去括号与添括号

合集下载

七年级数学《去括号与添括号》PPT课件.ppt

七年级数学《去括号与添括号》PPT课件.ppt

〔2〕a -〔b - c〕 〔4〕a -〔 - b - c〕
解:〔1〕a +〔b - c〕= a + b - c 〔2〕a -〔b - c〕= a -b + c 〔3〕a +〔-b - c〕= a - b - c 〔4〕a -〔 - b - c〕= a + b + c
例2、先去括号,再合并同类项: 〔1〕(x+y–z) + (x–y+z) – (x–y–z) 解:原式= x+y-z+x-y+z-x+y+z
= 6x2 – 3y2 – 6y2 + 4x2
去括号
类项
= 10x2 –9y2
合并同
解法二:
解:原式= 6x2 – 3y2 – 6y2 + 4x2 乘法分配 律
= 10x2 –9y2
合并
去多重括号的问题
含有多重括号,必须将所有括号都去掉,主 要有两种方法: 1、由里向外逐层去括号; 2、由外向里逐层去括号。但此时要注意将内 层括号看成一项来处理。
= (x+x-x)+(y-y+y)+(-z+z+z) = (1+1-1)x+(1-1+1)y+ (-1+1+1)z = x+y+z
熟练后,可省略.
例2、先去括号,再合并同类项:
〔2〕3(2x2 – y2) – 2(3y2 – 2x2)
解法一:
解:原式=(6x2 – 3y2) – (6y2 – 4x2) 分配律
a-b-c=a-(b+c)
归纳
“添括号〞法那么: 所添括号前面是“+〞号,括到括号里的各项 都不改变符号; 所添括号前面是“-〞号,括到括号里的各项 都改变符号.

整式的加减法去括号和添括号的用法(一)

整式的加减法去括号和添括号的用法(一)

整式的加减法去括号和添括号的用法(一)整式的加减法去括号和添括号的用法本文将介绍整式的加减法去括号和添括号的用法,并详细讲解以下几个方面:1.去括号和添括号的定义2.整式去括号的规则和示例3.整式添括号的规则和示例4.注意事项和常见错误1. 去括号和添括号的定义•去括号:将一个整式中的括号内的表达式按照括号前的符号进行分配运算,去掉括号。

•添括号:在一个整式中提取其中的一部分进行括号,用于改变运算顺序或减少计算量。

2. 整式去括号的规则和示例•去括号的规则:–括号前有正号或无符号:将括号内的每一项与括号前的符号相乘。

–括号前有负号:将括号内的每一项与括号前的符号相乘,并改变项内的符号。

•示例1:–原式:2(3x + 5y)–去括号后:6x + 10y•示例2:–原式:-3(2x - 4y)–去括号后:-6x + 12y3. 整式添括号的规则和示例•添括号的规则:–可以在整式中的任意位置添加括号,但需保持运算的正确性。

–添括号可以改变整式的运算顺序,提高计算效率。

•示例1:–原式:3x + 2y + 4z - 5w–添括号后:(3x + 2y) + (4z - 5w)•示例2:–原式:2x^2 + 3x - 5–添括号后:2x^2 + (3x - 5)4. 注意事项和常见错误•注意事项:–在运算中,括号的使用必须符合数学运算的法则。

–添括号时要注意运算顺序,确保计算的正确性。

•常见错误:–在去括号过程中,忽略了括号前的符号,导致计算错误。

–在添括号过程中,未保持原式的运算顺序,导致计算结果不正确。

这些是整式的加减法去括号和添括号的常用用法和规则,希望可以帮助你更好地理解和运用整式的运算。

在实际运算中,需要根据具体的情况和题目要求灵活运用这些方法。

去括号与添括号》课件(共27张)

去括号与添括号》课件(共27张)

添括号的例题解析
01
02
03
04
例题1
计算 (a+b)+(c+d) 的结果。

根据添括号的法则,原式可变 为 a+b+c+d。
例题2
计算 -(a+b)-(-c+d) 的结果 。

根据添括号的法则,原式可变 为 -a-b+c-d。
03
去括号与添括号的综合应 用
去括号与添括号的关联性
去括号与添括号的操作是相互关联的,它们在数学表达式中 具有相反的意义。去括号是将括号及其内部内容消除,而添 括号则是将非括号内容放入括号中。
我认为去括号和添括号是非常重 要的数学技能,它们在日常生活
和工作中都有着广泛的应用。
下节课预告
下节课我们将学习一元一次方程的解法,通过学习解一元一次方程的方法,我们可 以解决许多实际问题,例如计算购物时的找零、计算日利率等。
在下节课中,我们将重点掌握移项、合并同类项、去分母等解一元一次方程的技巧 ,并练习多种类型的一元一次方程题目。
解析
首先去除最内层的括号,得到 $7 times 5 - 4$,然后进 行乘法和减法运算,得到最终结果 $35 - 4 = 31$。
解析
首先去除最内层的括号,得到 $3 times 6 - 4$,然后进 行乘法和减法运算,得到最终结果 $18 - 4 = 14$。
02
添括号法则
添括号的定义
添括号是把运算式中的括号添在或去掉时,为了保持运算的等价性,对运算的各 项进行处理的一则规定。
去括号与添括号的例题解析
例题1
计算 (a + b) × c 的结果。
分析

