2013年中考数学复习专题讲座1:选择题解题方法(含答案)
中考数学选择题解题方法与技巧

中考数学选择题解题方法与技巧 中考数学的选择题该如何又快又准确地找到解题的【答案】?以下是为大家整理了以下选择题的结构及解答方法和技巧。
1.标准化试题的漏洞除了用了知识点之外,用选择题本身固有漏洞做题。
大家记住一点,所有选择题,题目或者【答案】必然存在做题暗示点。
因为首先我们必须得承认,这题能做,只要题能做,必须要有暗示。
1〕有选项。
利用选项之间的关系,我们可以判断【答案】是选或不选。
如两个选项意思完全相反,那么必有正确【答案】。
2〕【答案】只有一个。
大家都有这个经验,当时不明白什么道理,但是看到【答案】就能明白。
由此选项将产生暗示3〕题目暗示。
选择题的题目必须得说清楚。
大家在审题过程中,是必须要用到有效的讯息的,题目本身就给出了暗示。
4〕利用干扰选项做题。
选择题除了正确【答案】外,其他的都是干扰选项,除非是乱出的选项,否那么都是可以利用选项的干扰性做题。
一般出题者不会随意出个选项,总是和正确【答案】有点关系,或者是可能出错的结果,我们就可以借助这个命题过程得出正确的结论。
5〕选择题只管结果,不管中间过程,因此在解题过程中可以大胆的简化中间过程。
6〕选择题必须考察课本知识,做题过程中,可以判断和课本哪个知识相关?那个选项与这个知识点无关的可立即排除。
因此联系课本知识点做题。
8〕选择题必须保证考生在有限时间内可以做出来的,因此当大家花很多时间想不对的时候,说明思路错了。
选择题必须是由一个简单的思路构成的。
2.选择题解答方法和技巧【一】直接法:根据选择题的题设条件,通过计算、推理或判断,最后达到题目要求。
这种直接根据条件进行计算、判断或推理而得到的【答案】的解选择题的方法称之为直接法。
【二】间接法:间接法又称试验法、排除法或筛选法,又可将间接法分为结论排除法、特殊值排除法、逐步排除法和逻辑排除法等方法。
1〕结论排除法:把题目所给的四个结论逐一代回原题中进行验证,把错误的排除掉,直至找到正确的【答案】,这一逐一验证所给结论正确性的解答选择题的方法称之为结论排除法。
2013年中考数学真题试题(解析版)

2013年中考数学试题解析一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.=9 =﹣2(2.(3分)(2013•济南)民族图案是数学文化中的一块瑰宝.下列图案中,既不是中心对称3.(3分)(2013•济南)森林是地球之肺,每年能为人类提供大约28.3亿吨的有机物.28.34.(3分)(2013•济南)如图,AB∥CD,点E在BC上,且CD=CE,∠D=74°,则∠B的度数为()5.(3分)(2013•济南)图中三视图所对应的直观图是()6.(3分)(2013•济南)甲、乙两人在一次百米赛跑中,路程s(米)与赛跑时间t(秒)的关系如图所示,则下列说法正确的是(),9.(3分)(2013•济南)一项“过关游戏”规定:在过第n关时要将一颗质地均匀的骰子(六个面上分别刻有1到6的点数)抛掷n次,若n次抛掷所出现的点数之和大于n2,则算过n次抛掷所出现的点数之和大于n=.10.(3分)(2013•济南)如图,扇形AOB的半径为1,∠AOB=90°,以AB为直径画半圆,则图中阴影部分的面积为()=,=×(OB×OA=,=11.(3分)(2013•济南)函数y=x2+bx+c与y=x的图象如图所示,有以下结论:①b2﹣4c>0;②b+c+1=0;③3b+c+6=0;④当1<x<3时,x2+(b﹣1)x+c<0.其中正确的个数为()12.(3分)(2013•济南)如图,动点P从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P第2013次碰到矩形的边时,点P的坐标为()二、填空题:本大题共5小题,共20分,只要求填写最后结果,每小题填对得4分.13.(4分)(2013•济南)cos30°的值是.cos30°==.故答案为:14.(4分)(2013•济南)如图,为抄近路践踏草坪是一种不文明的现象,请你用数学知识解释出这一现象的原因两点之间线段最短.15.(4分)(2013•济南)甲乙两种水稻试验品中连续5年的平均单位面积产量如下(单位:经计算,=10,=10,试根据这组数据估计甲中水稻品种的产量比较稳定.=)﹣)的平均数为[﹣﹣16.(4分)(2013•济南)函数y=与y=x﹣2图象交点的横坐标分别为a,b,则+的值为﹣2 .先根据反比例函数与一次函数的交点坐标满足两函数的解析式得到然后变形+得=xy=+==17.(4分)(2013•济南)如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F 分别在BC和CD上,下列结论:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=2+.其中正确的序号是①②④(把你认为正确的都填上).∴CE=CF=﹣a==2+=2+三、解答题:本大题共7小题,共64分.解答要写出必要的文字说明、证明过程或演算步骤.18.(6分)(2013•济南)先化简,再求值:÷,其中a=﹣1.﹣••﹣19.(8分)(2013•济南)某区在实施居民用水额定管理前,对居民生活用水情况进行了调查,下表是通过简单随机抽样获得的50个家庭去年月平均用水量(单位:吨),并将调查数据进行如下整理:4.7 2.1 3.1 2.35.2 2.8 7.3 4.3 4.86.74.55.16.5 8.9 2.2 4.5 3.2 3.2 4.5 3.53.5 3.5 3.64.9 3.7 3.85.6 5.5 5.96.25.7 3.9 4.0 4.0 7.0 3.7 9.5 4.26.4 3.54.5 4.5 4.65.4 5.66.6 5.8 4.5 6.27.5正正11192(2)从直方图中你能得到什么信息?(写出两条即可);(3)为了鼓励节约用水,要确定一个用水量的标准,超出这个标准的部分按1.5倍价格收费,若要使60%的家庭收费不受影响,你觉得家庭月均用水量应该定为多少?