酶活测定方法
酶活测定方法

酶活测定方法
测酶活?这事儿超简单!先准备好各种试剂,就像准备一场美食盛宴的食材。
然后按照步骤来,哇,那感觉就像在玩一场神秘的实验游戏。
步骤嘛,把样品加进去,看着反应发生,就像看着一场魔法秀。
注意别加错东西呀,不然就全乱套啦!那可太悲催啦。
安全性咋样?只要你小心操作,就没啥问题。
就像走在平坦的大路上,稳稳当当。
稳定性也不错,只要你严格按照要求来,结果就很靠谱。
就像盖房子,基础打好了就不会倒。
应用场景可多啦!比如研究生物过程,那可少不了酶活测定。
优势也很明显呀,能让你了解生物反应的奥秘。
就像有一把神奇的钥匙,能打开知识的大门。
我见过有人用酶活测定研究新药物,哇,那效果杠杠的。
就像找到了宝藏一样惊喜。
酶活测定,绝对是个超棒的方法。
你还等啥呢?赶紧试试吧!。
土壤酶活性的测定方法

土壤酶活性的测定方法土壤酶活性的测定方法主要包括测定土壤中的蔗糖酶、脲酶、过氧化氢酶和过氧化物酶等多种酶活性,这些酶活性的测定可以反映土壤的微生物代谢能力和土壤质量。
本文将详细介绍几种常用的土壤酶活性测定方法。
一、酶活性测定方法的准备工作1. 样品处理:收集土壤样本后,将其放在4C冷藏保存,保持样品活性,避免酶的降解。
2. 取样:根据需要,从土壤样品中取出一定量的湿重或干重样品。
3. 土壤处理:依据实验要求,对土壤样品进行处理,如水分调整、添加营养物质等。
二、蔗糖酶活性测定方法蔗糖酶是一种常见的土壤酶,可反映土壤中的碳循环能力。
蔗糖酶活性的测定方法如下:1. 取一定量的土壤样品,并通过筛网过滤,去除杂质。
2. 准备培养基:其中包括蔗糖作为底物、缓冲液、指示剂等。
3. 加入适量的土壤样品和培养基到离心管中,混匀后,放置在恒温摇床上培养一定时间。
4. 培养结束后,通过离心将土壤颗粒沉淀到底部。
5. 取沉淀后的上清液,用酚酞指示剂进行比色检测,根据比色结果计算蔗糖酶活性。
三、脲酶活性测定方法脲酶是一种重要的土壤酶,参与土壤中尿素的分解过程。
脲酶活性的测定方法如下:1. 取一定量的土壤样品,在10C恒温条件下接种脲酶底物,使底物完全被土壤降解。
2. 在一定时间后,通过添加草酸溶液阻止进一步反应,停止脲酶的活性。
3. 取样品,加入酚硫酸溶液,进行比色测定。
4. 根据比色结果计算脲酶活性。
四、过氧化氢酶活性测定方法过氧化氢酶是一种催化过氧化氢分解的酶,可反映土壤的抗氧化能力。
过氧化氢酶活性的测定方法如下:1. 取一定量的土壤样品,并通过筛网过滤去除杂质。
2. 准备含过氧化氢底物和其他试剂的反应体系。
3. 将土壤样品加入反应体系中,充分混匀后,在一定时间内反应。
4. 在反应结束后,通过添加硫酸钠溶液停止反应,阻止进一步的化学反应。
5. 使用紫外分光光度计测定样品的吸光度,根据结果计算过氧化氢酶活性。
五、过氧化物酶活性测定方法过氧化物酶是一类重要的土壤酶,在土壤中参与有机物降解和氧化还原反应。
酶活性和质量测定方法及其评价

1.酶活性测定方法(1)按反应时间分类法:20世纪50年代以前大都使用固定时间法。
这种方法是以酶催化反应的平均速度来计算酶的活性,现多已不用。
50年代中期开始采用连续监测法。
这种方法用自动生化分析仪上完成,可以测酶反应的初速度,其结果远比固定时间法准确,在高浓度标本尤为明显,但本法也受到反应时间,反应温度,试剂等的影响,应加以注意。
1)定时法:通过测定酶反应开始后某一时间段内(t1到t2)产物或底物浓度的总变化量来求取酶反应初速度的方法,称为两点法,其中t1往往取反应开始的时间。
在酶反应一定时间后,往往通过加入强酸、强碱、蛋白沉淀剂等,使反应完全停止,所以也叫中止反应法。
2)连续监测法:又称为动力学法或速率法、连续反应法。