第四章 代数式 考点7 去括号与添括号(原卷版)

第四章 代数式 考点7 去括号与添括号(原卷版)

第四章代数式(原卷板)7、去括号与添括号知识点梳理去括号与添括号(1)去括号法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.(2)去括号规律:①a+(b+c)=a+b+c,括号前是“+”号,去括号时连同它前面的“+”号一起去掉,括号内各项不变号;②a﹣(b﹣c)=a﹣b+c,括号前是“﹣”号,去括号时连同它前面的“﹣”号一起去掉,括号内各项都要变号.说明:①去括号法则是根据乘法分配律推出的;②去括号时改变了式子的形式,但并没有改变式子的值.(3)添括号法则:添括号时,如果括号前面是正号,括到括号里的各项都不变号,如果括号前面是负号,括号括号里的各项都改变符号.添括号与去括号可互相检验.同步练习一.选择题(共20小题)1.下列去括号正确的是()A.a﹣(b﹣c)=a﹣b﹣c B.x2﹣[﹣(﹣x+y)]=x2﹣x+yC.m﹣2(p﹣q)=m﹣2p+q D.a+(b﹣c﹣2d)=a+b﹣c+2d2.下列各式中去括号正确的是()A.a2﹣(2a﹣b2+b)=a2﹣2a﹣b2+bB.﹣(2x+y)﹣(﹣x2+y2)=﹣2x+y+x2﹣y2C.2x2﹣3(x﹣5)=2x2﹣3x+5D.﹣a3﹣[﹣4a2+(1﹣3a)]=﹣a3+4a2﹣1+3a3.下列变形中,不正确的是()A.a+(b+c﹣d)=a+b+c﹣d B.a﹣(b﹣c+d)=a﹣b+c﹣dC.a﹣b﹣(c﹣d)=a﹣b﹣c﹣d D.a+b﹣(﹣c﹣d)=a+b+c+d4.下列去括号正确的是()A.﹣3(b﹣1)=﹣3b﹣3B.2(2﹣a)=4﹣aC.﹣3(b﹣1)=﹣3b+3D.2(2﹣a)=2a﹣45.将3p﹣(m+5n﹣4)去括号,可得()A.3p﹣m+5n﹣4B.3p+m+5n﹣4C.3p﹣m﹣5n﹣4D.3p﹣m﹣5n+4 6.下列去括号正确的是()A.x2﹣(x﹣3y)=x2﹣x﹣3yB.x2﹣3(y2﹣2xy)=x2﹣3y2+2xyC.m2﹣4(m﹣1)=m2﹣4m+4D.a2﹣2(a﹣3)=a2+2a﹣67.下列各式中,去括号错误的是()A.a+(b﹣c)=a+b﹣c B.a﹣(b﹣c)=a﹣b+cC.a+(﹣b+c)=a﹣b+c D.a﹣(﹣b﹣c)=a+b﹣c8.下列去括号正确的是()A.a+(b﹣c)=a+b+c B.a﹣(b﹣c)=a﹣b﹣cC.a﹣(b﹣c)=a﹣b+c D.a+(b﹣c)=a﹣b+c9.去括号2﹣(x﹣y)=()A.2﹣x﹣y B.2+x+y C.2﹣x+y D.2+x﹣y 10.下列计算正确的是()A.3a2+a=4a3B.﹣2(a﹣b)=﹣2a+bC.5a﹣4a=1D.a2b﹣2a2b=﹣a2b11.﹣[a﹣(b﹣c)]去括号应得()A.﹣a+b﹣c B.﹣a﹣b+c C.﹣a﹣b﹣c D.﹣a+b+c 12.下面的计算正确的是()A.6a﹣5a=1B.﹣(a﹣b)=﹣a+bC.a+2a2=3a3D.2(a+b)=2a+b13.下列计算结果正确的是()A.﹣(2x﹣y)=﹣2x﹣yB.﹣3a+(4a2+2)=﹣3a+4a2﹣2C.﹣(2a﹣3y)=﹣2a+3yD.﹣3(a﹣7)=﹣3a+714.下列各式中,不能由3a﹣2b+c经过变形得到的是()A.3a﹣(2b+c)B.c﹣(2b﹣3a)C.(3a﹣2b)+c D.3a﹣(2b﹣c)15.﹣(a﹣b+c)变形后的结果是()A.﹣a+b+c B.﹣a+b﹣c C.﹣a﹣b+c D.﹣a﹣b﹣c16.下列运算正确的个数()①2a+3b=5ab;②3m2n﹣2nm2=m2n;③a﹣(b﹣c)=a﹣b+c;④y﹣x=﹣(x﹣y)A.1B.2C.3D.417.下列去括号正确的是()A.a+(b+c)=a+b﹣c B.a+(b﹣c)=a+b+cC.a﹣(b+c)=a﹣b+c D.a﹣(b﹣c)=a﹣b+c18.下列式子去括号正确的是()A.﹣(7a+3b﹣5c)=﹣7a﹣3b﹣5cB.7a+2(3b﹣3)=7a+6b﹣3C.5a﹣(b﹣5)=5a﹣b﹣5D.﹣2(3x﹣y+1)=﹣6x+2y﹣219.下列各式中去括号正确的是()A.﹣(﹣a﹣b)=a﹣bB.a2+2(a﹣2b)=a2+2a﹣2bC.5x﹣(x﹣1)=5x﹣x+1D.3x2﹣(x2﹣y2)=3x2﹣x2﹣y220.下列各式从左到右正确的是()A.﹣(3x+2)=﹣3x+2B.﹣(﹣2x﹣7)=﹣2x+7C.﹣(3x﹣2)=3x+2D.﹣(﹣2x﹣7)=2x+7二.填空题(共7小题)21.当1≤m<3时,化简|m﹣1|﹣|m﹣3|=.22.化简﹣3(a﹣2b+1)的结果为.23.如果多项式4x3+2x2﹣(kx2+17x﹣6)中不含x2的项,则k的值为.24.多项式中不含xy项,则常数k的值是.25.在括号内填上恰当的项:1﹣x2+2xy﹣y2=1﹣.26.﹣4m+3n=﹣.27.计算:|﹣3|=;2a﹣(﹣3a)=.。