为什么?1913220.(8分)(2013•济南)如图,已知⊙O的半径为1,DE是⊙O的直径,过点D作⊙O的切线AD,C是AD的中点,AE交⊙O于B点,四边形BCOE是平行四边形.(1)求AD的长;(2)BC是⊙O的切线吗?若是,给出证明;若不是,说明理由.AD=121.(10分)(2013•济南)某地计划用120﹣180天(含120与180天)的时间建设一项水利工程,工程需要运送的土石方总量为360万米3.(1)写出运输公司完成任务所需的时间y(单位:天)与平均每天的工作量x(单位:万米3)之间的函数关系式,并给出自变量x的取值范围;(2)由于工程进度的需要,实际平均每天运送土石比原计划多5000米3,工期比原计划减少了24天,原计划和实际平均每天运送土石方各是多少万米3?y=y=(2≤x≤3)22.(10分)(2013•济南)设A是由2×4个整数组成的2行4列的数表,如果某一行(或某一列)各数之和为负数,则改变该行(或该列)中所有数的符号,称为一次“操作”.(1)数表A如表1所示,如果经过两次“操作”,使得到的数表每行的各数之和与每列的各数之和均为非负整数,请写出每次“操作”后所得的数表;(写出一种方法即可)表1和与每列的各数之和均为非负整数,求整数a的值表2.列≤a23.(10分)(2013•济南)(1)如图1,已知△ABC,以AB、AC为边向△ABC外作等边△ABD 和等边△ACE,连接BE,CD,请你完成图形,并证明:BE=CD;(尺规作图,不写做法,保留作图痕迹);(2)如图2,已知△ABC,以AB、AC为边向外作正方形ABFD和正方形ACGE,连接BE,CD,BE与CD有什么数量关系?简单说明理由;(3)运用(1)、(2)解答中所积累的经验和知识,完成下题:如图3,要测量池塘两岸相对的两点B,E的距离,已经测得∠ABC=45°,∠CAE=90°,AB=BC=100米,AC=AE,求BE的长.∴BD=100BD=100=100米.24.(12分)(2013•济南)如图,在直角坐标系中有一直角三角形AOB,O为坐标原点,OA=1,tan∠BAO=3,将此三角形绕原点O逆时针旋转90°,得到△DOC,抛物线y=ax2+bx+c经过点A、B、C.(1)求抛物线的解析式;(2)若点P是第二象限内抛物线上的动点,其坐标为t,①设抛物线对称轴l与x轴交于一点E,连接PE,交CD于F,求出当△CEF与△COD相似点P的坐标;②是否存在一点P,使△PCD得面积最大?若存在,求出△PCD的面积的最大值;若不存在,请说明理由.=3.=,,y=,t+1t+1+2 =PM•CM+PN•OM﹣(),﹣的最大值为。
2013年中考数学解题方法及提分突破训练:反证法专题

解题方法及提分突破训练:反证法专题对于一个几何命题,当用直接证法比较困难时,则可采用间接证法,反证法就是一种间接证法,它不是直接去证明命题的结论成立,而是去证明命题结论的反面不能成立。
从而推出命题的结论必然成立,它给我们提供了一种可供选择的新的证题途径,掌握这种方法,对于提高推理论证的能力、探索新知识的能力都是非常必要的。
一真题链接1.用反证法证明:圆的两条不是直径的相交弦不能互相平分。
已知:如图,在⊙O 中,弦AB 、CD 交于点P ,且AB 、CD 不是直径.求证:弦AB 、CD 不被P 平分.2.平面内有四个点,没有三点共线,证明:以任意三个点为顶点的三角形不可能都是锐角三角形3. 平面内有四个点,没有三点共线证明:以任意三个点为顶点的三角形不可能都是锐角三角形二 名词释义反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法。
反证法可以分为归谬反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种)。
用反证法证明一个命题的步骤,大体上分为:(1)反设;(2)归谬;(3)结论。
反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一个/一个也没有;至少有n 个/至多有(n 一1)个;至多有一个/至少有两个;唯一/至少有两个。
归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否则推导将成为无源之水,无本之木。
推理必须严谨。
导出的矛盾有如下几种类型:与已知条件矛盾;与已知的公理、定义、定理、公式矛盾;与反设矛盾;自相矛盾。
例如: 已知:a 是整数,2能整除2a 。
试证:2能整除a① 探究:问题实际上是在讨论a 是奇数,还是偶数。
2013年兰州市中考数学试题及解答

2013年兰州市初中毕业生学业考试数学试题(附答案)一、选择题:(本大题共15小题,每小题4分,共60分.)1.下图是由八个相同的小正方体组合而成的几何体,其左视图是2.“兰州市明天降水概率是30%”,对此消息下列说法中正确的是 A .兰州市明天将有30%的地区降水 B .兰州市明天将有30%的时间降水 C .兰州市明天降水的可能性较小D .兰州市明天肯定不降水3.二次函数3122+--=)(x y 的图象的顶点坐标是A .(1,3)B .(1-,3)C .(1,3-)D .(1-,3-) 4.⊙O 1的半径为1cm ,⊙O 2的半径为4cm ,圆心距O 1O 2=3cm ,这两圆的位置关系是 A .相交 B .内切 C .外切 D .内含5.当0>x 时,函数x y 5-=的图象在A .第四象限B .第三象限C .第二象限D .第一象限6.下列命题中是假命题的是A .平行四边形的对边相等B .菱形的四条边相等C .矩形的对边平行且相等D .等腰梯形的对边相等7.某校九年级开展“光盘行动”宣传活动,各班级参加该活动的人数统计结果如下表,对于这组统计A .平均数是58B .中位数是58C .极差是40D .众数是60 8.用配方法解方程0122=--x x 时,配方后所得的方程为A .012=+)(x B .012=-)(x C .212=+)(x D .212=-)(x 9.