物理实验--误差
物理实验误差分析

物理实验误差分析物理实验离不开对物理量进行测量。
由于测量仪器、实验条件、测量方法与人为因素的局限,测量是不可能无限精确的。
接下来店铺为你整理了物理实验误差分析,一起来看看吧。
物理实验误差分析一、实验误差的产生误差是客观存在的,但误差有大与小之别,我们只有知道误差的产生、变大或减小的原因,才能在实验中尽可能地减小误差。
从误差产生的来源看,误差可分系统误差和偶然误差。
例1.弹簧测力计测量时的误差分析1.偶然误差弹簧测力计测量读数时,经常出现有时读数偏大,有时读数又可能偏小,每次的读数一般不等,这就是测量中存在的偶然误差。
2.系统误差首先,从测力计的设计上看,在制作刻度时,都是按向上拉设计的,此时弹簧受自重而伸长。
因此向上拉使用时,弹簧的自重对测量没有影响,此时误差最小。
当我们水平使用时,弹簧的自身重力竖直向下,而弹簧水平放置,此时弹簧自重不会使弹簧长度发生变化。
与竖直向上使用对比,弹簧长度略短,指针没有指在零刻度线上。
这时,使用误差增大,测量值略小于真实值(但由于变化不大可以忽略不计)。
当我们竖直向下用力使用时,弹簧由于自身重力影响而变短,与竖直向上使用相比指针偏离零刻度底线较远,这时使用误差较大,测量值比真实值小得多。
我们在使用时必须进行零点矫正。
物理实验误差分析二、实验误差的减小在对误差进行分析研究确定其产生来源和所属类型后,可采用适当的方法对系统误差加以限制或减小,使测得值中的误差得到抵消,从而消弱或减小误差对结果的影响。
1.偶然误差的控制(1)测量中读数误差的控制测量仪器的读数规则是:测量误差出现在哪一位,读数就应读到哪一位,一般可根据测量仪器的最小分度来确定读数误差出现的位置。
(2)数据处理过程中测量误差的控制数据处理问题的各个方面都是与测量误差问题密切相关的,总的原则是:数据处理不能引进“误差”的精确度,但也不能因为处理不当而引进“误差”来,要充分利用和合理取舍所得数据,得出最好的结果来,数据处理过程中应注意以下几点。
物理实验中常见的误差来源及其处理方法

物理实验中常见的误差来源及其处理方法物理实验是科学研究的重要环节之一,通过实验可以验证理论模型和推断,为学科的进一步发展提供基础数据。
然而,在物理实验中,由于复杂的实验环境和外界干扰因素的存在,误差是不可避免的。
本文将探讨物理实验中常见的误差来源及其处理方法。
一、仪器误差仪器误差是由于仪器精度引起的误差。
每个仪器都有其测量限度和不确定度,而这些误差会在实验中累积。
为了减小仪器误差,可以采取以下几种处理方法:1. 校正仪器:使用可靠的校准仪器对实验仪器进行定期校正,以确保其精度符合要求。
2. 多次测量:重复进行多次测量,取平均值来减小仪器误差。
3. 使用精密仪器:使用更加精密的仪器来替代低精度的仪器,以减小误差。
二、环境误差环境误差是由于实验环境的影响引起的误差。
常见的环境误差包括温度变化、湿度变化、气压变化等。
为了处理环境误差,可以采取以下几种方法:1. 控制环境条件:在实验进行前,对实验环境进行调整,保持稳定的温度和湿度,以减小环境误差。
2. 适应环境:如果环境条件无法进行控制,可以通过预先了解环境特点,对结果进行修正。
3. 误差分析:对不同环境条件下的实验数据进行分析,找出环境误差对结果的影响程度,并进行相关修正。
三、人为误差人为误差是由实验人员的操作不准确引起的误差。
这类误差通常与实验人员的技术水平、经验和观察力等因素有关。