去括号与添括号教学用

去括号与添括号教学用

当括号前的符号为“+”号时,添括号后,括号内的每一项符号保持不变。
正号在数学中表示保持原样。因此,当括号前有正号时,添括号后,括号内的每一项符号保持不变。例如,“a+b”添括号后变为“a+b”,其中“a”和“b”的符号都没有改变。
总结词
详细描述
括号前是“+”号时,添括号后,括号内的每一项符号不变
THANKS
去括号与添括号教学用
目录
去括号的规则 添括号的规则 去括号与添括号的注意事项
01
CHAPTER
去括号的规则
总结词:符号不变
详细描述:当括号前的符号为“+”号时,按照去括号的规则,应将括号去除,并且括号内的内容保持不变。例如,将表达式“(a+b)”中的括号去掉,得到“a+b”,符号没有发生变化。
括号前是“+”号时,去掉括号,括号内的内容不变
总结词:符号相反
详细描述:当括号前的符号为“-”号时,按照去括号的规则,应将括号去除,并且括号内各项的符号与原来相反。例如,将表达式“-(a+b)”中的括号去掉,得到“-a-b”,括号内的“+”号变为“-”号。
括号前是“-”号时,去掉括号,括号内各项的符号与原来相反
总结词
括号内的每一项都要变号
当括号前的符号为“-”号时,去括号后,括号内的每一项都需要变号。
总结词
在数学中,负号具有取反的作用。因此,当括号前有负号时,去括号后,括号内的每一项都需要变号。例如,“-(a+b)”去括号后变为“-a-b”,其中“a”和“b”都变号。
详细描述
括号前是“-”号时,去括号后,括号内的每一项都要变号
02
CHAPTER
添括号的规则

去括号与添括号-华师大版

去括号与添括号-华师大版
在代数式中,如果数字和代数式之间没有其他运算符号,为了保持运算的优先级,需要使用括号将数字和代数式 括起来。这样可以确保运算的正确性,避免出现意外的结果。
代数式中的同类项需要合并时,需要用括号括起来
总结词
同类项需要用括号括起来
详细描述
在代数式中,如果存在同类项需要进行合并时,需要使用括号将它们括起来。这样可以确保合并的正 确性,避免出现运算错误。同时,括号的使用也可以使得代数式更加简洁明了。
去括号与添括号-华师大版
目 录
• 去括号的规则 • 添括号的规则 • 去括号与添括号的例题解析 • 去括号与添括号的注意事项
01 去括号的规则
括号前是“+”号,直接去掉括号
总结词
当括号前是“+”号时,括号可以直接去掉,括号内的各项 符号不变。
详细描述
在数学中,如果括号前是“+”号,表示括号内的各项保持 原来的正负号,因此可以直接去掉括号,而不会改变表达式 的值。例如,将“(a+b)”变为“a+b”。
括号前是“+”号时,去括号后各项 符号不变。例如: $(+a)+(+b)=a+b$。
括号前是“+”号时,如果括号前有数 字,如$3(a+b)$,去括号后各项符号不 变,数字与括号内各项相乘。例如: $3(a+b)=3a+3b$。
添括号时需要注意括号的正负号
添括号后各项符号不变。例如:$a+(b+c)=a+b+c$。
括号前是“-”号,括号及其内部符号需改变符号
总结词
当括号前是“-”号时,括号内的各项需要改变符号,即正数变为负数,负数变 为正数。
详细描述