△ABC 中,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,如果222c b a =+,那么下列结论正确的是 A .c sin A =aB .b cos B =cC .a tan A =bD .c tan B =b10.据调查,2011年5月兰州市的房价均价为7600元/m2,2013年同期将达到8200元/m 2,假设这两年兰州市房价的平均增长率为x ,根据题意,所列方程为第1题图A B C DA .8200%)1(76002=+xB .8200%)1(76002=-xC .8200)1(76002=+xD .8200)1(76002=-x 11.已知A (1-,1y ),B (2,2y )两点在双曲线xmy 23+=上,且21y y >,则m 的取值范围是 A .0>mB .0<mC .23->m D .23-<m12.如图是一圆柱形输水管的横截面,阴影部分为有水部分,如果水面AB 宽为8cm ,水的最大深度为2cm ,则该输水管的半径为 A .3cm B .4cm C .5cm D .6cm 13.二次函数)0(2≠++=a c bx ax y 的图象如图所示.下列说法中不正确的是 A .042>-ac b B .0>aC .0>cD .02<-ab14.圆锥底面圆的半径为3cm ,其侧面展开图是半圆,则圆锥母线长为A .3cmB .6cmC .9cmD .12cm15.如图,动点P 从点A 出发,沿线段AB 运动至点B 后,立即按原路返回,点P 在运动过程中速度不变,则以点B 为圆心,线段BP 长为半径的圆的面积S 与点P 的运动时间t 的函数图象大致为二、填空题:(本大题共5小题,每小题4分,共20分.)16.某校决定从两名男生和三名女生中选出两名同学作为兰州国际马拉松赛的志愿者,则选出一男一女的概率是 .17.若041=-+-a b ,且一元二次方程02=++b ax kx 有实数根,则k 的取值范围是 .18.如图,量角器的直径与直角三角板ABC 的斜边AB 重合,其中量角器0刻度线的端点N 与点A 重合,射线CP 从CA 处出发沿顺时第15题图B针方向以每秒3度的速度旋转,CP 与量角器的半圆弧交于点E ,第24秒时,点E 在量角器上对应的读数是 度.19.如图,在直角坐标系中,已知点A (3-,0)、B (0,4),对△OAB 连续作旋转变换,依次得到△1、△2、△3、△4…,则△2013 的直角顶点的坐标为 .20.如图,以扇形OAB 的顶点O 为原点,半径OB 所在的直线为x 轴,建立平面直角坐标系,点B 的坐标为(2,0),若抛物线k x y +=221与扇形OAB 的边界总有两个公共点,则实数k 的取值范围是 .三、解答题:本大题共8小题,共70分.解答时写出必要的文字说明、证明过程或演算步骤. 21.(本小题满分10分)(1)计算:01201314.330sin 21)()(-++---π(2)解方程:0132=--x x第20题图22.(本小题满分5分)如图,两条公路OA和OB相交于O点,在∠AOB的内部有工厂C和D,现要修建一个货站P,使货站P到两条公路OA、OB的距离相等,且到两工厂C、D的距离相等,用尺规作出货站P的位置.(要求:不写作法,保留作图痕迹,写出结论.)23.(本小题满分6分)在兰州市开展的“体育、艺术2+1”活动中,某校根据实际情况,决定主要开设A:乒乓球,B:篮球,C:跑步,D:跳绳这四种运动项目.为了解学生喜欢哪一种项目,随机抽取了部分学生进行调查,并将调查结果绘制成如下的条形统计图和扇形统计图.请你结合图中信息解答下列问题:(1)样本中喜欢B项目的人数百分比是,其所在扇形统计图中的圆心角的度数是;(2)把条形统计图补充完整;(3)已知该校有1000人,根据样本估计全校喜欢乒乓球的人数是多少?项目A44%DCB28% 8%第23题图24.(本小题满分8分)如图,在活动课上,小明和小红合作用一副三角板来测量学校旗杆高度.已知小明的眼睛与地面的距离(AB )是1.7m ,他调整自己的位置,设法使得三角板的一条直角边保持水平,且斜边与旗杆顶端M 在同一条直线上,测得旗杆顶端M 仰角为45°;小红的眼睛与地面的距离(CD )是1.5m ,用同样的方法测得旗杆顶端M 的仰角为30°.两人相距28米且位于旗杆两侧(点B 、N 、D 在同一条直线上).求出旗杆MN 的高度.(参考数据:4.12≈,7.13≈,结果保留整数.)25.(本小题满分9分)已知反比例函数xky =1的图象与一次函数b ax y +=2的图象交于点A (1,4)和点B (m ,2-).(1)求这两个函数的表达式;(2)观察图象,当x >0时,直接写出1y >2y 时x 的取值范围; (3)如果点C 与点A 关于x 轴对称,求△ABC 的面积.DBN第24题图第25题图第26题图图1A OBCDE 图2B 26.(本小题满分10分)如图1,在△OAB 中,∠OAB =90°,∠AOB =30°,OB =8.以OB 为边,在△OAB外作等边△OBC ,D 是OB 的中点,连接AD 并延长交OC 于E . (1)求证:四边形ABCE 是平行四边形;(2)如图2,将图1中的四边形ABCO 折叠,使点C 与点A 重合,折痕为FG ,求OG 的长.27.(本小题满分10分)如图,直线MN 交⊙O 于A 、B 两点,AC 是直径,AD 平分∠CAM 交⊙O 于D ,过D 作DE ⊥MN 于E .(1)求证:DE 是⊙O 的切线; (2)若DE =6cm ,AE =3cm ,求⊙O 的半径.第27题28.(本小题满分12分)如图,在平面直角坐标系xOy 中,A 、B 为x 轴上两点,C 、D 为y 轴上的两点,经过点A 、C 、B 的抛物线的一部分C 1与经过点A 、D 、B 的抛物线的一部分C 2组合成一条封闭曲线,我们把这条封闭曲线称为“蛋线”.已知点C 的坐标为(0,23-),点M 是抛物线C 2:m mx mx y 322--=(m <0)的顶点.(1)求A 、B 两点的坐标; (2)“蛋线”在第四象限上是否存在一点P ,使得△PBC 的面积最大?若存在,求出△PBC 面积的最大值;若不存在,请说明理由;(3)当△BDM 为直角三角形时,求m 的值.第28题图2013年兰州市初中毕业生学业考试数学(A )参考答案及评分参考本答案仅供参考,阅卷时会制定具体的评分细则和评分标准。
