余角与补角--方位角

合集下载

4.3.3 余角和补角

4.3.3 余角和补角

85° 58°
45° 13° 27°37′ (90–x)°
∠α的补角
175° 148° 135° 103° 117°37′ (180–x)°
观察可得结论:锐角的补角比它的余角大_9_0_°__.
探究新知 知识点 2 余角和补角的性质
思考:∠1 与∠2, ∠1 与∠3都互为补角, ∠2 与∠3 的大小有什么关系?
4.3 角
4.3.3 余角和补角
导入新知
如图坝底是由石块堆积而成, 要测出∠1的度数,你有什么简单 的方法吗?
要解决这问题,我们先来学习余角和补角.
素养目标
2. 了解方位角的概念,并能用方位角知识解 决一些简单的实际问题.
1. 了解余角、补角的概念,掌握余角和补角 的性质,并能利用余角、补角的知识解决相 关问题.
AO
B
又因为射线 OD 和射线 OE 分别平分∠AOC 和∠BOC, 所以∠COD+∠COE = 1∠AOC+ 1 ∠BOC = 1(∠AOC+∠BOC ) =290°. 2
2
所以∠COD和∠COE互为余角,
同理∠AOD和∠BOE,∠AOD和∠COE,∠COD和∠BOE也互为余角.
巩固练习
如图,O为直线AB上一点,OD平分∠AOC,∠DOE=90°. (1)∠AOD的余角是_∠__C_O__E_、__∠__B__O_E_,∠COD的余角是 _∠__C__O_E_、__∠__B__O_E___; (2)OE是∠BOC的平分线吗?请说明理由.
1
2
3
= ∠2=180°–∠1
∠3=180°–∠1
结论:同角 (等角) 的补角相等.
类似地,可以得到:同角 (等角) 的余角相等.

七年级数学上册第四章几何图形初步《角:余角和补角(方位角)》

七年级数学上册第四章几何图形初步《角:余角和补角(方位角)》

新2024秋季七年级人教版数学上册第四章几何图形初步《角:余角和补角(方位角)》听课记录一、教学目标(核心素养)核心素养目标:1.空间观念:通过余角和补角的概念学习,增强学生的空间想象能力,理解角之间的互补与互余关系。

2.逻辑推理:掌握余角和补角的性质,学会运用这些性质进行角的计算和推理。

3.数学运算:提高学生的数学运算能力,尤其是在处理角的加减运算时能够准确无误。

4.问题解决:能够应用余角和补角的知识解决实际问题,如计算方位角等。

二、导入教师行为:•教师首先展示一个直角,并提问:“同学们,你们知道这个角是多少度吗?”学生回答后,教师继续引导:“如果我们从这个直角中减去一个角,得到的角与原来的角之间有什么关系呢?”•教师引入余角和补角的概念,简要说明它们各自的定义和性质。