去括号和添括号的法则

去括号和添括号的法则

去括号和添括号的法则一、去括号法则在代数表达式中,有时候我们需要去除括号来简化表达式。

去括号法则适用于求和、求差和乘法运算。

下面是去括号的三个法则:1.同号相乘法则:当括号外面有一个正号或者一个负号时,我们可以通过将括号里面的每一项与括号外面的符号相乘来去括号。

例如,对于表达式(a+b+c),如果去除括号,则结果为a+b+c。

2.一正一负相乘法则:当括号外面有一个正号,而括号里面的每一项前面有一个负号时,我们可以通过去除括号并反转每一项的正负号来去括号。

例如,对于表达式(a-b-c),如果去除括号,则结果为a-b-c。

3.乘法分配律:当括号外面有一个数与括号里面的每一项相乘时,我们可以通过将括号里面的每一项与括号外面的数相乘来去括号。

例如,对于表达式3(a+b+c),如果去除括号,则结果为3a+3b+3c。

这些去括号法则是非常有用的,因为它们可以使复杂的表达式变得简洁,并且可以更容易地进行计算。

二、添括号法则添括号法则正好与去括号法则相反,它适用于求和、求差和乘法运算。

添加括号可以改变表达式的结构和优先级。

下面是添括号的两个法则:1.加减添括号法则:当一个数和一个和式相加或相减时,我们可以通过在和式的前后添加括号来添括号。

例如,对于表达式a+b-c,我们可以添括号为(a+b)-c,或者a+(b-c),这样可以改变运算的顺序和结果。

2.乘法添括号法则:当一个数与一个乘积相乘时,我们可以通过在乘积的前后添加括号来添括号。

例如,对于表达式a*b+c,我们可以添括号为(a*b)+c,或者a*(b+c),这样可以改变运算的顺序和结果。

添括号法则在对表达式进行化简、分解或重组时非常有用。

它可以帮助我们更好地理解和计算复杂的代数运算。

三、应用场景和示例示例1:简化表达式考虑以下代数表达式:3(a+b)+2(b-c)。

使用乘法分配律和去括号法则,我们可以简化这个表达式为3a+3b+2b-2c。

示例2:重组表达式考虑以下代数表达式:a*b+c*d。

去括号与添括号课件教师用课件PPT

去括号与添括号课件教师用课件PPT

(x - y) / z = x / z - y / z 2 + 3 * 4 = (2 + 3) * 4 = 12
详细描述:这类习题通常包括在给定的 数学表达式中添加括号,以改变表达式 的运算顺序,从而得到不同的结果。
示例
去括号与添括号的综合习题与练习
总结词:去括号与添 括号的综合习题考察 学生对括号规则的全 面理解和应用能力。
详细描述:这类习题 通常包括既有去括号 的操作,也有添括号 的操作,需要学生综 合考虑运算优先级和 括号规则,得出正确 的结果。
示例
(3 + 2) * (4 - 1) = (3 + 2) * 3 = 15
(x + y) / z + (w - p) =x/z+y/z+w/ z-p/z
05
总结与回顾
去括号的总结与回顾
感谢观看
THANKS
添括号的总结与回顾
添括号的定义
添括号是在数学表达式中添加括 号,以改变原有运算的顺序或明
确运算的对象。
添括号的规则
添括号时应遵循数学中的运算顺序 ,同时要注意括号前是“-”号时 ,括号内的各项符号需要改变。
添括号的例子
如a-(b+c)=a-b-c,(a*b)/c=(ab)/c, (a+b)*(c-d)=(a+b)*c-(a+b)*d。
去括பைடு நூலகம்与添括号的综合总结与回顾
去括号与添括号的联系
去括号和添括号是数学中常用的两种操作,它们在运算顺序和符号处理上都有 一定的规则和技巧。在实际应用中,需要根据具体问题选择合适的操作。
去括号与添括号的注意事项
在进行去括号和添括号的操作时,需要注意运算顺序和符号的变化,避免出现 计算错误或逻辑错误。同时,要理解数学表达式的整体结构和意义,以便更好 地应用去括号和添括号的规则。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档