2013年江苏省苏州市中考数学试卷及答案(解析版)

江苏省苏州市2013年中考数学试卷一、选择题(本大共10小题,每小题3分,满分30分。
在每小题给出的四个选项中,只有一个符合题目要求的,请将选择题的答案用2B铅笔涂在答案卡相应的位置上).223.(3分)(2013•苏州)若式子在实数范围内有意义,则x的取值范围是()5.(3分)(2013•苏州)世界文化遗产长城总长约为6700000m,若将6700000用科学记数法表n6.(3分)(2013•苏州)已知二次函数y=x2﹣3x+m(m为常数)的图象与x轴的一个交点为(1,2x=7.(3分)(2013•苏州)如图,AB是半圆的直径,点D是AC的中点,∠ABC=50°,则∠DAB 等于()ABD=×8.(3分)(2013•苏州)如图,菱形OABC的顶点C的坐标为(3,4).顶点A在x轴的正半轴上,反比例函数y=(x>0)的图象经过顶点B,则k的值为()==5(9.(3分)(2013•苏州)已知x﹣=3,则4﹣x2+x的值为()..﹣=.10.(3分)(2013•苏州)如图,在平面直角坐标系中,Rt△OAB的顶点A在x轴的正半轴上.顶点B的坐标为(3,),点C的坐标为(,0),点P为斜边OB上的一个动点,则PA+PC的最小值为()...,OB=2××AM=×=3AD=,由勾股定理得:(﹣=1DC=,二、填空题:本大题共8个小题,每小题3分,共24分。
把答案直接填在答案卡相对应位置上。
11.(3分)(2013•苏州)计算:a4÷a2=a2.12.(3分)(2013•苏州)分解因式:a2+2a+1=(a+1)2.13.(3分)(2013•苏州)方程=的解为x=2.14.(3分)(2013•苏州)任意抛掷一枚质地均匀的正方体骰子1次,骰子的六个面上分别刻有1到6的点数,掷得面朝上的点数大于4的概率为.的概率是:=.故答案为:.15.(3分)(2013•苏州)按照如图所示的操作步骤,若输入x的值为2,则输出的值为20.16.(3分)(2013•苏州)如图,AB切⊙O于点B,OA=2,∠OAB=30°,弦BC∥OA,劣弧的弧长为π.(结果保留π)长为=π故答案为:17.(3分)(2013•苏州)如图,在平面直角坐标系中,四边形OABC是边长为2的正方形,顶点A、C分别在x,y轴的正半轴上.点Q在对角线OB上,且QO=OC,连接CQ并延长CQ交边AB于点P.则点P的坐标为(2,4﹣2).据正方形的对角线等于边长的,OQ=2==BP=2﹣2222题考查了相似三角形的判定与性质,正方形的对角线等于边长的18.(3分)(2013•苏州)如图,在矩形ABCD中,点E是边CD的中点,将△ADE沿AE折叠后得到△AFE,且点F在矩形ABCD内部.将AF延长交边BC于点G.若=,则=用含k的代数式表示).,,∵=,=.故答案为:三、解答题(本大题共11小题,共76分.把解答过程写在答案卡相对应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明。
江苏省盐城市2013年中考数学试卷(解析版)(含解析)

江苏省盐城市2013年中考数学试卷一、选择题(本大题共8小题,每小题3分,共24分。
在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母填涂在答题卡相应位置上)1.(3分)(2013•盐城)﹣2、0、1、﹣3四个数中,最小的数是()A.﹣2B.0C.1D.﹣3考点:有理数大小比较分析:根据有理数的大小比较法则(正数都大于0,负数都小于0,正数大于一切负数,两个负数,其绝对值大的反而小)比较即可.解答:解:﹣2、0、1、﹣3四个数中,最小的数是﹣3;故选D.点评:本题考查了对有理数的大小比较法则的应用,用到的知识点是正数都大于0,负数都小于0,正数大于一切负数,两个负数,其绝对值大的反而小.2.(3分)(2013•盐城)如果收入50元,记作+50元,那么支出30元记作()A.+30B.﹣30C.+80D.﹣80考点:正数和负数分析:收入为“+”,则支出为“﹣”,由此可得出答案.解答:解:∵收入50元,记作+50元,∴支出30元记作﹣30元.故选B.点评:本题考查了正数和负数的知识,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.3.(3分)(2013•盐城)下面的几何体中,主视图不是矩形的是()A.B.C.D.考点:简单几何体的三视图分析:找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.解答:解:A为圆柱体,它的主视图应该为矩形;B为长方体,它的主视图应该为矩形;C为圆台,它的主视图应该为梯形;D为三棱柱,它的主视图应该为矩形.故选C.点评:本题考查了三视图的知识,主视图是从物体的正面看得到的视图,考查了学生细心观察能力,属于基础题.4.(3分)(2013•盐城)若式子在实数范围内有意义,则x的取值范围是()A.x≥3B.x≤3C.x>3D.x<3考点:二次根式有意义的条件分析: 根据被开方数大于等于0列式进行计算即可得解. 解答: 解:根据题意得,x ﹣3≥0,解得x ≥3. 故选A .点评:本题考查的知识点为:二次根式的被开方数是非负数.5.(3分)(2013•盐城)下列运算中,正确的是( ) A . 2a 2+3a 2=a 4 B . 5a 2﹣2a 2=3 C . a 3×2a 2=2a 6 D . 3a 6÷a 2=3a 4考点: 整式的除法;合并同类项;单项式乘单项式 分析:根据合并同类项、单项式乘单项式、单项式除以单项式的法则,对各选项分析判断后利用排除法求解.