学生活动:•学生积极思考并回答教师的问题,对直角有基本的认识。

•认真倾听教师讲解余角和补角的概念,初步理解它们之间的关系。

过程点评:•导入环节通过学生熟悉的直角入手,自然引出余角和补角的概念,激发了学生的学习兴趣和好奇心。

•教师的提问和引导有助于学生建立新旧知识之间的联系,为后续学习打下基础。

三、教学过程(一)余角和补角的概念讲解教师行为:•详细讲解余角和补角的定义,强调“和为90度”与“和为180度”的关键特征。

•通过图示和实例,帮助学生直观理解余角和补角的概念及其在空间几何中的应用。

学生活动:•认真听讲,记录关键信息,尝试用自己的话复述余角和补角的定义。

•观察图示和实例,加深对余角和补角概念的理解。

过程点评:•教师讲解清晰,图文并茂,有助于学生理解和掌握余角和补角的概念。

•学生积极参与,通过复述和观察,进一步巩固了所学知识。

(二)余角和补角的性质应用教师行为:•设计一系列练习题,包括角的加减运算、判断角的余角和补角等,让学生独立完成。

•巡视课堂,及时发现并解决学生在解题过程中遇到的问题。

•邀请学生分享解题思路和答案,进行集体讨论和纠正。

中小学数学课件:余角和补角

中小学数学课件:余角和补角

课堂检测 3.如图,将一副三角尺按不同的位置摆放,下列方式 中∠α与∠β互余的是 ( A )
A.图①
B.图②
C.图③
D.图④
4.∠α=35°,则∠α的补角为__1_4_5__度.
课堂检测
5. 如图,已知∠ACB=∠CDB=90°.
C
(1) 图中有哪几对互余的角?
21
答案:∠A+∠B=90°,∠1+∠B=90°, A
巩固练习
(2)指出图中所有互余和互补的角. 解:互余的角:∠1与∠2;∠1与∠BOE;∠2与 ∠AOF;∠BOE与∠AOF. 互补的角:∠BOE与∠AOE;∠2与∠AOE; ∠AOF与∠BOF;∠1与∠BOF;∠AOC与∠BOC.
探究新知
想一想
∠α
∠α的余角
5° 32° 45° 77° 62°23′ x°(0<x<90)
解:OE平分∠BOC,理由如下: 因为∠DOE=90°,所以∠AOD+∠BOE=90°,
D
所以∠COD+∠COE=90°,
所以∠AOD+∠BOE=∠COD+∠COE,
因为OD平分∠AOC,所以∠AOD=∠COD, A O
所以∠COE=∠BOE,所以OE平分∠BOC.
C E
B
巩固练习
如图,已知∠AOB=90°, ∠AOC= ∠BOD,则与 ∠AOC互余的角有_∠__B__O_C__和___∠__A__O__D_.
x + ( 3x+30 ) = 90. 解得 x=15. 故 ∠B 的度数为15°.
探究新知
素养考点 2 余角、补角、角平分线相结合的题目
例2 如图,已知O为AD上一点,∠AOC与∠AOB互补,OM,

4.3.3余角和补角与方位角

4.3.3余角和补角与方位角

2
1
4
3
补角性质:
等角的补角相等
补角性质:等角的补角相等
如图∠1 与∠2互补,∠3 与∠4互补 ,如 果∠1=∠3,那么∠2与∠4相等吗?为什么?
2
1
4
3
解: 因为 ∠1 +∠2=180°, ∠3 +∠4=180° 所以∠2=180°-∠1 , ∠4=180°- ∠3 因为∠1 =∠3 所以180°-∠1 = 180°- ∠3 即:∠2 =∠4 (这里用到了: 等量减等量,差相等)
∠α的补角 170° 147°45′ 90° 75° 71°37′ 直角的补角是直角 钝角补角是锐角 锐角的补角是钝角
∠α
180° - ∠α
30° ; ①一个角为60°,则它的余角为_______ (90°-X) ②一个锐角为X,则它的余角为_______; 120° ③一个角为60°,则它的补角为_______; (180°-X) ; ④一个角为X,则它的补角为_______


B

点C在点A的北偏西60°方向 点A在点C的南偏东60°方向
40°40° 南
60°
西
C
A

60°
点D在点A的南偏西25°方向 点A在点D的北偏东25°方向 D
25°
点E在点A的南偏东60°方向 南点A在点E的北偏西60°方向
E
甲地对乙地的方位角
1. 先找出中心点,然 后画出方向指标 2. 把中心点和目的 地用线连接起來 3.度量向南的射线和 蓝色线之间的角度 乙地
比萨斜塔
2
1
互为余角(互余):
两个角 如果两个角的和是 90°(直角),那么这两 个角叫做互为余角,其 互为 中一个角是另一个角的 余角。

202年初中数学七年级上册第四单元几何图形初步认识06 图形的认识(6)余角、补角和方位角

202年初中数学七年级上册第四单元几何图形初步认识06 图形的认识(6)余角、补角和方位角

4.3.3 余角和补角一、余角和补角(1)如果两个角的和等于90°(直角),就说这两个互为余角)即其中每一个角是另一个角的余角。

(2)如果两个角的和等于180°(平角),就说这两个互为补角)即其中每一个角是另一个角的补角。

(3)余角、补角的性质。

同角(等角)的补角相等;同角(等角)的余角相等。

二、方位角;表示方向的角叫方位角。

有时以正北,正南方向为基准,描述物休运动的方向,如“北偏东30°”“南偏东25°”,表示方向的角(方位角)在航行,测绘和工作中经常用到。

概念题二、余角和补角(1)如果两个角的和等于( 角),就说这两个互为角)即其中每一个角是另一个角的角。

(2)如果两个角的和等于( 角),就说这两个互为角)即其中每一个角是另一个角的角。

(3)余角、补角的性质。

同角(等角)的角相等;同角(等角)的角相等。

三、叫方位角。

4.3.3 余角和补角(第一课时)1.探索“互为余角”的概念。

(1)用量角器理出图中的两个角的度数,并求出这两个角的和。

∠1= _ °, ∠2= _°, ∠1+∠2 = °(2)如果两个角的和等于_____度,就说这两个角互为余角。

上题中∠1是∠___的余角,∠2的余角是_____,∠1与∠___互为_____。

(3)说出一副(两块)三角尺中各个角的度数。

一块分别是: °, °, °;另一块分别是: °, °, °.其中:______度的角与______度的角互为余角,______度的角与______度的角互为余角。

(4)一个角是70°39’,那么它的余角的度数是________________。

2.探索“互为补角”的概念。

(1)用量角器理出图中的两个角的度数,并求出这两个角的和。

∠3= °, ∠4= _°, ∠3+∠4 = °(2)如果两个角的和等于_____度,就说这两个角互为补角。

4.3.3余角和补角-方位角(教案)