在酶反应过程中,用仪器监测某一反应产物或底物浓度随时间的变化所发生的改变,通过计算求出酶反应初速度。
3)平衡法:通过测定酶反应开始至反应达到平衡时产物或底物浓度总变化量来求出酶活力的方法,又叫终点法。
(2)按监测方法分类法:可分为①分光光度法;②旋光法;
③荧光法;④电化学方法;⑤化学反应法;⑥核素测定法;⑦量热法。
2.酶质量测定法随着免疫技术的发展,出现了利用酶的抗原性,通过抗原、抗体反应来直接测定酶的质量,直接用质量单位ng/ml、μg/L来表示酶含量的高低。
免疫学方法与测定活性方法相比,其优点是灵敏度和特异性高,不受体液中其他物质的影响,特别是抑制剂和激活剂的影响,当血液中有酶抑制剂存在,或因基因缺陷,合成了无活性的酶蛋白时,可以测出灭活的酶蛋白量,有利于疾病诊断和科学研究。
如肌酸激酶同酶MB(CKMB)质量测定较活性测定对疾病的诊断价值高。
酶活力测定方法

蛋白酶活力测定: 参照中华人民共和国专业标准SB/ T10317-1999蛋白酶活力测定方法( Asha 等, 2007)。
纤维素酶DNS酶活力测定方法DNS, 活力, 纤维素酶, 测定1 定义1g固体酶粉在40℃和pH值4.2条件下,每分钟水解纤维素生成1微克葡萄糖的量为1个酶活力单位,以u/g表示。
2 原理纤维素酶分解纤维素,产生纤维二糖、葡萄糖等还原糖,纤维二糖、葡萄糖等还原糖能将3,5二硝基水杨酸中的硝基还原成橙黄色的氨基化合物,利用比色法测定其还原物生成量,表示酶的活力。
3.试剂和溶液3.1 1%葡萄糖标准溶液(同β-葡聚糖酶酶活测定)3.2 羧甲基纤维素钠(CMC)溶液取1g羧甲基纤维素钠(粘度300~600厘泊),加入pH4.2的磷酸氢二钠-柠檬酸缓冲液(甲液414ml和乙液586ml并用pH计校正至pH为4.2)混合均匀,水浴加热至溶,冷却后用2M 盐酸或氢氧化钠调节pH到4.2,定溶至100ml,再用二层纱布过滤,此溶液在4℃冰箱贮存,有效期3天。
取滤液100ml,20ml,蒸馏水40ml,混匀,贮冰箱备用。
3.3 DNS 试剂(同β-葡聚糖酶酶活测定)4仪器和设备4.1恒温水浴锅(40℃±0.2℃)4.2分光光度计含10mm比色皿,可在550nm处测量吸光度。
5测定步骤5.1 标准曲线绘制分别吸取1%葡萄糖标准溶液0、1.0、2.0、3.0、4.0、5.0、6.0ml于50ml容量瓶中,用蒸馏水制成每ml分别含有葡萄糖0、200、400、600、800、1000、1200mg的稀标准液。
各取不同浓度的稀标准液0.5ml于试管中,加入CMC溶液1.5ml、DNS试剂3.0ml,于沸水浴中沸腾7min,取出后立即加入蒸馏水10ml混匀。
冷却后,用10mm比色皿,在波长550nm处用分光光度计分别测定其吸光度。
以吸光度为纵坐标,相对应的葡萄糖浓度为横坐标,绘制标准曲线或计算回归方程。
酶活性测定方法

体系一酶和蛋白质提取消过毒的打孔器进行伤口处理后,在每个伤口处添加50μL以下处理:(1)无菌水,对照;(2)浓度为1000μg/mlGA3;(3)浓度为1 ×104 spores/ml P. expans um孢子悬浮液;(4)浓度为1000μg/mlGA3+浓度为1 ×104 spores/ml P. expans um孢子悬浮液。
处理后湿纱布覆盖并用P E塑料膜密封作保湿处理。
贮藏于常温(20-25℃)下。
分别在0、12、24、36和48小时取样进行测定酶活性。
取样时沿伤口用刀小心切下1g果实组织,加入10 mL冷(4℃)的50 mmol/L磷酸缓冲液(PBS)内含1.33 mmol/L EDTA和1% PVPP缓冲液(pH 7.8)。
研钵加入少量液氮预冷后,在冰浴中碾磨,破碎组织,然后在冷冻离心机12000rpm离心15分钟。
取上清液供酶活性和蛋白质含量用。