解答: 解:A 、2a 2+3a 2=5a 2,故本选项错误;B 、5a 2﹣2a 2=3a 2,故本选项错误;C 、a 3×2a 2=2a 5,故本选项错误;D 、3a 6÷a 2=3a 4,故本选项正确. 故选D .点评:本题考查合并同类项、单项式乘单项式、单项式除以单项式,记准法则是解题的关键.6.(3分)(2013•盐城)某公司10名职工月份工资统计如下,该公司10名职工5月份工资的众数和中位数分别是( ) 工资(元) 2000 2200 2400 2600 人数(人) 1 3 4 2A . 2400元、2400元B . 2400元、2300元C . 2200元、2200元D . 2200元、2300元考点:众数;中位数 分析:根据中位数和众数的定义求解即可;中位数是将一组数据从小到大重新排列,找出最中间的两个数的平均数,众数是一组数据中出现次数最多的数.解答: 解:∵2400出现了4次,出现的次数最多,∴众数是2400; ∵共有10个数,∴中位数是第5、6个数的平均数,∴中位数是(2400+2400)÷2=2400; 故选A .点评:此题考查了众数与中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),众数是一组数据中出现次数最多的数.7.(3分)(2013•盐城)如图,直线a ∥b ,∠1=120°,∠2=40°,则∠3等于( )A.60°B.70°C.80°D.90°考点:平行线的性质专题:计算题.分析:由a∥b,根据平行线的性质得∠1=∠4=120°,再根据三角形外角性质得∠4=∠2+∠3,所以∠3=∠4﹣∠2=80°.解答:解:如图,∵a∥b,∴∠1=∠4=120°,∵∠4=∠2+∠3,而∠2=40°,∴120°=40°+∠3,∴∠3=80°.故选C.点评:本题考查了平行线的性质:两直线平行,同位角相等.也考查了三角形外角性质.8.(3分)(2013•盐城)如图①是3×3正方形方格,将其中两个方格涂黑,并且使涂黑后的整个图案是轴对称图形,约定绕正方形ABCD的中心旋转能重合的图案都视为同一种图案,例如图②中的四幅图就视为同一种图案,则得到的不同图案共有()A.4种B.5种C.6种D.7种考点:利用旋转设计图案;利用轴对称设计图案分析:根据轴对称的定义,及题意要求画出所有图案后即可得出答案.解答:解:得到的不同图案有:,共6种.故选C.点评:本题考查了学生实际操作能力,用到了图形的旋转及轴对称的知识,需要灵活掌握.二、填空题(本大题共10小题,每小题3分,共30分。
2013年中考数学专题复习第1讲:实数(含答案)

2013年中考数学专题复习第一讲 实数【基础知识回顾】 一、实数的分类:1、按实数的定义分类: 实数2、按实数的正负分类:实数【名师提醒:1、正确理解实数的分类。
如:2π是 数,不是 数,722是 数,不是 数。
2、0既不是 数,也不是 数,但它是自然数】 二、实数的基本概念和性质1、数轴:规定了 、 、 的直线叫做数轴, 和数轴上的点是一一对应的,数轴的作用有 、 、 等。
2、相反数:只有 不同的两个数叫做互为相反数,a 的相反数是 ,0的相反数是 ,a 、b 互为相反数⇔3、倒数:实数a 的倒数是 , 没有倒数,a 、b 互为倒数⇔4、绝对值:在数轴上表示一个数的点离开 的距离叫做这个数的绝对值。
a =⎪ ⎪ ⎪⎪⎩ ⎪ ⎪ ⎪ ⎪ ⎨ ⎧ ⎩ ⎨ ⎧ ⎪ ⎪ ⎪ ⎩ ⎪ ⎪ ⎪ ⎨ ⎧ ⎩ ⎨ ⎧ ⎪ ⎩ ⎪⎨ ⎧ 正无理数无理数 负分数 _ 零 正整数 整数 有理数无限不循环小数⎩⎨⎧⎩⎨⎧负有理数负零正无理数正实数实数(a >0)(a <0)0 (a =0)有限小数或无限循环数因为绝对值表示的是距离,所以一个数的绝对值是 数,我们学过的非负数有三个: 、 、 。
【名师提醒:a +b 的相反数是 ,a -b 的相反数是 ,0是唯一一个没有倒数的数,相反数等于本身的数是 ,倒数等于本身的数是 ,绝对值等于本身的数是 】三、科学记数法、近似数和有效数字。
1、科学记数法:把一个较大或较小的数写成 的形式叫做科学记数法。
其中a 的取值范围是 。
2、近似数和有效数字:一般的,将一个数四舍五入后的到的数称为这个数的近似数,这时,从 数字起到近似数的最后一位止,中间所有的数字都叫这个数的有效数字。
【名师提醒:1、科学记数法不仅可以表示较大的数,也可以表示较小的数,其中a 的取值范围一样,n 的取值不同,当表示较大数时,n 的值是原整数数位减一,表示较小的数时,n 是负整数,它的绝对值等于原数中左起第一个非零数字前零的个数(含整数数位上的零)。
2013年浙江中考数学第一轮复习课件 专题突破强化训练专题十规律探索与开放性问题

2 013π 2 2 013π C. 4 A.
2 013π 3 2 013π D. 6 B.
60π× 1 π 60π× 2 2π 60π× 3 = ,l2= = ,l3= 180 3 180 3 180 60π×4 4π 3π nπ 2 013π = ,l4= = ,按照这种规律可以得到:ln= ,∴l 2 013= . 3 180 3 3 3 解析:由图知,每段弧的度数都等于 60° ,l 1=
1 2 3 n
2n 从分数分母可知存在的规律为 2 +3,2 + 3,2 +3,„,2 +3;即第 n 个数是 n . 2 +3
(2012· 铜仁)如图,第①个图形中一共有 1 个平行四边形,第②个图形中一共有 5 个平行四边形,第③个图形中一共有 11 个平行四边形,„„则第⑩个图形中平行四边形的 个数是( )
2 4 8 16 32 (2012· 遵义)猜数字游戏中,小明写出如下一组数: , , , , ,„,小亮 5 7 11 19 35 64 猜想出第六个数字是 ,根据此规律,第 n 个数是________. 67
【思路点拨】 分别探索分子和分母与序号的关系 → 得出第n个数
2n 【解析】 n 2 +3 从分数分子可知存在的规律为 21,22,23,„,2n;因为分母比分子大 3,
答案:B
二、填空题 5.如图,▱ ABCD 中,E、F 分别为 BC、 AD 边上的点,要使 BF=DE,需添加一个条 件:__________.
