复变函数期末试卷A

合集下载

【复变函数期末考卷】复变函数试题

【复变函数期末考卷】复变函数试题
2.设 是单位脉冲函数,则 .
3.复变函数 的周期为.
4.曲线积分 .
5.已知复变函数 ,若 ,则 关于变量 的
表达式为.
6.复变函数 的周期为.
7. 若 可导,则 .
8.计算乘幂 .
9.曲线积分 .
10.已知 ,若 ,则复变函数 关于变
量 的表达式为.
三.计算题
1.若复数 满足 ,试求 的取值范围.
2..对于映射 ,求出圆周 的像
3.设 ,求 .
4.已知 ,试确定解析函数 .
5、计算积分 .
6.利用留数计算积分1.
2. 3.
7.设 ,在复数集 中解方程 。
8.解方程 .
四.解下列方程
1.利用Fourier变换,解积分方程
2.应用拉氏变换解满足初始条件 的微分方程
3.求如下微分方程组 满足初始条件: 的解。
14.设 为负向, 正向,则 ( )
(C) (B) (C) (D)
15.若 ,则双边幂级数 的收敛域为( )
(A) (B)
(C) (D)
16.积分 ( )
(A) (B) (C) (D)
17.积分 ( )
(A) (B) (C) (D)
18.函数 在 内的奇点个数为( )
(A)1 (B)2 (C)3 (D)4
(B)若 是函数 的奇点,则 在点 不可导
(C)若 在区域 内满ຫໍສະໝຸດ 柯西-黎曼方程,则 在 内解析(D)若 在区域 内解析,则 在 内也解析
5.设 为负向, 正向,则 ( )
(A) (B) (C) (D)
6.下列级数中,绝对收敛的级数为( )
(B) (B)
(C) (D)
7.若幂级数 在 处收敛,那么该级数在 处的敛散性为( )

最新复变函数与积分变换期末考试试卷(A卷)

最新复变函数与积分变换期末考试试卷(A卷)

复变函数与积分变换期末考试试卷(A 卷)一、单项选择题(本大题共15小题,每小题2分,共30分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.下列复数中,位于第四象限的复数是( )A. 4+3iB. -3-3iC.-1+3iD.5-3i 2.下列等式中,不成立的等式是( ) A. z·z =Re (z·z ).arg(3)arg()B i i -=- .rg(3)arg(3)C A =2.||D z z z ⋅=3.不等式 ||3z > 所表示的区域为( ) A. 圆的外部B.上半平面C. 角形区域D.圆的内部4.积分||322z dz z =-⎰的值为( )A. 8i πB.2C. 2i πD. 4i π 5.下列函数中,在整个复平面上解析的函数是( ).z A z e +.sin z B z e + .tan z C z e + .R e ()s i n D z z+6.在复平面上,下列命题中,错误..的是( )A. cosz 是周期函数B. ze 是解析函数.cos sin iz C e z i z =+.||D z =7.在下列复数中,使得ze =成立的是( ).ln 224iA z i ππ=++.ln 424iB z i ππ=++.ln 22C z i π=+.l n 42D z iπ=+ 8.设C 为正向圆周1||=z , 则积分 cos z c e dzz⎰等于( )A .2πB .2πiC .0D .-2π 9.设C 为正向圆周||2z =, 则21(1)C dz z i --⎰等于( )A.i21π B. 0 C.i 2πD.2i π-10.以下关于级数的命题不正确的是( )A.级数0327nn i ∞=+⎛⎫⎪⎝⎭∑是绝对收敛的B.级数212(1)n n in n ∞=⎛⎫+ ⎪-⎝⎭∑是收敛的 C.级数01(1)2n n n i n ∞=⎛⎫-+ ⎪⎝⎭∑是收敛的D.级数212n n i n ∞=⎛⎫+ ⎪⎝⎭∑是收敛的11.已知31z i =+,则下列正确的是( )12.iA z π=34.iB z eπ=712.i C z π=3.iD z π=12.下列关于幂级数的叙述,不正确 的是( ) A.在收敛圆内,幂级数绝对收敛 B.在收敛圆外,幂级数发散 C.在收敛圆周上,可能收敛,也可能发散 D.在收敛圆周上,条件收敛13.0=z 是函数sin z e z z的( )A.本性奇点B.一级极点C.二级极点D.可去奇点14.cos z zz π-在点 z π= 处的留数为( ) A. π-.B πC.1D. -115.关于0Im lim z zzω→=下列命题正确的是( )A.0ω=B. ω不存在C.1ω=-D.1ω=二、填空题(本大题共5小题,每小题2分,共10分)16.sincos 33z i ππ=+复数的三角形式为____________. 17. 已知22()()()f z x ay x i bxy y =++++在复平面上可导,则a b +=_________. 18. 设函数)(z f =3zt te dt ⎰,则)(z f 等于____________.19. 幂极数n n2n 1(-1)z n∞=∑的收敛半径为_______.20.设121,1z i z =-+=,求12z z ⎛⎫=⎪⎝⎭____________.三、计算题(本大题共4小题,每题7分,共28分) 21.设C 为从原点到2+3i 的直线段,计算积分[(2)]CI x y ixy dz =-+⎰22. 设2()cos 4ze f z z z=+-. (1)求)(z f 的解析区域,(2)求).(z f '23. 将函数1()(1)(2)f z z z =--在点0=z 处展开为泰勒级数.24. 将函数112()(1)z ef z z -=-在圆环0|1|z <-<∞内展开成洛朗级数.四、综合题(共4小题,每题8分,共32分)25.已知22(,)2u x y x y x =-+,求一解析函数()(,)(,)f z u x y iv x y =+,并使(0)2f i =。