蛋白质含量测定试验材料和试剂:牛血清白蛋白标准溶液:准确称取100mg 牛血清白蛋白,溶于100m L 蒸馏水中,即为1 000μg/mL的原液。
8.1.2 蛋白试剂考马斯亮蓝G-250:称取100m g 考马斯亮蓝G-250,溶于50mL90%乙醇中,加入85%(W/V)的磷酸100mL,最后用蒸馏水定容到1000mL。
8.1.3 乙醇;磷酸(85%)。
试验方法:分别取牛血清白蛋白标准溶液(1000μg/mL)0,、10μL、20μL、40μL、60μL、80μL、100μL,无菌水补至100μL,加入考马斯亮蓝G-250试剂5mL,作为标准溶液;分别取标准溶液和上清液(试验7中得到)400μL加到酶标板,以无菌水置零,测定OD595;酶活的测定9.1 试验材料和试剂9.1.1 氮蓝四唑;甲硫氨酸;核黄素;过氧化氢;愈创木酚;邻苯二酚。
酶活性测定方法

酶活性测定1、碱性磷酸酶(Alkaline phosphatase)试剂:0.1% p-nitrophenylphosphate disodium salt(P-硝基苯磷酸二钠)0.2mol/L 碳酸盐/碳酸氢盐缓冲溶液(pH: 9.6)——buffer0.2mol/L NaOH测定步骤:(1) 加入样品之前,0.1% P-硝基苯磷酸二钠及buffer 37°C孵化30 min;(2) 1mL污泥样品+1mL0.1% P-硝基苯磷酸二钠+2mL buffer 37°C孵化30 min;(3) 加入2mL 0.2mol/L NaOH终止反应;(4) 2500g 离心,上清液在410nm测定吸光度。
计算:每个污泥样品酶活性的测定均包含两个平行样S+一个空白样品S0。
[(S1- S0)+(S2- S0)]/2*0.704 (Eu)2、酸性磷酸酶(Acid phosphatase)试剂:0.1% p-nitrophenylphosphate disodium salt(P-硝基苯磷酸二钠)0.2mol/L HAc/Ac缓冲溶液(pH: 4.8)——buffer0.2mol/L NaOH测定步骤:(1) 加入样品之前,0.1% P-硝基苯磷酸二钠及buffer 37°C孵化30 min;(2) 1mL污泥样品+1mL0.1% P-硝基苯磷酸二钠+2mL buffer 37°C孵化30 min;(3) 加入2mL 0.2mol/L NaOH终止反应;(4) 2500g 离心,上清液在410nm测定吸光度。
计算:每个污泥样品酶活性的测定均包含两个平行样S+一个空白样品S0。
[(S1- S0)+(S2- S0)]/2*0.719 (Eu)3、a-葡萄糖甘酶(a-glucosidase)试剂:0.1% p-nitrophenyl a-D glucopyranoside(p-硝基苯-Α-D-葡吡喃糖苷)0.2mol/L Tris-HCl (pH: 7.6)测定步骤:(1) 加入样品之前,0.1% p-硝基苯-Α-D-葡吡喃糖苷及Tris-HCl 37°C 孵化30 min;(2) 1mL污泥样品+1mL 0.1% p-硝基苯-Α-D-葡吡喃糖苷+2mL Tris-HCl 37°C孵化60 min;(3) 沸水加热3min 终止反应;(4) 2500g 离心,上清液在410nm测定吸光度。
酶活测定实验方案

在逆境条件下(旱、盐碱、热、冷、冻),植物体内脯氨酸(proline,Pro)的含量显著增加。
植物体内脯氨酸含量在一定程度上反映了植物的抗逆性,抗旱性强的品种往往积累较多的脯氨酸。
因此测定脯氨酸含量可以作为抗旱育种的生理指标。
另外,由于脯氨酸亲水性极强,能稳定原生质胶体及组织内的代谢过程,因而能降低冰点,有防止细胞脱水的作用。
在低温条件下,植物组织中脯氨酸增加,可提高植物的抗寒性,因此,亦可作为抗寒育种的生理指标。