解析:四边形 ABCD 是平行四边形,可得对边相等,对边平行,对角相等;要使 BF= DE,从两个角度考虑,一是证明四边形 BEDF 是平行四边形,可添加 BE=DF 或 BF∥DE 或∠BFD=∠BED 或∠AFB=∠ADE 等;二是证明△ABF≌△ CDE,可添加 AF=CE 或∠ AFB=∠CED 等.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013年中考数学专题讲座一:选择题解题方法一、中考专题诠释选择题是各地中考必考题型之一,2012年各地命题设置上,选择题的数目稳定在8~14题,这说明选择题有它不可替代的重要性.选择题具有题目小巧,答案简明;适应性强,解法灵活;概念性强、知识覆盖面宽等特征,它有利于考核学生的基础知识,有利于强化分析判断能力和解决实际问题的能力的培养.二、解题策略与解法精讲选择题解题的基本原则是:充分利用选择题的特点,小题小做,小题巧做,切忌小题大做.解选择题的基本思想是既要看到各类常规题的解题思想,但更应看到选择题的特殊性,数学选择题的四个选择支中有且仅有一个是正确的,又不要求写出解题过程. 因而,在解答时应该突出一个“选”字,尽量减少书写解题过程,要充分利用题干和选择支两方面提供的信息,依据题目的具体特点,灵活、巧妙、快速地选择解法,以便快速智取,这是解选择题的基本策略. 具体求解时,一是从题干出发考虑,探求结果;二是题干和选择支联合考虑或从选择支出发探求是否满足题干条件. 事实上,后者在解答选择题时更常用、更有效.三、中考典例剖析考点一:直接法从题设条件出发,通过正确的运算、推理或判断,直接得出结论再与选择支对照,从而作出选择的一种方法。
运用此种方法解题需要扎实的数学基础.例1 (2012•白银)方程的解是()A.x=±1 B.x=1 C.x=﹣1 D.x=0思路分析:观察可得最简公分母是(x+1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.解:方程的两边同乘(x+1),得x2﹣1=0,即(x+1)(x﹣1)=0,解得:x1=﹣1,x2=1.检验:把x=﹣1代入(x+1)=0,即x=﹣1不是原分式方程的解;把x=1代入(x+1)=2≠0,即x=1是原分式方程的解.则原方程的解为:x=1.故选B.点评:此题考查了分式方程的求解方法.此题难度不大,注意掌握转化思想的应用,注意解分式方程一定要验根.对应训练1.(2012•南宁)某单位要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排10场比赛,则参加比赛的球队应有()A.7队B.6队C.5队D.4队考点二:特例法运用满足题设条件的某些特殊数值、特殊位置、特殊关系、特殊图形、特殊数列、特殊函数等对各选择支进行检验或推理,利用问题在某一特殊情况下不真,则它在一般情况下也不真的原理,由此判明选项真伪的方法。
用特例法解选择题时,特例取得愈简单、愈特殊愈好.例2 (2012•常州)已知a 、b 、c 、d 都是正实数,且 a cb d<,给出下列四个不等式: ①a c a b c d <++;②c a c d a b <++;③ d b c d a b <++;④b d a b c d<++。
其中不等式正确的是( ) A .①③ B .①④C .②④D .②③思路分析:由已知a 、b 、c 、d 都是正实数,且 a cb d<,取a=1,b=3,c=1,d=2,代入所求四个式子即可求解。
解:由已知a 、b 、c 、d 都是正实数,且a cb d<,取a=1,b=3,c=1,d=2,则 1111,134123a c a b c d ====++++,所以a ca b c d <++,故①正确; 2233,123134d b c d a b ====++++,所以d bc d a b<++,故③正确。
故选A 。
点评:本题考查了不等式的性质,用特殊值法来解,更为简单. 对应训练 2.(2012•南充)如图,平面直角坐标系中,⊙O 的半径长为1,点P (a ,0),⊙P 的半径长为2,把⊙P 向左平移,当⊙P 与⊙O 相切时,a 的值为( ) A .3 B .1 C .1,3 D .±1,±3考点三:筛选法(也叫排除法、淘汰法)分运用选择题中单选题的特征,即有且只有一个正确选择支这一信息,从选择支入手,根据题设条件与各选择支的关系,通过分析、推理、计算、判断,对选择支进行筛选,将其中与题设相矛盾的干扰支逐一排除,从而获得正确结论的方法。
使用筛选法的前提是“答案唯”..∠不可能等于B .12k PM QM k C .这两个函数的图象一定关于x 轴对称 D .△POQ 的面积是12(|k 1|+|k 2|)考点四:逆推代入法将选择支中给出的答案或其特殊值,代入题干逐一去验证是否满足题设条件,然后选择符合题设条件的选择支的一种方法. 在运用验证法解题时,若能据题意确定代入顺序,则能较.(贵港)从,﹣,﹣三个数中任意选取一个作为直线中的值,则所得的直线不经过第三象限的概率是( ) A .B .C .D . 1考点五:直观选择法利用函数图像或数学结果的几何意义,将数的问题(如解方程、解不等式、求最值,求取值范围等)与某些图形结合起来,利用直观几性,再辅以简单计算,确定正确答案的方法。
这种解法贯穿数形结合思想,每年中考均有很多选择题(也有填空题、解答题)都可以用数形结合思想解决,既简捷又迅速.例5(2012•贵阳)已知二次函数y=ax2+bx+c(a<0)的图象如图所示,当-5≤x≤0时,下列说法正确的是()A.有最小值-5、最大值0 B.有最小值-3、最大值6C.有最小值0、最大值6 D.有最小值2、最大值6解:由二次函数的图象可知,∵-5≤x≤0,∴当x=-2时函数有最大值,y最大=6;当x=-5时函数值最小,y最小=-3.故选B.点评:本题考查的是二次函数的最值问题,能利用数形结合求出函数的最值是解答此题的关键.对应训练5.(2012•南宁)如图,在平面直角坐标系中,有两条位置确定的抛物线,它们的对称轴相同,则下列关系不正确的是()A.k=n B.h=m C.k<n D.h<0,k<0考点六:特征分析法对有关概念进行全面、正确、深刻的理解或根据题目所提供的信息,如数值特征、结构特征、位置特征等,提取、分析和加工有效信息后而迅速作出判断和选择的方法例6 (2012•威海)下列选项中,阴影部分面积最小的是()A.B.C.D.6.