复变期末考试试卷

复变期末考试试卷

复变期末考试试卷复变函数是数学中的一个重要分支,它在工程学、物理学以及许多其他科学领域中有着广泛的应用。

本期末考试试卷旨在测试学生对复变函数理论的理解和应用能力。

以下是复变期末考试的题目:一、选择题(每题2分,共20分)1. 复数 \( z = 3 + 4i \) 的模是:A. 5B. 7C. 8D. 102. 如果 \( f(z) = z^2 + 2z + 1 \),那么 \( f(2 - i) \) 的值是:A. 3B. 4C. 5D. 63. 以下哪个是解析函数的必要条件?A. 可微B. 可积C. 连续D. 有界...二、填空题(每空2分,共20分)1. 如果 \( z = x + yi \),那么 \( \overline{z} \) 是 ______ 。

2. 复数的乘法满足 \( (z_1 z_2) \overline{z_1} = \) ______ 。

3. Cauchy-Riemann 方程是 ______ 的必要条件。

...三、简答题(每题10分,共20分)1. 解释什么是解析函数,并给出一个解析函数的例子。

2. 描述复平面上的共轭曲线,并给出一个具体的例子。

四、计算题(每题15分,共30分)1. 计算下列积分:\[\int_{|z|=2} \frac{1}{z-1} dz\]2. 给定 \( f(z) = \frac{z^2 - 1}{z^2 + 4z + 3} \),求 \( f(z) \) 在 \( z = -1 \) 处的留数。

五、证明题(每题10分,共10分)证明:如果 \( f(z) \) 在 \( z_0 \) 的某个邻域内解析,并且\( |f(z)| \leq M \) 对所有 \( z \) 都成立,那么 \( f(z) \) 在\( z_0 \) 处的留数存在。