一、原理用磺基水杨酸提取植物样品时,脯氨酸便游离于磺基水杨酸的溶液中,然后用酸性茚三酮加热处理后,溶液即成红色,再用甲苯处理,则色素全部转移至甲苯中,色素的深浅即表示脯氨酸含量的高低。
在520nm波长下比色,从标准曲线上查出(或用回归方程计算)脯氨酸的含量。
二、材料、仪器设备及试剂(一)材料:待测植物(水稻、小麦、玉米、高粱、大豆等)叶片。
(二)仪器设备:1. 722型分光光度计;2. 研钵;3. 100ml小烧杯;4. 容量瓶;5. 大试管;6. 普通试管;7. 移液管;8. 注射器;9. 水浴锅;10. 漏斗;11. 漏斗架;12. 滤纸;13 剪刀。
(三)试剂1. 酸性茚三酮溶液:将1.25g茚三酮溶于30ml冰醋酸和20ml6mol/L磷酸中,搅拌加热(70℃)溶解,贮于冰箱中;2. 3%磺基水杨酸:3g磺基水杨酸加蒸馏水溶解后定容至100ml;3. 冰醋酸;4. 甲苯。
三、实验步骤1. 标准曲线的绘制(1)在分析天平上精确称取25mg脯氨酸,倒入小烧杯内,用少量蒸馏水溶解,然后倒入250ml 容量瓶中,加蒸馏水定容至刻度,此标准液中每ml含脯氨酸100μg。
(2)系列脯氨酸浓度的配制取6个50ml容量瓶,分别盛入脯氨酸原液0.5,1.0,1.5,2.0,2.5及3.0ml,用蒸馏水定容至刻度,摇匀,各瓶的脯氨酸浓度分别为1,2,3,4,5及6μg/ml。
(3)取6支试管,分别吸取2ml系列标准浓度的脯氨酸溶液及2ml冰醋酸和2ml酸性茚三酮溶液,每管在沸水浴中加热30min。
酶活测定基本方法

前处理:称取叶片0.5克,加5ml(1+4)提取液PH7.8 Pbs,冰浴研磨,12000g,4℃,20min,上清液即为粗酶提取液。
注:粗酶提取液要全部转移;加入石英砂后离心需配平1.SOD测量取透明度好的指形管,按下表加入各溶液:试剂(酶)用量(ml)0.05M磷酸缓冲液 1.565mM Met溶液0.3500uM NBT溶液0.3100uM EDTA-Na20.3200uM核黄素0.3酶液0.1(对照管加缓冲液)蒸馏水0.5总体积 3.3混匀后将一支对照管置暗处作空白对照,其余各管于4000lx光下反应20-30min,反应结束后,以不照光的对照管为空白,560nm测定OD值。
按下式计算SOD活性。
SOD总活性=[(ACK —AE)×V]/[ ACK×1/2×W×a]SOD比活力=SOD总活性/蛋白质浓度SOD总活性以每克鲜重每单位表示:比活力单位以酶单位/mg蛋白表示ACK—照光对照管的消光度值AE—样品管的消光度值V—样液总体积(ml)a—测定时样品用量(ml)W—样重(g)蛋白质浓度单位为:mg蛋白/g样重。
【试剂配制】磷酸缓冲液配制:母液:A:Na2HPO4•12H2O 36g,稀释至500mlB:NaH2PO4•2H2O 15.92g,稀释至500ml提取液配制:取0.0186gEDTA(0.1mM),5g PVP (1%(g/ml)),用磷酸缓冲液(PH7.8)稀释至500ml。
PH7.8 Pbs配制:A 114.35ml + B 10.625ml,定容至500ml。
PH7.0 Pbs配制:A 152.5ml(76.25ml)+ B 97.5ml(48.75ml)稀释至1000ml (500ml)。
