古典概型题型归纳
古典概型四类重点内容题型

古典概型四类重点题型古典概型一种十分重要的概率模型,是学习概率与统计的起点,注意古典概型的两个特征:(1)所有的基本事件只有有限个;(2)每个基本事件的发生都是等可能的.只有在同时满足(1)、(2)的条件下,运用的古典概型计算公式P(A)=得出的结果才是正确的。
下面就古典概型的四种重要题型举例解析如下:一、概念辨析题例1.判断下列命题正确与否.(1)先后抛掷两枚均匀硬币,有人说一共出现“两枚正面”,“两枚反面”,“一枚正面,一枚反面”三种结果,因此出现“一枚正面,一枚反面”的概率是;(2)射击运动员向一靶心进行射击.试验的结果为:命中10环,命中9环,……,命中0环,这个试验是古典概型.(3)袋中装有大小均匀的四个红球,三个白球,两个黑球,那么每种颜色的球被摸到的可能性相同.【思路点拨】根据每一次试验的意义和每个基本事件的含义进行判断.【解】所有命题均不正确.(1)应为4种结果,还有一种是“一枚反面,一枚正面”.(2)不是古典概型,因为命中10环,命中9环,…命中0环不是等可能的.(3)摸到红球的概率为,白球的概率为,黑球的概率为.【方法技巧】弄清每一次试验的意义及每个基本事件的含义是解决问题的前提,正确把握各个事件的相互关系是解决问题的重要方面,判断一次试验中的基本事件,一定要从其可能性入手,加以区分而一个试验是否是古典概型要看其是否满足有限性和等可能性.二、写出基本事件且求其概率例2 做如下试验:“将一枚均匀硬币抛掷两次”.(1)试用列举法写出该试验所包含的基木事件;(2)事件A“两次都出现正面”包含几个基本事件?(3)事件B“一次出现正面,一次出现反面”含有的基本事件是什么?(4)计算P(A)和P(B).【思路点拨】试验“将一枚均匀硬币抛掷两次”中,由于出现的结果有限,每次只能有一种结果(一枚硬币要么正面朝上,要么反面朝上),且每种结果出现的可能性是相同的,所以该试验是古典概型.当试验的结果较少时,可用列举法将所有试验结果一一列出,这是最基本、最直观的方法.同样地可把事件A或事件B所含的基本事件一一列出.计算古典概型的概率关键是确定m,n.【解】(1)试验“将一枚均匀硬币抛掷两次”所出现的所有基本事件如下:(正,正)、(正,反)、(反,正)、(反,反)共4种等可能的结果.(2)事件A包含的基本事件只有一个,即(正,正).(3)事件B包含的基本事件有两个,即(正,反)和(反,正).(4)P(A)=,P(B)=.【方法技巧】本题在求试验的基本事件总数时,用枚举法将所有结果一一列举出来、直观而具体,但应把握列举的原则,不要出现重复和遗漏.三、求简单古典概型的概率例3 如图,在一个木制的棱长为3的正方体表面涂上颜色,将它的棱3等分,然后从等分点把正方体锯开,得到27个棱长为1的小正方体,将这些小正方体充分混合后,装入一个口袋中.(1)从这个口袋中任意取出1个小正方体,这个小正方体的表面恰好没有颜色的概率是多少?(2)从这个口袋中同时任意取出2个小正方体,其中1个小正方体恰好有1个面涂有颜色,另1个小正方体至少有2个面涂有颜色的概率是多少?【思路点拨】该模型为古典概型,基本事件个数是有限的,并且每个基本事件的发生是等可能的.【解】在27个小正方体中,恰好3个面都涂有颜色的共8个,恰好2个面涂有颜色的共12个,恰好1个面涂有颜色的共6个,表面没涂颜色的1个.(1)27个小正方体中任意取出1个,共有= 27种等可能的结果.因为在27个小正方体中,表面没涂颜色的只有1个,所以从这个口袋中任意取出1个小正方体,而这个小正方体的表面恰好没涂颜色的概率是.(2)从27个小正方体中,同时任取2个,共有种等可能的结果.在这些结果中,有1个小正方体恰好有1个面涂有颜色,另1个小正方体至少有2个面涂有颜色包含的结果有种.所以从这个口袋中同时任意取出2个小正方体,其中1个小正方体恰好有1个面涂有颜色,另1个小正方体至少有2个面涂有颜色的概率是.【方法技巧】(1)计算古典概型事件的概率可分三步:①算出基本事件的总个数n;②求出事件A所包含的基本事件个数m;③代入公式求出概率P.(2)含有“至多”“至少”等类型的概率问题,从正面突破比较困难或者比较繁琐时,可考虑其反面,即对立事件,然后应用对立事件的性质进一步求解.四、复杂的古典概型的概率的求法例4 甲、乙二人用4张扑克牌(分别是红桃2、红桃3、红桃4、方片4)玩游戏,他们将扑克牌洗匀后,背面朝上放在桌面上,甲先抽,乙后抽,抽出的牌不放回,各抽一张.(1)设(I,j)分别表示甲、乙抽到的牌的数字,写出甲、乙二人抽到的牌的所有情况;(2)若甲抽到红桃3,则乙抽出的牌的牌面数字比3大的概率是多少?(3)甲、乙约定:若甲抽到的牌的牌面数字比乙大,则甲胜,反之,则乙胜.你认为此游戏是否公平,说明你的理由.【思路点拨】因为共有4张牌,基本事件的总数是有限的,而且每张牌被抽到是等可能的,因此是古典概型,另外要注意牌是不放回摸牌,每次摸出的牌不能重复.【解】(1)甲、乙二人抽到的牌的所有情况(方片4用4’表示,其他用相应的数字表示)为:(2,3),(2,4),(2,4’),(3,2),(3,4),(3,4’),(4,2),(4,3),(4,4’),(4’,2),(4’,3),(4’,4)共12种不同情况.(2)甲抽到3,乙抽到的牌只能是2,4,4’,因此乙抽到的牌的牌面数字比3大的概率为.(3)甲抽到的牌的牌面数字比乙大的情况有(3,2,(4,2),(4,3),(4’,2),(4’,3)共5种,故甲胜的概率,同理乙胜的概率为.因为P1= P2,所以此游戏公平.【方法技巧】本题属于求较复杂事件的概率,关键是理解题目的实际含义,把实际问题转化为概率模型,联想掷骰子试验,把红桃2,红桃3,红桃4和方片4分别用数字2,3,4,4’表示,抽象出基本事件,把复杂事件用简单事件表示,列举出总体I包含的基本事件的个数n 及事件A包含的基本事件的个数m,用公式求解.必要时将所求事件转化成彼此互斥的事件的和,或者先去求对立事件的概率,进而再用互斥事件的概率加法公式或对立事件的概率公式求出所求事件的概率.。
高考数学概率与统计题型解析与答题技巧