六、应用题(每题10分,共10分)考虑一个简单的 RLC 电路,其阻抗 \( Z(z) \) 可以表示为复数函数。

复变函数期末试卷及答案

复变函数期末试卷及答案

20**-20** 1 复变函数与积分变换(A 卷)(答案写在答题纸上,写在试题纸上无效)一、单项选择题(每小题3分,共30分) 1.设 复数1z i =-,则arg z =( )A .4π-B .4πC .34πD .54π 2.设z 为非零复数,,a b 为实数且z a bi z=+,则22a b +( )A .等于0B .等于1C .小于1D .大于1 3.函数()f z z =在0z =处( )A .解析B .可导C .不连续D .连续 4.设z x iy =+,则下列函数为解析的是( )A 22()2f z x y i xy =-+ B ()f z x iy =- C ()2f z x i y =+ D ()2f z x iy =+ 5.设C 为正向圆周||1z =,则积分Czdz =⎰( )A .6i πB .4i πC .2i πD .0 6. 设C 为正向圆周||1z =,则积分(2)Cdzz z =-⎰( ).A .i π-B .i πC .0D .2i π7. 设12,C C 分别是正向圆周||1z =与|2|1z -=,则积分121sin 222z C C e z dz dz i z z π⎛⎫+= ⎪--⎝⎭⎰⎰ A .2i π B .sin 2 C .0 D .cos2 8.幂级数1(1)nnn z i ∞=+∑的收敛半径为 ( ) A.0 B.12C. 2D. 2课程考试试题学期 学年 拟题人:校对人: 拟题学院(系): 适 用 专 业:9. 0z =是函数2(1)sin ()(1)z e zf z z z -=-的( ) A .本性奇点 B .可去奇点 C .一级极点 D .二级极点10.已知210(1)sin (21)!n n n z z n ∞+=-=+∑,则4sin Re [,0]zs z =( )A .1B .13!C .13!-D .1-二、填空题(每空3分,共15分)1 复数1i -+,的指数形式为__________。

复变函数期末考试及答案(珍藏版)

复变函数期末考试及答案(珍藏版)

一、填空题1、设12z =,则||z = 1 ,Argz =2,0,1,3k k ππ-+=± . 2、曲线422=+y x 在映射z1=ω下的象为2214u v +=.(写出象曲线的方程) 3、设(1)(1,2,)4n n ni n n α-+==+ 则lim n n α→∞=i . 4、=Z k k i k ∈+),32sin()32cos(ππ.5、函数()f z 在z 点可导是()f z 在z 点解析的 必要不充分 条件.(填充分必要性)6、若幂级数0n nn c z ∞=∑在12z i =+处收敛,则该级数在2z =处的敛散性为绝对收敛 .7、|2|12zz e dz z -==-⎰22ie π. 8、0=z 是函数5sin )(z z z z f -=的 2 阶极点。

9、若1()sin f z z =,则0Res ()z f z == 1 。

二、计算题1、设C 为连接0到2a π的摆线,(sin ),(1cos )x a y a θθθ=-=-,求积分2(281)C z z dz ++⎰.解:由于函数2281z z ++在整个z 平面上解析,故 2220(281)(281)a C z z dz z z dz π++=++⎰⎰3223320216(4)|16233a a z z z a a a ππππ=++=++2、判别级数∑∞=1n nn i 是否绝对收敛,是否收敛.解:因为:∑∑∞=∞==111||n n n n n i 发散,故级数 ∑∞=1n n n i 不绝对收敛.由于∑∑∑∞=∞=∞=+==11212sin 2cos )(n n n in n n n i n n e n i πππ ∑∑∞=∞=+=112s i n 2c o s n n n n i n n ππ 而∑∞=12cos n n n π,∑∞=12sin n n n π都为收敛级数,所以原级数收敛, 故原级数条件收敛。

【复变函数期末考卷】复变函数考试试题

【复变函数期末考卷】复变函数考试试题

【复变函数期末考卷】复变函数考试试题《复变函数》练习题⼀.单项选择题.1. 函数),(),()(y x iv y x u z f +=在点000iy x z +=处连续的充要条件是()(A )),(y x u 在),(00y x 处连续(B )),(y x v 在),(00y x 处连续(C )),(y x u 和),(y x v 在),(00y x 处连续(D )),(),(y x v y x u +在),(00y x 处连续 2.函数23)(z z f =在点0=z 处是( )(A )解析的(B )可导的(C )不可导的(D )既不解析也不可导 3.函数)(z f 在点z 可导是)(z f 在点z 解析的( )(A )充分不必要条件(B )必要不充分条件(C )充分必要条件(D )既⾮充分条件也⾮必要条件 4.下列命题中,正确的是( )(A )设y x ,为实数,则1)cos(≤+iy x(B )若0z 是函数)(z f 的奇点,则)(z f 在点0z 不可导(C )若v u ,在区域D 内满⾜柯西-黎曼⽅程,则iv u z f +=)(在D 内解析(D )若)(z f 在区域D 内解析,则)(z if 在D 内也解析5. 使得22z z =成⽴的复数z 是()(A )不存在的(B )唯⼀的(C )纯虚数(D )实数 6. z e 在复平⾯上( )(A )⽆可导点(B )有可导点,但不解析(C )有可导点,且在可导点集上解析(D )处处解析 7. 设z z f sin )(=,则下列命题中,不正确的是( )(A ))(z f 在复平⾯上处处解析(B ))(z f 以π2为周期(C )2)(iziz e e z f --= (D ))(z f 是⽆界的8. 设c 为不经过点1与1-的正向简单闭曲线,则dz z z zc+-2)1)(1(为( ) (A )2i π(B )2i π- (C )0 (D )(A)(B)(C)都有可能9. 设1:1=z c 为负向,3:2=z c 正向,则=?+=dz z zc c c 212sin ( ) (A ) i π2- (B )0 (C )i π2 (D )i π410. 10. 复数ii+=1z 位于复平⾯第( ) 象限. A .⼀ B .⼆ C .三 D .四11. 下列等式成⽴的是( ).A .Lnz Lnz 77=; B .)1arg()1(r =g A ;C .112=i; D .)z z Re(z z =。