为了减小人为误差,可以采取以下方法:1. 培训实验人员:提供必要的培训和指导,提高实验人员的技术水平和操作规范性。
2. 多人协作实验:多人协作进行实验,相互之间监督和交流,减小个体误差的影响。
3. 严谨记录数据:实验过程中要严格按照规定程序和准确精确地记录数据,避免因为观测失误而引起的误差。
四、随机误差随机误差是由于实验中的随机因素引起的误差,例如抛掷硬币、抛掷骰子等。
为了处理随机误差,可以采取以下方法:1. 多次实验:重复进行多次实验,取平均值来减小随机误差。
2. 统计分析:对实验结果进行统计分析,计算均值、标准差等参数,以评估结果的可靠性。
物理实验中的误差分析方法

物理实验中的误差分析方法导语:在物理实验中,误差是无法避免的。
无论是仪器测量的误差、操作人员的误差,还是环境因素带来的误差,都会对实验结果产生一定的影响。
因此,在进行物理实验时,我们需要使用适当的误差分析方法,来准确评估测量结果的可靠性和稳定性。
一. 误差类型在物理实验中,误差主要分为系统误差和随机误差两种类型。
系统误差是一种固定的误差,可以重复得到相似的结果。
例如,仪器精度或标定不准确所引起的误差就属于系统误差。
而随机误差则是由于环境、测量方法以及个体差异等因素导致的,无法被完全排除的误差。
在进行误差分析时,需要针对不同类型的误差采用不同的方法。
二. 误差处理方法1. 精度评定在进行物理实验时,我们需要评定仪器的精度,即能够确定测量结果的可靠性。
这可以通过进行多次重复测量来实现。
重复测量的结果应该非常接近,否则说明仪器存在较大的不准确性。
用于评定仪器精度的主要指标有精密度、准确度和灵敏度。
2. 误差传递在物理实验中,误差会随着计算、测量的进行而逐渐传递和累积。
因此,我们需要了解误差是如何传递的,以便能够对测量结果进行准确的分析和处理。
误差传递的常见方式有加法和乘法规则。
加法规则适用于对多个测量结果进行求和或相减的情况,乘法规则适用于对多个测量结果进行乘积或除法的情况。
3. 误差分析误差分析是对测量过程中产生的误差进行定量分析的方法。
通过误差分析,我们可以确定测量结果的可靠程度,并对测量结果进行修正和调整。
常用的误差分析方法包括标准偏差、均方根误差和置信区间等。
4. 不确定度评估不确定度是对测量结果的不确定性程度的评价。
在物理实验中,由于种种原因,无法获得完全准确的测量结果。
因此,我们需要对测量结果进行不确定度评估,以便能够更准确地描述测量结果的范围。
不确定度的评估可以通过计算总不确定度和相对不确定度来实现。
5. 数据处理在物理实验中,我们通常需要对实验数据进行处理和分析。
这些处理方法可以帮助我们从复杂的数据中提取有用的信息,并确定物理量之间的关系。
物理学实验中的常见误差及其分析方法

物理学实验中的常见误差及其分析方法在物理学实验中,常常会遇到各种误差,这些误差会对实验结果产生一定的影响。
因此,了解常见误差及其分析方法对于正确评估实验结果的准确性和可靠性至关重要。
本文将介绍物理学实验中常见的误差类型,并探讨相应的分析方法。
I. 实验中的系统误差系统误差是由于实验设计、仪器设备或试验对象本身的固有特性引起的误差。
以下是几种常见的系统误差及其分析方法:1. 仪器误差:仪器的不确定度和误差是物理实验中不可避免的因素。
为了准确评估实验结果,首先需要了解仪器的精度和分辨率。
此外,校准仪器以确保其准确性也是一种有效的方法。
2. 环境误差:实验环境中的温度、湿度和气压等因素可能会对实验结果产生影响。
因此,在进行物理实验之前,必须对环境条件进行记录和控制,以降低环境误差的影响。