(2012•丹东)如图,点A是双曲线y=在第二象限分支上的任意一点,点B、点C、点D分别是点A关于x轴、坐标原点、y轴的对称点.若四边形ABCD的面积是8,则k的值为()A.﹣1 B.1C.2D.﹣2考点七:动手操作法与剪、折操作有关或者有些关于图形变换的试题是各地中考热点题型,只凭想象不好确定,处理时要根据剪、折顺序动手实践操作一下,动手可以直观得到答案,往往能达到快速求解的目的.例7 (2012•西宁)折纸是一种传统的手工艺术,也是每一个人从小就经历的事,它是一种培养手指灵活性、协调能力的游戏,更是培养智力的一种手段.在折纸中,蕴含许多数学知识,我们还可以通过折纸验证数学猜想,把一张直角三角形纸片按照图①~④的过程折叠后展开,请选择所得到的数学结论()A.角的平分线上的点到角的两边的距离相等B.在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半C.直角三角形斜边上的中线等于斜边的一半故选C.点评:本题考查的是翻折变换,熟知图形翻折不变性的性质是解答此题的关键.对应训练7.(2012•宁德)将一张正方形纸片按图①、图②所示的方式依次对折后,再沿图③中的虚线剪裁,最后将图④中的纸片打开铺平,所得到的图案是()A.B.C.D.四、中考真题演练1.(2012•衡阳)一个圆锥的三视图如图所示,则此圆锥的底面积为()A.30πcm2B.25πcm2C.50πcm2D.100πcm2 2.(2012•福州)⊙O1和⊙O2的半径分别是3cm和4cm,如果O1O2=7cm,则这两圆的位置关系是()A.内含B.相交C.外切D.外离3.(2012•安徽)为增加绿化面积,某小区将原来正方形地砖更换为如图所示的正八边形植草砖,更换后,图中阴影部分为植草区域,设正八边形与其内部小正方形的边长都为a,则阴影部分的面积为()A.2a2B.3a2C.4a2D.5a2 4.(2012•安徽)如图,A点在半径为2的⊙O上,过线段OA上的一点P作直线ℓ,与⊙O 过A点的切线交于点B,且∠APB=60°,设OP=x,则△PAB的面积y关于x的函数图象大致是()A.B.C.D.5.(2012•黄石)有一根长40mm的金属棒,欲将其截成x根7mm长的小段和y根9mm长的小段,剩余部分作废料处理,若使废料最少,则正整数x,y应分别为()A.x=1,y=3 B.x=3,y=2 C.x=4,y=1 D.x=2,y=3 6.(2012•长春)有一道题目:已知一次函数y=2x+b,其中b<0,…,与这段描述相符的函数图象可能是()A.B.C.D.7.(2012•荆门)如图,点A是反比例函数y=(x>0)的图象上任意一点,AB∥x轴交反比例函数y=﹣的图象于点B,以AB为边作▱ABCD,其中C、D在x轴上,则S□ABCD为()A.2 B.3C.4D.58.(2012•河池)若a>b>0,则下列不等式不一定成立的是()A.ac>bc B.a+c>b+c C.D.a b>b29.(2012•南通)已知x2+16x+k是完全平方式,则常数k等于()A.64 B.48 C.32 D.16 10.(2012•六盘水)下列计算正确的是()A.B.(a+b)2=a2+b2C.(﹣2a)3=﹣6a3D.﹣(x﹣2)=2﹣x 11.(2012•郴州)抛物线y=(x﹣1)2+2的顶点坐标是()A.(﹣1,2)B.(﹣1,﹣2)C.(1,﹣2)D.(1,2)12.(2012•莆田)在一次芭蕾舞比赛中,甲、乙、丙、丁四队女演员的人数相同,身高的平均数均为166cm,且方差分别为=1.5,=2.5,=2.9,=3.3,则这四队女演员的身高最整齐的是()A.甲队B.乙队C.丙队D.丁队13.(2012•怀化)为了比较甲乙两种水稻秧苗是否出苗更整齐,每种秧苗各取10株分别量出每株长度,发现两组秧苗的平均长度一样,甲、乙方差分别是3.9、15.8,则下列说法正确的是()A.甲秧苗出苗更整齐B.乙秧苗出苗更整齐C.甲、乙出苗一样整齐D.无法确定14.(2012•长春)如图是2012年伦敦奥运会吉祥物,某校在五个班级中对认识它的人数进行了调查,结果为(单位:人):30,31,27,26,31.这组数据的中位数是()A.27 B.29 C.30 D.31 15.(2012•钦州)如图所示,把一张矩形纸片对折,折痕为AB,在把以AB的中点O为顶点的平角∠AOB三等分,沿平角的三等分线折叠,将折叠后的图形剪出一个以O为顶点的等腰三角形,那么剪出的等腰三角形全部展开平铺后得到的平面图形一定是()A.正三角形B.正方形C.正五边形D.正六边形16.(2012•江西)如图,有a、b、c三户家用电路接入电表,相邻电路的电线等距排列,则三户所用电线()A.a户最长B.b户最长C.c户最长D.三户一样长17.(2012•大庆)平面直角坐标系中,O为坐标原点,点A的坐标为(,1),将OA绕原点按逆时针方向旋转30°得OB,则点B的坐标为()A.(1,)B.(﹣1,)C.(O,2)D.(2,0)18.(2012•长春)在下列正方体的表面展开图中,剪掉1个正方形(阴影部分),剩余5个正方形组成中心对称图形的是()A.B.C.D.19.(2012•凉山州)已知,则的值是()A.B.C.D.20.(2012•南充)下列几何体中,俯视图相同的是()A.①②B.①③C.②③D.②④21.(2012•朝阳)两个大小不同的球在水平面上靠在一起,组成如图所示的几何体,则该几何体的俯视图是()A.两个外离的圆B.两个相交的圆C.两个外切的圆D.两个内切的圆22.(2012•河池)如图,把一块含有45°角的直角三角板的两个顶点分别放在直尺的一组对边上.如果∠1=25°,那么∠2的度数是()A.30°B.25°C.20°D.15°23.(2012•长春)如图,在平面直角坐标系中,在x轴、y轴的正半轴上分别截取OA、OB,使OA=OB;再分别以点A、B为圆心,以大于AB长为半径作弧,两弧交于点C.若点C的坐标为(m﹣1,2n),则m与n的关系为()A.m+2n=1 B.m﹣2n=1 C.2n﹣m=1 D.n﹣2m=1 24.(2012•巴中)如图,已知AD是△ABC的BC边上的高,下列能使△ABD≌△ACD的条件是()A.AB=AC B.