65 mmol/L Met: 取0.97g Met 用磷酸缓冲液(PH 7.8)定容至100ml;500 umol/L NBT:取0.0409g NBT用磷酸缓冲液(PH 7.8)定容至100ml(避光保存);100 umol/L EDTA-Na2: 0.03721g(0.0186g)EDTA-Na2磷酸缓冲液(PH 7.8)定容至1000ml(500ml);200 umol/L 核黄素:0.0753(0.03765)g核黄素磷酸缓冲液(PH 7.8)定容至1000ml(500ml);(现用现配)注:若要抑制Cu-Zn/SOD的活性,可加入30mM的KCN0.3ml;若要抑制Cu-Zn/SODFe-SOD的活性,可加入50mM的H2O2(0.52ml 30%的H2O2稀释至100ml) 0.3ml;2.CAT酶提取液:取材料0.5g,置研钵中,加入5ml 4℃下预冷的提取液和少量石英砂研磨,12000g,4℃,20min,上清液即为过氧化氢酶粗提液,4℃下保存备用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
酶活测定方法还原法酶与底物在特定的条件下反应,酶可以促使底物释放出还原性的基团。
在此反应体系中添加化学试剂,酶促反应的产物可与该化学试剂发生反应,生成有色物质。
通过在特定的波长下比色,即可求出还原产物的含量,从而计算出酶活力的大小。
色原底物法通过底物与特定的可溶性生色基团物质结合,合成人工底物。
该底物与酶发生反应后,生色基团可被释放出来,用分光光度法即可测定颜色的深浅,在与已知标准酶所做的曲线比较后,即可求出待测酶的活力。
粘度法该法常用于测定纤维素酶、木聚糖酶和β-葡聚糖酶的活力。
木聚糖和β-葡聚糖溶液通常情况下可形成极高的粘度,当酶作用于粘性底物时木聚糖和β-葡聚糖会被切割成较小的分子使其粘度大为降低。
基于Poiseuille定律我们知道,只要测定一定条件下溶剂和样品溶液的运动粘度,便可计算特性粘数,并以此来判断酶的活力。
高压液相色谱法酶与其底物在特定的条件下充分反应后,在一定的色谱条件下从反应体系中提取溶液进行色谱分析,认真记录保留时间和色谱图,测量各个样的峰高和半峰高,计算出酶促反应生成物的含量,从而换算出酶活力的数值。
免疫学方法常用于酶活性分析的免疫学方法包括:免疫电泳法、免疫凝胶扩散法。
这两种方法都是根据酶与其抗体之间可发生特定的沉淀反应,通过待测酶和标准酶的比较,最终确定酶活力。
免疫学方法检侧度非常灵敏,可检侧出经过极度稀释后样品中的酶蛋白,但其缺点是不同厂家生产的酶产品需要有不同特定的抗体发生反应。
琼脂凝胶扩散法将酶作用的底物与琼脂混合熔融后,倒入培养皿中或载波片上制成琼脂平板。
用打孔器在琼脂平面上打出一个约4-5mm半径的小孔。
在点加酶样并培养24h以后,用染色剂显色或用展开剂展开显出水解区,利用水解直径和酶活力关系测定酶活力。
蛋白酶活力的测定随着生物技术的发展及环保要求的提高,越来越多的酶制剂应用于制革生产中。
比如浸水,脱毛,软化,脱脂等工序都用到大量的酶制剂,从酶的作用性质来看制革生产中用到的主要是蛋白酶和脂肪酶。
酶的本质是蛋白质,所以酶在出厂后的长途运输及存放过程中,由于条件的变化、振荡、阳光等的作用,其活力要有所改变,故在使用之前必须测定其活力。
作为计算酶制剂用量的依据,以达到预期的脱毛效果。
即现测现用。
酶的活力是指酶催化底物进行反应的本领。
即酶催化底物反应在一定时间内生成物越多或消耗的底物越大,则催化速度越快,活力越高。
酶活力的大小用酶活力单位(U,active unit)来表示。
1961年国际酶学会议规定:1个酶活力单位是指在特定条件(25℃,其它为最适条件)下,在1分钟内能转化1微摩尔底物的酶量,或是转化底物中1微摩尔的有关基团的酶量。
1979年国际生物化学协会为了使酶活性单位与国际单位制(SI)的反应速率相一致,推荐用Katal单位(也称催量,Kat)。
规定为:在最适条件下,1秒钟能使1摩尔底物转化的酶量。
Kat和U的换算关系:1Kat=6×107U,1U=16.67nmol.s-1=16.67nKat。
把酶制剂的量和活力联系在一起,即为酶的比活力,它表示单位质量的蛋白质中所含的某种酶的活力单位的多少。