3. 人为误差:人为因素也是实验误差的常见来源。
例如,实验操作的不一致性、读取测量结果时的偏差以及随机误差等。
为了减少人为误差的影响,进行多次实验并取平均值是一个有效的方法。
II. 实验中的随机误差随机误差是由于实验测量的随机变化和不可预测因素引起的误差。
以下是几种常见的随机误差及其分析方法:1. 重复性误差:由于实验操作的随机性,进行多次测量可能会得到略有不同的结果。
通过计算平均值并计算测量值的标准偏差,可以评估测量结果的重复性。
2. 分辨率误差:实验仪器的分辨率限制了我们对于小差异的观测能力。
因此,在使用仪器进行测量时,需要考虑到其分辨率范围,并将其作为误差的一部分。
3. 统计误差:由于测量是基于概率分布的,因此存在统计误差。
使用概率统计工具(例如正态分布)来分析实验结果,可以更好地理解统计误差的特征。
III. 误差分析方法1. 误差传递:当多个测量结果互相影响时,误差传递方法可以用于评估最终结果的误差。
通过计算不确定度的传递过程,可以更准确地反映实验结果的误差范围。
2. 极限误差分析:在实验中,确定测量结果的极限误差是非常重要的。
物理实验中的误差分析

物理实验中的误差分析作为科学的基础学科,物理的实验研究和数据处理是必不可少的环节。
在实验中,我们总是会面临各种误差和不确定度的困扰,因此,正确的误差分析对于实验结果的准确性和可靠性具有至关重要的作用。
误差来源和分类误差是指实验数据与真实值之间的偏移。
在物理实验中,误差主要来源于仪器的精确度、环境的影响以及操作者本身的技能水平等。
根据误差的性质和来源,误差可以分为系统误差和随机误差两种。
系统误差是由于实验中存在的不确定的偏离真实值的因素所引起的误差。
系统误差会导致测量结果的整体偏差或者变化趋势,因此对结果的影响比较大。
例如,在天平的秤盘上放置物体时,秤盘的不平整可能会导致测量结果的系统误差。
随机误差则是由于实验条件的变化或操作者的误差所引起的误差。
随机误差没有明确的方向和大小,因此会导致测量结果的分散和波动。
例如,在实验中,如果连续进行多次测量,由于环境的变化、仪器的漂移或者操作者的不同,导致每次测量结果略有不同,这就是随机误差。
误差分析的方法和步骤正确的误差分析包括三个主要的步骤:测量结果的处理、误差的分类和求解、结果的评估和推导。
首先,对于实验测量的结果进行处理是非常重要的。
由于每次测量都可能存在一定的误差,因此需要进行多组测量结果的平均值或者统计分析,以减少随机误差的影响。
同时,还需要进行数据的修约和舍入,保留一定的有效数字,以保证结果的精确性和可靠性。
其次,对误差进行分类和求解也是非常关键的步骤。
对于系统误差,需要对整个实验系统进行分析,找出误差的来源和特征,并进行数据修正,以减少系统误差的影响。
对于随机误差,则需要进行统计分析和概率分布计算,从而确定误差的标准差和置信度等数据指标。
最后,对于结果的评估和推导也是非常重要的步骤。
通过对测量结果的误差分析和求解,可以得出结果的误差范围和置信度等关键指标。
这些指标可以用于评估实验结果的可靠性和精度,并为后续的理论分析和推导提供重要的数据基础。
误差分析的应用正确的误差分析对于实验结果的可靠性和精度具有至关重要的影响。
物理实验误差分析

物理实验误差分析一、引言实验是物理学的重要组成部分,通过实验可以验证理论,揭示自然界的规律,并为进一步理论研究和应用提供数据支持。
然而,由于各种原因,实验结果往往与理论值有所偏差,这种偏差被称为实验误差。
