收敛\\ &则称反常积分\int_a^b{f(x)dx}收敛,且\int_a^b{f(x)dx}=\int_a^c{f(x)dx}+\int_c^b{f(x)dx}\\ &如果⾄少⼀个发散,则称\int_a^b{f(x)dx}发散\\ &常⽤结论:\\ &\int_a^b{\frac{1}{(x-a)^p}}\begin{cases}&p<1,收敛\\&p\geq 1,发散\\\end{cases}\\ &\int_a^b{\frac{1}{(x-a)^p}}\begin{cases}&p<1,收敛\\&p\geq 1,发散\\\end{cases}\\ \end{align}三、例题例题1\begin{align} &\int\frac{1}{\ln^{\alpha}x}d(\ln x)\rightarrow^{\ln x=u}\int{\frac{du}{u^{\alpha+1}}}\begin{cases}&{\alpha-1< 1}\\&{\alpha+1>1}\\\end{cases}\Rightarrow 0<\alpha<2\\\end{align}定积分的应⽤⼀、⼏何应⽤1.平⾯图形的⾯积\begin{align} &(1)若平⾯域D由曲线y=f(x),y=g(x)(f(x)\geq g(x)),x=a,x=b(a<b)所围成,则平⾯域D的⾯积为\\ &S=\int_a^b{[f(x)-g(x)]dx}\\ &(2)若平⾯域D由曲线由\rho=\rho(\theta),\theta=\alpha,\theta=\beta(\alpha<\beta)所围成,则其⾯积为S=\frac{1}{2}\int_{\alpha}^{\beta}{\rho^2(\theta)d\theta} \end{align}2.旋转体的体积\begin{align} &若区域D由曲线y=f(x)(f(x)\geq 0)和直线x=a,x=b(0\leq a<b)及x轴所围成,则\\ &(1)区域D绕x轴旋转⼀周所得到的旋转体体积为V_x=\pi\int_a^b{f^2(x)dx}\\ &(2)区域D绕y轴旋转⼀周所得到的旋转体体积为V_y=2\pi\int_a^b{xf(x)dx}\\ &(3)区域D绕y=kx+b轴旋转⼀周所得到的旋转体体积为V=2\pi\int_D\int{r(x,y)d\sigma}\\ &例如:求y=x,y=x^2在第⼀象限的封闭图形绕转轴的体积\\ \end{align}\begin{align} &V_x=2\pi\int_D\int yd\sigma=2\pi\int_0^1{dx}\int_{x^2}^{x}ydy\\ &V_y=2\pi\int_D\int xd\sigma=2\pi\int_0^1{dx}\int_{x^2}^{x}xdy\\ &V_{x=1}=2\pi\int_D\int (1-x)d\sigma\\ &V_{y=2}=2\pi\int_D\int (2-y)d\sigma\\ \end{align}3.曲线弧长\begin{align} &(1)C:y=y(x),a\leq x\leq b,s=\int_a^b{\sqrt{1+y'^2}dx}\\ &(2)C:\begin{cases}&x=x(t)\\&y=y(t)\\\end{cases},\alpha \leq t\leq \beta,s=\int_{\alpha}^{\beta}{\sqrt{x'^2+y'^2}dx}\\ &(3)C:\rho=\rho(\theta),\alpha \leq \theta\leq \beta,s=\int_{\alpha}^{\beta}{\sqrt{\rho^2+\rho'^2}dx}\\ \end{align}4.旋转体侧⾯积\begin{align} &曲线y=f(x)(f(x)\geq 0)和直线x=a,x=b(0\leq a<b)及x轴所围成的区域绕x轴旋转所得到的旋转体的侧⾯积为\\ &S=2\pi\int_a^b{f(x)\sqrt{1+f'^2(x)}dx}\\ \end{align}⼆、物理应⽤1.压⼒2.变⼒做功3.引⼒(较少考)例题1\begin{align} &分析题意可知,该容器由x^2+y^2=1的圆和x^2+(y-1)^2=1的偏⼼圆组成\\ &根据图像的对称性可以避免不同表达式带来的困难\\ &对圆的⼩带⼦进⾏积分,带⼦长度为x,积分区间为-1到\frac{1}{2},\int_{-1}^{\frac{1}{2}}{\pi x^2dy}\\ &由于图像的对称性,将积分结果乘⼆\\ &(1)V=2\pi\int_{-1}^{\frac{1}{2}}{x^2}dy=2\pi\int_{-1}^{\frac{1}{2}}{(1-y^2)dy}=\frac{9\pi} {4}\\ \end{align}\begin{align} &(2)W=F*S=G*S=mg*S=\rho VSg\\ &上部为W_1=\int_{\frac{1}{2}}^{2}(2y-y^2)(2-y)dy*\rho g\\ &下部为W_2=\int^{\frac{1}{2}}_{-1}(1-y^2)(2-y)dy*\rho g\\ &W=W_1+W_2\\ \end{align}例题2\begin{align} &F_p=P*A=\rho gh*A\\ &将图像分为上部和下部,上部为矩形区域和下部的抛物线围成的⾯积区域,对其进⾏依次求解\\ &P_1=2\rho gh\int_1^{h+1}{h+1-y}dy=\rho gh^2\\ &P_2=2\rho gh\int_0^1{(h+1-y)\sqrt{y}dy=4\rho g(\frac{1}{3}h+\frac{2}{15})}\\ &\frac{P_1}{P_2}=\frac{4}{5}\Rightarrow h=2,h=-\frac{1}{3}(舍去) \end{align}。