是用来度量酶纯度的指标。
在实际生产中所说的酶活力一般是指酶的比活力大小。
另外在实际的生产应用中,由于酶的性质不同,测定方法不同,很多酶的活力都有各自的惯用单位。
1、Folin法(第一法)测定蛋白酶活力目前所用到的蛋白酶的种类比较多。
根据每种酶作用的条件不同,主要是最适PH值不同而分为酸性蛋白酶、中性蛋白酶和碱性蛋白酶。
其中酸性蛋白酶可用于毛皮的软化。
在制革上则主要选用中性和碱性蛋白酶来脱毛。
定义:lg固体酶粉(或1mL液体酶),在一定温度和pH值条件下,l min水解酪素产生lμg酪氨酸为一个酶活力单位,以U/g(U/mL)表示。
具体测定方法见《QB/T1803-1993工业酶制剂通用试验方法》及《SB/T10317-1999蛋白酶活力测定法》。
表1几种酶促反应最佳条件2、胰酶活力测定胰酶系从各种动物胰脏制取的混合物,主要是蛋白酶,脂酶和淀粉酶。
白色或淡黄色无定形粉末,有微弱的肉类物臭味。
溶于水呈微浑溶液,不溶于醇和醚。
遇酸、碱及热即丧失活力,pH=7.8~8.7活性强。
水溶液遇酸、热、重金属或单宁酸时产生沉淀,经煮沸则迅速分解而变性。
胰酶用于原料皮脱灰后进行软化。
胰酶中所含的弹性蛋白酶,可以分解弹性蛋白质,防止成革粒面出现碎玻璃花纹,提高产品质量。
胰酶软化时,对皮内一些蛋白质进行不同程度的消解,可除去皮内残存的脏物、毛根分解产物、纤维间质等,有利于皮纤维进一步分散,促进躁剂与皮胶原的结合,以使成革具有柔软性、丰满性和良好的透气性。
酶软化是制造软革很重要的操作,但胰酶浓度过高,皮内胶原纤维损失大,致使成革松面。
为了达到正常的软化目的,必须在软化之前,测定其活力,以便确定其含量。
[醋酸盐指示剂法](1)测定原理胰酶能催化酪蛋白水解,而且胰酶量越多,被水解的酪蛋白就越多。
一定量的胰酶,催化的酪蛋白越多或生成的分解产物越多,其胰酶的活力越大。
与福林法蛋白酶活力不同的表示是,胰酶活力是用在一定条件下底物的消耗量来表示。
即在一定的pH值和时间内1g胰酶能使酪蛋白完全水解的质量(g),即胰酶能使酪蛋白转化的能力,又称酪蛋白转化力,以倍数来计量。
控制胰酶的最适条件pH=8~9、T=(40±1)℃,用定量的酪蛋白和不同量的胰酶作用,水解一定的时间后,用醋酸盐(或醋酸)指示剂调节反应液pH值达到酪蛋白的等电点(pH=4.6)附近,末被水解的酪蛋白呈白色沉淀析出,而水解产物则不沉淀。
据此,则可找到恰好使定量的酪蛋白完全水解的最小胰酶用量。
根据胰酶的体积和浓度,即可计算出胰酶对酪蛋白的转化倍数,即胰酶的活力。
(2)试剂 1.24:50硼酸水溶液;0.1mo1/L。
NaOH水溶液;硼酸盐溶液,即1.24:50的H3BO4 20mL+2mL 0.1mo1/L NaOH;13.6%醋酸钠水溶液;60%醋酸溶液;醋酸盐缓冲液,即l 3.6%NaAc与60%HAc等体积混合。
(3)操作①配制底物酪蛋白称取(精确至0.0001g)0.2g细酪蛋白于小烧杯中,加20mL蒸馏水,移取5mL0.1mo1/L NaOH,40℃水浴上加热约30min,搅拌使之溶解,移人100mL容量瓶,加5mL H3BO4溶液,并定容到刻度(pH=8.5)。
②胰酶溶液的配制在研钵中称取(精确至0.0001g)胰酶0.1g(先加3~5滴研磨,再补加15~17滴),加1mL硼酸盐溶液,浸泡3~5min,研磨到无大块胰酶,转移定容到500mL容量瓶,用H2O定容。
③粗测取5支带刻度的干燥试管,按表1-2所示进行。
依次滴加醋酸盐缓冲液0.5mL(10滴),边滴边观察刚加人时是否产生白色沉淀,若缓冲溶液到了试管底部还不出现沉淀,说明酪蛋白已水解完全,有沉淀产生,证明酪蛋白没有全部水解,找出刚不产生沉淀的胰酶体积(mL)。