正确地分析和评价实验误差对于得出准确的实验结论和优化实验设计至关重要。
二、实验误差的分类实验误差可以分为系统误差和随机误差。
1. 系统误差系统误差是由于实验设计或仪器仪表的固有缺陷导致的。
例如,仪器的故障、使用不当、粗糙度等都可能引入系统误差。
系统误差具有一定的可重现性,即每次实验都会产生相同的偏差值。
系统误差对实验结果的影响是有方向性的,即始终偏向或偏离真实值。
为了减小系统误差,可以采取校正措施,如使用校准仪器、提高实验技术水平等。
2. 随机误差随机误差是由于各种随机因素导致的,如仪器读数的不稳定性、环境的变化等。
与系统误差不同,随机误差是无法预测和消除的,但它们具有平均值为零的特点。
随机误差对实验结果的影响是无方向性的,通常呈现正态分布。
通过多次实验并取平均值来减小随机误差是一个常见的方法。
三、误差的来源和估计实验误差存在于整个实验过程中,可能来自测量、操作、环境等多个方面。
在进行误差分析时,必须分别估计各个误差来源并计算其对实验结果的贡献。
1. 测量误差测量误差是由仪器仪表的精确度和操作技术的限制导致的。
例如,仪器的分辨率、仪表的读数不确定性等。
为了估计测量误差,可以参考仪器的规格说明,并考虑读数的最小刻度和仪表的精度。
2. 操作误差操作误差是由实验者的个体差异或实验技术的限制导致的。
例如,实验者对仪器的操作熟练程度、读数的准确性等。
为了估计操作误差,可以进行多次实验并计算实验数据的离散程度。
3. 环境误差环境误差是由于实验环境的变化导致的。
例如,温度、湿度、气压等因素都可能影响实验结果。
为了估计环境误差,可以在实验中记录环境参数,并分析其与实验结果的关系。
四、误差的处理和分析方法对实验结果进行误差处理和分析是为了评价实验结果的可靠性和准确性。
物理实验中常见的误差来源及处理措施

物理实验中常见的误差来源及处理措施物理实验是科学研究和理论验证的基础,但其中常常存在着各种误差。
这些误差可能来自于多个方面,如仪器的精度、实验人员的技术水平、环境条件等等。
在进行实验时,我们需要了解这些误差的来源以及相应的处理措施,以确保实验结果的准确性和可靠性。
一、仪器误差仪器的精度是物理实验中的重要误差来源。
在实验中,我们常常会使用各种测量仪器来获得实验数据,如卡尺、天平、光谱仪等等。
然而,这些仪器本身就存在测量误差。
处理措施:1.选择合适的仪器:在实验中,我们应尽量选择精度高、误差小的仪器。
2.仪器校准:在使用仪器之前,应对其进行校准,以确保测量结果的准确性。
3.建立合适的测量方法:在进行测量时,应遵循合理的测量方法,避免人为误差。
二、人为误差实验人员的技术水平和经验也会对实验结果产生影响。
人为误差的来源包括观察误差、读数误差、操作误差等。
处理措施:1.提高实验人员的技术水平:实验人员需要具备扎实的物理知识和实验技术,并通过不断的实践和培训来提高自己的技能。
2.多次重复实验:通过多次重复实验,可以减小人为误差的影响,获得更加可靠的实验结果。
3.注意实验操作:实验人员在进行实验时,应仔细操作,减小误差的可能性,并注意记录实验过程中的重要参数。
三、环境条件误差环境条件对物理实验结果也有一定的影响,如温度、湿度、大气压力等。
处理措施:1.控制环境条件:在进行实验时,应尽量控制环境条件,如保持温度稳定、避免有风的地方进行实验等,以减小环境误差的影响。
2.记录环境参数:实验过程中应记录环境参数的变化,以便后续数据处理时进行相应的修正。
物理实验中的误差是不可避免的,但我们可以采取一系列的措施来减小误差的影响,以获得更加准确和可靠的实验结果。