简述不定积分与定积分的区别与联系

简述不定积分与定积分的区别与联系

简述不定积分与定积分的区别与联系
不定积分和定积分都是数学中重要的概念,它们之间具有密切的联系,又存在着本质的区别。

不定积分是一种有穷数量的数学表达式,它表达的是在几何上分割焦点或曲线之间有关面积、重量等物体的大小,而定积分是一种无穷数量的数学表达式,它表达的是一个函数在一定范围内的积分值。

首先,不定积分和定积分的区别在于,不定积分表达的是在几何上分割焦点或曲线之间有关面积、重量等物体的大小,而定积分则表达的是一个函数在一定范围内的积分值,它可以用来表达特定的函数在一定的区域内的某个特性,例如曲线的长度、图形的面积等。

其次,不定积分和定积分之间还存在本质的联系,即定积分可以用不定积分来计算,因为定积分是无穷数量的积分,可以用特定的函数逐步地分割成若干不定积分项。

因此,在求某函数的定积分值时,首先要先求出该函数的不定积分形式,然后再利用定积分的方法将不定积分求值,得出最后的定积分值。

最后,不定积分和定积分各有其特征,可以为求解函数提供独特的解决方案。

不定积分可以让我们更清晰地看到几何上分割焦点或曲线之间有关面积或重量等物体的大小,而定积分可以让我们更准确地得出一个特定函数在一定范围内的积分值,从而更清晰地表达特定函数在一定的区域内的某个特性,例如曲线的长度、图形的面积等。

综上所述,不定积分和定积分具有明显的区别和联系,不定积分表达的是在几何上分割焦点或曲线之间有关面积、重量等物体的大小,
而定积分则表达的是一个函数在一定范围内的积分值,并且它们之间存在本质的联系,即定积分可以用不定积分来计算。

由于不定积分和定积分的存在,我们可以更加准确地求出一个函数在一定范围内的特性,为日常数学计算提供广泛的解决方案。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

定积分与不定积分定义
定积分和不定积分是高数中的重要概念,它们均有其特定的定义。

定积分是指将复杂函数拆分成一系列简单函数,然后将其求和计算出函数在某一区间上的总和。

它可以用来计算曲线下的面积、曲线的位移以及函数的变化等。

定积分是求取函数积分的一种方法,其定义为:若f(x)是定义在区间[a,b]上的连续
函数,则把[a,b]上f(x)的积分称为定积分,记作:∫abf(x)dx不
定积分是指在求取函数的积分时,没有给定区间,即没有给定函数的定义域,而是由求积分的过程中求出区间。

不定积分是求取函数积分的一种方法,其定义为:若f(x)是定义在实数集
上的连续函数,则把f(x)的不定积分称为不定积分,记作:
∫f(x)dx定积分和不定积分的应用十分广泛,它们在数学、物理、经济学等领域都有着重要的作用。

在求解复杂函数的积分问题时,定积分和不定积分可以通过求取函数的定积分和不定积分等方法来解决。

定积分和不定积分是高数中的重要概念,它们的定义和应用都十分广泛,可以用来解决多种复杂函数的积分问题。

在研究高数中,要深入研究定积分和不定积分的定义和应用,以便更好地理解复杂函数的求积分问题。

相关文档
最新文档