4.3.3余角和补角-方位角(教案)
在教学过程中,教师应关注以下细节,以确保学生理解透彻:
1.强化概念:通过多种方式(如图片、实物、动画等)展示余角和补角的概念,帮助学生形成直观的认识;
2.熟练运算:通过大量练习,让学生熟练掌握求余角和补角的方法,并能迅速准确地解答相关问题;
3.案例分析:结合实际案例,让学生了解方位角的应用,提高学生的实际操作能力;
3.重点难点解析:在讲授过程中,我会特别强调余角、补角的性质和求法,以及方位角的表示方法。对于难点部分,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与余角、补角和方位角相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如使用量角器测量角度,这个操作将演示余角和补角的基本原理。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解余角、补角和方位角的基本概念。余角是指两个角的和等于90度的两个角,补角是指两个角的和等于180度的两个角。方位角则表示物体相对于某一方向的角度。它们在几何、导航等领域具有重要应用。
2.案例分析:接下来,我们来看一个具体的案例。例如,在地图上确定某一地点相对于北方的方位角,这个案例展示了方位角在实际中的应用,以及它如何帮助我们解决问题。
-余角的定义与性质;
-补角的定义与性质;
-求一个角的余角和补角;
-方位角的定义与表示方法;
-应用:利用余角和补角以及方位角解决实际问题。
二、核心素养目标
本节课的核心素养目标主要包括以下方面:
1.培养学生的几何直观能力,通过观察、思考和操作,使学生能够理解余角、补角和方位角的概念,形成空间观念;
2.提高学生的逻辑思维能力,让学生在求一个角的余角和补角的过程中,掌握推理和论证方法,发展演绎推理能力;

余角补角方位角

余角补角方位角

拓展延伸,布置作业
3.(选做题)一个角的余角比这个角的补
角的1 还小10°,求这个角的余角及这个角 3
的补角的度数.(用两种方法求解)
如果两个角的和等于180º(平角),就 说这两个角互为补角,即其中一个角是另一 个角的补角.
理解定义,巩固运用
1.定义中的“互为”是什么意思?
即每一个角都是另一个角的余角(补角)
2.把下图中∠1与∠ADF分离并多次变换位置,如图, 这两角还是互为补角吗?
D
F
1
A
理解定义,巩固运用
(1)若∠1与∠2互补,则∠1+∠2=__1_8_0_°_. (2) ∠1=90º-∠2,则∠1与∠2的关系
1 2 ∠AOC+
1
ห้องสมุดไป่ตู้
1 ∠BOC 2
= 2(∠AOC+ ∠BOC)
=90°
所以, ∠COD 和∠COE互为余角, 同理, ∠AOD +∠BOE,
∠AOD +∠COE , ∠COD +∠BOE也互为余角.
推导性质,理解运用
有时以正北、正南方向为基准, 描述物体运动的方向.
表示方向的角(方位角)在航行、 测绘等工作中经常用到.
∴射线OA的方向就是南偏东 ● D 60°,即灯塔A所在的方向。
射 线 OB 的 方 向 就 是 北 偏 东 40°,即客轮B所在的方向。 西

●B
45°40°
O


射 线 OC 的 方 向 就 是 南 偏 西 10°,即货轮C所在的方向。
射 线 OD 的 方 向 就 是 南 偏 西 45°,即海岛D所在的方向。
(2)已知∠1与∠2互补,∠3与∠4互补.若 ∠1=∠3,那么∠2和∠4 相等吗?为什么?

七年级数学上册 6.3 余角、补角、对顶角 什么是方向角?素材 苏科版(2021年整理)

七年级数学上册 6.3 余角、补角、对顶角 什么是方向角?素材 苏科版(2021年整理)

七年级数学上册 6.3 余角、补角、对顶角什么是方向角?素材(新版)苏科版
编辑整理:
尊敬的读者朋友们:
这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(七年级数学上册6.3 余角、补角、对顶角什么是方向角?素材(新版)苏科版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为七年级数学上册6.3 余角、补角、对顶角什么是方向角?素材(新版)苏科版的全部内容。

什么是方向角?
难易度:★★★
关键词:角
答案:
(1)方位角是表示方向的角;以正北,正南方向为基准,来描述物体所处的方向。

(2)用方位角描述方向时,通常以正北或正南方向为角的始边,以对象所处的射线为终边,故描述方位角时,一般先叙述北或南,再叙述偏东或偏西。

(注意几个方向的角平分线按日常习惯,即东北,东南,西北,西南.)(3)画方位角:以正南或正北方向作方位角的始边,另一边则表示对象所处的方向的射线。

【举一反三】。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档