∠BAC=90°C.B D=AC D.∠B=45°25.(2012•河池)用直尺和圆规作一个以线段AB为边的菱形,作图痕迹如图所示,能得到四边形ABCD是菱形的依据是()A.一组邻边相等的四边形是菱形B.四边相等的四边形是菱形C.对角线互相垂直的平行四边形是菱形D.每条对角线平分一组对角的平行四边形是菱形26.(2012•随州)如图,AB是⊙O的直径,若∠BAC=35°,则∠ADC=()A.35°B.55°C.70°D.110°27.(2012•攀枝花)下列四个命题:①等边三角形是中心对称图形;②在同圆或等圆中,相等的弦所对的圆周角相等;③三角形有且只有一个外接圆;④垂直于弦的直径平分弦所对的两条弧.其中真命题的个数有()A.1个B.2个C.3个D.4个28.(2012•莱芜)以下说法正确的有()①正八边形的每个内角都是135°②与是同类二次根式③长度等于半径的弦所对的圆周角为30°④反比例函数y=﹣,当x<0时,y随x的增大而增大.A.1个B.2个C.3个D.4个29.(2012•东营)如图,一次函数y=x+3的图象与x轴,y轴交于A,B两点,与反比例函数的图象相交于C,D两点,分别过C,D两点作y轴,x轴的垂线,垂足为E,F,连接CF,DE.有下列四个结论:①△CEF与△DEF的面积相等;②△AOB∽△FOE;③△DCE≌△CDF;④AC=BD.其中正确的结论是()A.①②B.①②③C.①②③④D.②③④专题一选择题解题方法参考答案.5.A6.D解:∵点B、点C、点D分别是点A关于x轴、坐标原点、y轴的对称点,∴四边形ABCD是矩形,∵四边形ABCD的面积是8,∴4×|﹣k|=8,解得|k|=2,又∵双曲线位于第二、四象限,∴k<0,∴k=﹣2.故选D.7.B .四、中考真题演练1.B2.C3.A解:∵某小区将原来正方形地砖更换为如图所示的正八边形植草砖,设正八边形与其内部小正方形的边长都为a,∴AB=a,且∠CAB=∠CBA=45°,∴sin45°===,∴AC=BC=a,=×a×a=,∴S△ABC∴正八边形周围是四个全等三角形,面积和为:×4=a2.正八边形中间是边长为a的正方形,∴阴影部分的面积为:a2+a2=2a2,故选:A.4.D解:当P与O重合,∵A点在半径为2的⊙O上,过线段OA上的一点P作直线l,与⊙O过A点的切线交于点B,且∠APB=60°,∴AO=2,OP=x,则AP=2﹣x,∴tan60°==,解得:AB=(2﹣x)=﹣x+2,=×PA×AB=(2﹣x)••(﹣x+2)=x2﹣6x+6,∴S△ABP故此函数为二次函数,∵a=>0,∴当x=﹣=﹣=2时,S取到最小值为:=0,根据图象得出只有D符合要求.故选:D.5.B解:根据题意得:7x+9y≤40,则x≤,∵40﹣9y≥0且y是非负整数,∴y的值可以是:1或2或3或4.当x的值最大时,废料最少,当y=1时,x≤,则x=4,此时,所剩的废料是:40﹣1×9﹣4×7=3mm;当y=2时,x≤,则x=3,此时,所剩的废料是:40﹣2×9﹣3×7=1mm;当y=3时,x≤,则x=1,此时,所剩的废料是:40﹣3×9﹣7=6mm;当y=4时,x≤,则x=0(舍去).则最小的是:x=3,y=2.故选B.6.A7.D解:设A的纵坐标是b,则B的纵坐标也是b.把y=b代入y=得,b=,则x=,,即A的横坐标是,;同理可得:B的横坐标是:﹣.则AB=﹣(﹣)=.则S□ABCD=×b=5.故选D.8.A9.A10.D11.D12.A13.A14.C15.D16.D17.A解:如图,作AC⊥x轴于C点,BD⊥y轴于D点,∵点A的坐标为(,1),∴AC=1,OC=,∴OA==2,∴∠AOC=30°,∵OA绕原点按逆时针方向旋转30°得OB,∴∠AOB=30°,OA=OB,∴∠BOD=30°,∴Rt△OAC≌Rt△OBD,∴DB=AC=1,OD=OC=,∴B点坐标为(1,).故选A.18.D19.D20.C21.B22.C解:∵△GEF是含45°角的直角三角板,∴∠GFE=45°,∵∠1=25°,∴∠AFE=∠GEF﹣∠1=45°﹣25°=20°,∵AB∥CD,∴∠2=∠AFE=20°.故选C.23.B解:∵OA=OB;分别以点A、B为圆心,以大于AB长为半径作弧,两弧交于点C,∴C点在∠BOA的角平分线上,∴C点到横纵坐标轴距离相等,进而得出,m﹣1=2n,即m﹣2n=1.故选:B.24.A25.B26.B27.B解:∵等边三角形是轴对称图形,但不是中心对称图形,∴①是假命题;如图,∠C和∠D都对弦AB,但∠C和∠D不相等,即②是假命题;三角形有且只有一个外接圆,外接圆的圆心是三角形三边垂直平分线的交点,即③是真命题;垂直于弦的直径平分弦,且平分弦所对的两条弧,即④是真命题.故选B.28.C解:①正八边形的每个内角都是:=135°,故①正确;②∵=3,=,∴与是同类二次根式;故②正确;③如图:∵OA=OB=AB,∴∠AOB=60°,∴∠C=∠AOB=30°,∴∠D=180°﹣∠C=150°,∴长度等于半径的弦所对的圆周角为:30°或150°;故③错误;④反比例函数y=﹣,当x<0时,y随x的增大而增大.故④正确.故正确的有①②④,共3个.故选C.29.C解:①设D(x,),则F(x,0),由图象可知x>0,∴△DEF的面积是:×||×|x|=2,设C(a,),则E(0,),由图象可知:<0,a>0,△CEF的面积是:×|a|×||=2,∴△CEF的面积=△DEF的面积,故①正确;②△CEF和△DEF以EF为底,则两三角形EF边上的高相等,故EF∥CD,∴FE∥AB,∴△AOB∽△FOE,故②正确;③∵C、D是一次函数y=x+3的图象与反比例函数的图象的交点,∴x+3=,解得:x=﹣4或1,经检验:x=﹣4或1都是原分式方程的解,∴D(1,4),C(﹣4,﹣1),∴DF=4,CE=4,∵一次函数y=x+3的图象与x轴,y轴交于A,B两点,∴A(﹣3,0),B(0,3),∴∠ABO=∠BAO=45°,∵DF∥BO,AO∥CE,∴∠BCE=∠BAO=45°,∠FDA=∠OBA=45°,∴∠DCE=∠FDA=45°,在△DCE和△CDF中,∴△DCE≌△CDF(SAS),故③正确;④∵BD∥EF,DF∥BE,∴四边形BDFE是平行四边形,∴BD=EF,同理EF=AC,∴AC=BD,故④正确;正确的有4个.故选C.。