通过仪器的选择和校准、提高实验人员的技术水平、注意操作规范和环境控制等手段,可以有效减小误差的来源,并提高实验结果的可信度。
因此,在进行物理实验时,我们应重视误差的来源,并采取相应的处理措施,确保实验结果的准确性和可靠性。
物理实验技术的常见误差及解决方法

物理实验技术的常见误差及解决方法作为一门实验科学,物理实验技术在研究和实践中发挥着重要作用。
然而,由于各种因素的干扰,物理实验中常常会出现误差,影响实验结果的准确性和可靠性。
本文将讨论物理实验技术中的常见误差及解决方法。
一、测量误差测量误差是物理实验中最常见的误差之一。
它可以分为系统误差和随机误差两种。
系统误差通常由于仪器或实验装置的固有缺陷引起。
例如,仪器的刻度不准确、装置的摩擦等都会导致系统误差。
解决系统误差的方法主要有:校准仪器、增加重复测量次数、使用更精确的仪器等。
随机误差是由于环境和操作因素引起的。
例如,温度的微小变化、仪器使用者的不稳定手部动作等都会导致随机误差。
解决随机误差的方法主要有:增加样本数、重复测量、取平均值等。
二、观察误差观察误差是由于人的主观认知和判断造成的误差。
比如,角度的估计、长度的测量等都存在观察误差。
要减少观察误差,我们可以采取以下方法。
首先是提高观察者的技能和经验。
只有经过长时间的实践和培养,观察者才能在实验中进行准确的观察和判断。
其次是使用辅助工具和技术。
例如,使用显微镜观察微小结构、采用图像处理技术进行图像分析等,都可以减少观察误差。
三、环境误差环境误差是由于实验环境中的各种干扰引起的误差。
比如,温度、湿度、气压等因素的变化都会对实验结果产生影响。
要消除环境误差,我们可以采取一些技术手段。
首先是控制实验室环境。
保持恒定的温度和湿度,使用空气净化设备等,都可以减少环境误差。
其次是在实验设计中考虑环境因素的影响。
比如,如果温度变化对实验结果有较大影响,可以在实验中设置温度调节装置,以保持温度的恒定。
四、数据处理误差数据处理误差是由于数据记录和处理过程中的错误引起的。
比如,数据记录不准确、数据处理公式选择错误等都会导致数据处理误差。
为了减少数据处理误差,我们可以采取以下措施。
首先,使用准确可靠的数据记录设备,如自动记录仪、电脑等。
其次,对数据进行多次检查,确保数据的准确性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
62.5 )1.234 63.734
尾数对齐:结果应保留的小数位数与诸量中小数 位数最少的一个相同。
2.乘除法
3.21 6.5 21
有效数字的运算法则: 运算后的有效数字,取 到最靠前出现可疑数的 那一位。
3.21 )6.5 1605 1926 20.856
3.乘方与开方
100 100 10
2 2
位数取齐:诸量相乘除, 结果的有效数字位数,一 般与各个量中有效数字位 数最少的一个相同。
100 10.0
4、某些常见函数运算的有效位数 (1)对数函数 y=lnx, y=logx 计算结果尾数的位数取得与真数的位 数相同; (2)指数函数 y=ax 结果的有效数字,可与指数的小数点 后的位数相同; (3)三角函数按角度的有效位数来定; (4)常数的有效位数可以认为是无限的, 运算中应多取1位;
0.00292 0.00122 0.00314(cm) 0.003(cm)
四、不确定度的传递公式
设N为待测物理量,X、Y、Z为直接测量量
N f ( x, y, z...)