即是5mL酪蛋白完全水解的最少胰酶量。
表2胰酶活力粗测步骤④精确测定在粗测刚不沉淀至刚沉淀之间移取酶液量,梯度为0.1mL。
例如表1-2中2.0mL刚沉淀,则取2.5~2.0mL。
按表1-3所示进行。
操作同上,找出刚好不产生沉淀胰酶的量,记为V。
表3胰酶活力精确测定步骤(4)计算胰酶活力X按照下式计算。
式中ml——酪蛋白的质量,g;m2——胰酶的质量,g;V——终点时管中胰酶溶液的体积,mL。
(5)注意事项:①酪蛋白、胰酶、水按比例加入以后一定要使其混合均匀,否则将造成试管底部的酪蛋白没有水解,使测定结果不准确。
②水浴加热,使整个液面都进入到水中。
③试管的粗细程度。
试管不可太粗或太细,既好摇匀又好观察,且粗细一致。
④配制好的胰酶和酪蛋白溶液在室温20℃以下存放24h有效,室温高于20℃时胰酶4h有效,酪蛋白8h有效。
⑤产生白色沉淀必须是现加现看,不能放置过久,否则酪氨酸也沉淀出来了。
3.l还原糖法(Reducing sugar release)这种方法是采用化学合成或从自然界提取的酶的底物来进行的。
酶与底物在特定的条件(温度、PH值和底物浓度)下反应。
反应产物是还原糖,通过比色确定还原糖的数量,同时制作标准曲线。
酶的活性表示为每分钟产生lmmol的产物所需要的酶量(mg或ml)。
3.2比色法(Colorimetric assaysⅠ)这种方法是对底物进行化学修饰,使其带有特定的可溶性生色基团物质,该生色基团能够产生特定颜色。
在酶与底物发生反应后,生色基团就被释放出来,用分光光度计可以测定颜色的深度,并制作标准曲线。
与已知标准酶的活性进行比较,计算出该酶的活性。
这种方法并不能区分内切酶和外切酶,但是通常认为这种方法更适合于测定外切酶。
目前采用这种方法测定所需的底物被工业上广泛采用。
3.3比色法(Colorimetric assnysⅠ)这种方法是通过生色基团结合酶作用底物分子的中间产物(sub-unit)来确定酶的活性。
如PNPG(para nitro phenyl),该种物质与半乳糖结合形成一种乳糖(或葡萄糖)类似物。
在酶的作用下,释放出PNP,利用其它方法测定PNP的含量。
上述的方法通常只在生物化学实验室采用,饲料酶作用的底物是高分子量的物质,不宜采用。
3.4黏度法(Viscometric assays)这种方法是根据酶能够降低一定浓度的标准底物(控制pH值、温度等条件)的黏度的能力来确定酶的活性。
利用的底物主要有化学合成的底物(如CMC用于纤维素酶的测定)和自然提取的底物(如小麦阿拉伯木聚糖用于木聚糖酶的测定)。
测定的酶的活性值是通过与同时测定的标准酶活性的比较,来确定酶的活性。
这种方法的特点是通过降低底物的新度来反映酶的活性,这也正是酶在体内起作用的重要特征。
化学合成的底物的效果要优于自然提取的底物,因为化学合成的底物不利于酶的接触。
3.5免疫学法(Immunological methods)用于酶活性分析的免疫学法包括ELISA法和免疫凝胶扩散法。
这两种方法是根据酶与抗体之间发生反应,然后ELISA法通过第二步反应,凝胶扩散法则通过印染过程来确定酶的活性(与标准添加酶的水平对比)。
这些方法是非常灵敏的,能够检测到极低水平的酶蛋白。
但它们的缺点是对于每个产品的酶需要特殊的抗体,另外作为抗体能够与非酶蛋白质发生反应。
由于抗体本身所用的蛋白质是特定的,因此,由不同生产者生产的同种类型的酶之间是没有交叉性的。
另外,采用实验动物的敏感性也值得探讨。
3.6凝胶扩散法(Gel Diffusion methods)这种方法是将酶作用的底物与某种凝胶混合后倒入培养皿中,凝固之后,在凝胶上切开一条凿,倒入标准酶液和测试酶液。
培养一定时间后,在切开的凝胶周围能够看到水解区域,区域的大小与酶的含量成比例。