吉林师范成人教育《复变函数与积分变换试题》期末考试复习题及参考答案

吉林师范成人教育《复变函数与积分变换试题》期末考试复习题及参考答案

吉林师范成人教育期末考试试卷《复变函数与积分变换》A 卷年级 专业 姓名 分数一、填空题(每空2分,共16分)1.复数-2是复数________的一个平方根。

2.设y 是实数,则sin(iy)的模为________。

3.设a>0,则Lna=________。

4.记号Res z=af(z)表示________。

5.设f(z)=u(x,y)+iv(x,y),如果________,则称f(z)满足柯西—黎曼条件。

6.方程z=t+i t(t 是实参数)给出的曲线为________。

7.设幂级数∑c z a n n n ()-=+∞∑0,在圆K:|z-a|<R 上收敛于f(z),则c n =______(n=0,1,…)。

8.cosz 在z=0的幂级数展式为________。

二、判断题(判断下列各题,正确的在题干后面的括号内打“√”,错误的打“×”。

每小题2分,共14分)1.lim z 0→e z =∞.( ) 2.设z 0为围线C 内部的一点,则∫c dz z z -0=2πi.( ) 3.若函数f(z)在围线C 上解析,则∫c f(z)dz=0.( )4.z=0是函数124-e z x的4级极点。

( )5.若z 0是f(z)的本性奇点,则z 0是f(z)的孤立奇点。

( )6.若f(z)在|z|≤1上连续,在|z|<1内解析,而在|z|=1上取值为1,则当|z|≤1时f(z)≡1.( )7.若f(z)与f(z)都在区域D 内解析,则f(z)在D 内必为常数。