f 2 f f 2 2 S N S x S y S z ...... x z y
A类不确定度的计算:
S A ( x) x
测量结果写成:
(x
i
x)
2
n(n 1)
=68.3%)
x x S A (x) (P
当测量次数很少时,将乘以一个t因子作为 修正后的不确定度。
t 因子表(表中n表示测量次数)
n t0.683 n t0.683 2 l.84 8 1.08 3 1.32 9 1.07 4 1.20 10 1.06 5 1.14 15 1.04 6 1.11 20 1.03 7 1.09 ∞ l
对于 S B1可以取为最小分度 的1/10、 1/5、1/2或更大,这需要视具体情况而定。 例如:在透镜成像实验中,由于视觉的分 辨率较差,因此B类不确定度可取为最小 分度值 。 在本课程中,无特别说明时均 e / 5 。
e
e
合成不确定度S
A类不确定度分量 S A B类不确定度分量 S B 2
S S S
2 A
2 B2
当为单次测量时,上式中 S A 应换为 S B1
例: 用50分度游标卡尺测一圆环的宽度,其数据如下:
m=15.272; 15.276; 15.268; 15.274; 15.270; 15.274; 15.268; 15.274; 15.272cm . 求合成不确定度。
作图法步骤:
20.00
I (mA)
1.选择合适的坐 标纸 2.确定坐标轴, 选择合适的坐标 分度值
18.00 16.00 14.00 12.00 10.00 8.00
解: 由于是多次测量,存在A类不确定度:
S A ( m) ( mi m) 2
i 1 9
n( n 1)
0.00283 0.0029(cm)
任何直接测量都存在B类不确定度:
SB2(m)
S
仪 3
0.002 0.00116≈0.0012( cm ) 3
合成不确定度:
2 2 S A ( m) S B 2 ( m)
(3)数据处理过程中,如果没要求不确定度,
按运算规则处理,即中间数据要保留2位存
疑数字,即比运算规则多取1位,最终结果保
留1位存疑数字;
(4)常数π、e等的位数可与参加运算的量中
有效数字位数最多的位数相同或多取几位。
常用数据处理方法
数据处理是一个对数据进行加工的过 程。常用的数据处理方法有以下三类: 1.列表法 2.作图法
2 2 2
SN ln f N x
2 ln f 2 ln f 2 Sy Sx S z ...... z y
2
2
(间接测量的不确定度由传递公式计算)
五、测量结果表达式:
N N (单位)
3. 误差的分类
①.系统误差
特点:确定性 可用特定方法来消除 ②.随机误差 特点: 随机性 替代法 抵消法 交换法 半周期偶数观测法 对称观测法
可通过多次测量来减小
一、不确定度的概念
二、不确定度的分类
三、直接测量不确定度的计算
四、不确定度的传递公式
一、不确定度的概念
由于误差的存在而被测量值不能确 定的程度,是被测量真值在某个量值范 围内的评定。 不确定度用S表示。 误差以一定的概率被包含在量值范 围( ~ ) 中。 真值以一定的概率被包含在量值范 围 ( N ) ( N ) 中。
一.测量
1.测量的含义 2.测量的分类
二.误差
1. 绝对误差与相对误差 2.误差来源 3.误差的分类
一.测量
1.测量的含义
测量就是把待测物理量 与作为计量单位的同类已知 量相比较,找出被测量是单 位的多少倍的过程。
2.测量的分类
按方法分类: 1.直接测量 2.间接测量
用量具或仪表直接读出测量值的, 称为直接测量。
例如:用刻度尺测长度、用电流表测电流等。
先直接测量一些其他相关量,再用物 理公式计算出结果,这称为间接测量。
例如:在测电阻R时,可用电压表直接测电 阻两端电压U值、用电流表直接测电阻上通 过的电流I值,再用公式R=U/I计算出电阻R 值,对电阻的测量就属于间接测量。
2.测量的分类
按条件分类: 1.等精度测量 2.非等精度测量
大学物理实验中的重复测量都认 为是在相同条件下的等精度测量。
二. 误差
1. 绝对误差与相对误差 2.误差来源 3.误差的分类
1. 绝对误差与相对误差
①.绝对误差
N (误差) Ni (测量值) N (真值)
②.相对误差
N E 100% N
2. 误差来源
①.仪器 ②.方法 ③.环境 ④.人员
读数的一般规则: 读至仪器误差所在的位臵
例: (1)用米尺测长度: 0.1mm
(2)用0.1级量程为100mA电流表测电流: 100×0.1%=0.1mA,读至0.01mA
四、间接测量量有效数字的确定 ——有效数字的运算法则
1.加减法
62.5 1.234 63.7
有效数字的运算法则: 运算后的有效数字,取 到最靠前出现可疑数的 那一位。
直径Di/mm 5.998 5.995 5.996 5.996 5.992 5.994 5.994 5.995
▲作图法
优点:能形象直观地显示物理量之间 的函数关系
例题:伏安法测电阻实验数据表
U (V ) 0.74 1.52 2.33 3.08 3.66 4.49 5.24 5.98 6.76 7.50 I (mA) 2.00 4.01 6.22 8.20 9.75 12.00 13.99 15.92 18.00 20.01
二、不确定度的分类
A类不确定度:
由观测数列用统计分析方法评定 的不确定度称A类不确定度。
可以通过统计方法来计算(如随机 误差)。
B类不确定度:
由观测数列以外的其他信息用非 统计分析方法评定的不确定度称B类 不确定度。 不能用统计方法只能用其他方法 估算(如仪器误差)。
三、直接测量不确定度的计算
3.数学方法(逐差法、最小二乘法等)
▲列表法
各个栏目标明 名称和单位 标题:说明表 例:用读书显微镜测量圆环直径 附加说明:实 格内容 验仪器、条件 测量圆环直径D 等 原始数据
仪器:读数显微镜 Δins=0.004mm 注意数据纪录左读数/mm 测量次序i 右读数/mm 的顺序 1 12.764 18.762 计算的中间结 2 10.843 16.838 果数据 3 11.987 17.978 4 11.588 17.584 5 12.346 18.338 6 11.015 17.010 7 12.341 18.335 直径平均值D/mm
如果对某一物理量重复地测量了多次, 而且每次测量都是在相同条件下(同一仪器、 同一方法、同一环境、同一观察者)进行的, 这时我们没有根据指出某一次测量比另一 次更准确些,认为每次测量都是在相同精 度下测得的,这称为等精度测量。 如果在多次测量中,其中每次条件有 了变化,那么在条件改变下的测量就是非 等精度测量。
d:电表的示值误差, m 级%。
量程 准确度等
e:数字式仪表,误差示值取其末位数最小分 度的一个单位。
f:仪器示值误差或准确度等级未知,可取其 最小分度值的一半为示值误差(限)。
g:电阻箱、电桥等,示值误差用专用公式计 算。
单次测量不确定度 S B1
对于单次测量得到的数据,无统计可 言,这种测量造成的不确定度也是一种B 类不确定度,称为B类测量不确定度,记 作 S B1
大学物理实验
内蒙古大学理工学院大学物理实验中心
2008-3-3
实验选课
该实验课实行网上选课 :
网址:202.207.14.87或从理工学院“实验 选课系统”进入 首先认真阅读《选课必读》,然后把最近 的预备实验选完;以后再选其它实验。
实验纪律
1、实验前必须认真预习,阅读仪器使用说明,网上查看 课件,写出预习报告,经教师检查同意后方可进行实验, 无预习报告者取消实验资格。 2、迟到超过15分钟者教师有权取消其本次实验资格; 3、严禁伪造和抄袭数据,一经发现,取消实验资格。 4、爱护仪器设备,严禁偷窃实验仪器,一经发现,并上 报学校给予相应的处分。 5、做完实验,学生应将仪器整理还原,将桌面和凳子收拾 整齐,经教师审查测量数据并签字后,方可离开实验室。 6、实验报告应在实验后一周内交实验室信箱。 7、请假必须有院办的假条,无故旷课在最后平均成绩里 扣1.5分。