( )三、完成下列各题(每小题5分,共30分)1.求复数z=1-i 1+i的实部、虚部、模和辐角。

2.试证:复平面上三点a+bi,0,1-a +bi 共直线。

3.计算积分∫c (x-y+ix 2)dz,积分路径C 是连接由0到1+i 的直线段。

4.说明函数f(z)=|z|在z 平面上任何点都不解析。

5.将函数z +1z (z -1)2在圆环1<|z|<+∞内展为罗朗级数。

复变函数期末考试试卷及答案详解

复变函数期末考试试卷及答案详解

复变函数期末考试试卷及答案详解《复变函数》考试试题(一) 三.计算题(40分):dz1,1、 __________.(为自然数)nn,f(z),|z,z|,10(zz),0D,{z:0,|z|,1}(z,1)(z,2)f(z),求在1. 设22sinz,cosz,2. _________. 内的罗朗展式.1sinz3.函数的周期为___________. dz.,|z|,1cosz2. 12f(z),,,,,3712,f(z)fzd,()z,1C,{z:|z|,3}f'(1,i).,C4.设,则的孤立奇点有__________. ,z,3. 设,其中,试求,z,1nw,nz5.幂级数的收敛半径为__________. ,z,14. 求复数的实部与虚部. n0,6.若函数f(z)在整个平面上处处解析,则称它是__________. 四. 证明题.(20分)zzz,,...,1. 函数在区域D内解析. 证明:如果在D内为常数,f(z)|f(z)|12n,limlimz,,n,,nnn,,7.若,则______________.D那么它在内为常数. zesRe(,0),n0Re1,,z2. 试证: 在割去线段的平面内能分出两zfzzz()(1),,z8.________,其中n为自然数.z,,10Re1,,z个单值解析分支, 并求出支割线上岸取正值的那支在sinz的值.9. 的孤立奇点为________ .《复变函数》考试试题(二) z二. 填空题. (20分)limf(z),___zf(z)z,z0010.若是的极点,则.13sin(2z)1. 设,则 z,,i|z|,__,argz,__,z,__的幂级数展开式. 1. 求函数2222.设,则f(z),(x,2xy),i(1,sin(x,y),,z,x,iy,C2. 在复平面上取上半虚轴作割线. 试在所得的区域内取定函数在正z实轴取正实值的一个解析分支,并求它在上半虚轴左沿的点及右沿的点________. limf(z),z,1,i处的值. z,idz,3. _________.(为自然数) inn,|z,z|,10(zz),0I,|z|dz3. 计算积分:,积分路径为(1)单位圆()|z|,1,,i,nnz4. 幂级数的收敛半径为__________ . 的右半圆. ,n0,sinzdz,z,25. 若z是f(z)的m阶零点且m>0,则z是的_____零点. ,f'(z)002(,)z24. 求 .z6. 函数e的周期为__________.四. 证明题. (20分) 537. 方程在单位圆内的零点个数为________. 2z,z,3z,8,0f(z)1. 设函数f(z)在区域D内解析,试证:f(z)在D内为常数的充要条件是1f(z),8. 设,则的孤立奇点有_________. f(z)2在D内解析. 1,z2. 试用儒歇定理证明代数基本定理. 9. 函数的不解析点之集为________.f(z),|z|《复变函数》考试试题(三)二. 填空题. (20分) z,1110. . Res(,1),____f(z),1. 设,则f(z)的定义域为___________. 42z,1zz三. 计算题. (40分) 2. 函数e的周期为_________.2n,21n,,z,,i(1,)3. 若,则__________. limz,nnn!n,,1,nnn的收敛半径.2. 试求幂级数z,n22n4. ___________. sinz,cosz,n,dzzedz,5. _________.(为自然数) nn,|z,z|,13. 算下列积分:,其中是.C|z|,10(zz),22,0Cz(z,9),nnx6. 幂级数的收敛半径为__________. ,962n,0z,2z,z,8z,2,04. 求在|z|<1内根的个数.四. 证明题. (20分) 1f(z),7. 设,则f(z)的孤立奇点有__________. 21. 函数在区域D内解析. 证明:如果在D内为常f(z)|f(z)|z,1z数,那么它在D内为常数. 8. 设,则. z,___e,,12. 设是一整函数,并且假定存在着一个正整数n,以及两个正数f(z)z9. 若是的极点,则. f(z)limf(z),___0z,z0R及M,使得当时 |z|,Rzen10. Res(,0),____. n|f(z)|,M|z|, z三. 计算题. (40分) 证明是一个至多n次的多项式或一常数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7幂函数 的收敛范围为,和函数为.
※ 以下各题必须在答题纸上解答,并在每张答题纸上标明:班级、姓名、学号.
二、计算、证明题【共6小题,每小题12分,共72分】
1、讨论复变函数 的可导性与解析性.
3、求 的共轭调和函数 且使 .
4、把下列函数展开为级数
(1) 展开为在 的泰勒级数;
(2) 在圆环域 内展开为洛朗级数.
华侨大学本科考试卷
2012—2013学年第一学期(A卷)
学院课程名称复变函数考试日期2013.1.11
姓名专 业学 号
题 号


总分
得 分
一、填空题【共7小题,每题4分,共28分】将答案直接填在题中横线上.
1设 则 .
2计算复数 的值为.
3当 时, 为实数.
4 为半径的圆周,则积分 ( ,且为整数).
5、求 的值.(此题为留数计算)
6、设 在区域 内解析, 为 内的任意一条正向简单闭曲线,证明:对在 内但不在 上的任意一点 ,等式:
成立.
相关文档
最新文档