高考数学概率与统计题型解析与答题技巧在高考数学中,概率与统计是一个重要的板块,它不仅考查学生的数学知识和技能,还培养学生的数据分析和推理能力。
对于很多同学来说,这部分内容既有一定的挑战性,又充满了得分的机会。
下面我们就来详细解析高考数学中概率与统计的常见题型以及相应的答题技巧。
一、概率题型1、古典概型古典概型是概率中最基础的题型之一。
它的特点是试验结果有限且等可能。
例如,从装有若干个红球和白球的袋子中摸球,计算摸到某种颜色球的概率。
答题技巧:首先,确定总的基本事件数和所求事件包含的基本事件数。
然后,利用古典概型的概率公式 P(A)=所求事件包含的基本事件数÷总的基本事件数进行计算。
2、几何概型几何概型与古典概型不同,它的试验结果是无限的。
常见的有长度型、面积型、体积型几何概型。
比如,在一个区间内随机取一个数,求满足某个条件的概率。
答题技巧:对于几何概型,关键是要正确确定几何度量。
例如,长度型就计算长度,面积型就计算面积,体积型就计算体积。
然后,按照几何概型的概率公式 P(A)=构成事件 A 的区域长度(面积或体积)÷试验的全部结果所构成的区域长度(面积或体积)进行求解。
3、条件概率条件概率是指在事件 B 发生的条件下,事件 A 发生的概率。
题目中通常会给出一些条件,让我们计算在这些条件下的概率。
答题技巧:利用条件概率公式 P(A|B)= P(AB)÷P(B),先求出 P(AB)和 P(B),再计算条件概率。
4、相互独立事件与互斥事件相互独立事件是指一个事件的发生与否对另一个事件的发生概率没有影响;互斥事件则是指两个事件不能同时发生。
答题技巧:对于相互独立事件,它们同时发生的概率用乘法计算,即 P(AB)= P(A)×P(B);对于互斥事件,它们至少有一个发生的概率用加法计算,即 P(A∪B)= P(A)+ P(B)。
二、统计题型1、抽样方法包括简单随机抽样、分层抽样和系统抽样。
《古典概型的概率计算公式》典型例题剖析

《古典概型的概率计算公式》典型例题剖析题型1 古典概型的判断例1 (1)“在区间[0,10]上任取一个数,这个数恰为5的概率是多少?”这个概率模型是古典概型吗?(2)若一次试验的结果所包含的样本点的个数为有限个,则该试验是古典概型吗?解析(1)不是古典概型,因为在区间[0,10]上任取一个数,其试验结果有无限个,故其样本点有无限个,所以不是古典概型.(2)不一定是古典概型.还必须满足每个样本点出现的可能性相等才是古典概型.答案(1)不是古典概型(2)不一定是古典概型方法技巧判断随机试验是否为古典概型,关键是抓住古典概型的两个特征—有限性和等可能性,二者缺一不可.变式训练1 下列试验是古典概型的为_________(填序号).①求从5个数学学习小组中选出甲、乙两个小组代表学校参加数学竞赛的概率;②掷一枚均匀的硬币3次,求有2次正面向上的概率;③播下10粒种子,求有5粒发芽的概率;④一周中7人每天值班1天,求甲、乙相邻的概率.答案①②④.点拨①②④是古典概型,因为符合古典概型的定义和特征.③不是古典概型,因为不符合等可能性,每一粒种子发芽的概率一般是不相等的.题型2 古典概型概率的计算例2 某儿童乐园在“六一”儿童节推出了一项趣味活动.参加活动的儿童需转动如图所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数.设两次记录的数分别为,x y.奖励规则如下:①若3xy,则奖励玩具一个;②若8xy,则奖励水杯一个;③其余情况奖励饮料一瓶.假设转盘质地均匀,四个区域划分均匀.小亮准备参加此项活动.(1)求小亮获得玩具的概率;(2)请比较小亮获得水杯与获得饮料的概率的大小,并说明理由解析写出试验的样本空间,计算随机事件的样本点个数,应用古典概型的概率计算公式计算概率.答案用数对(,)x y表示儿童参加活动先后记录的数,则样本空间Ω与点集{(,),,14,14}S x y x y x y=∈∈N N∣一一对应.因为S中元素的个数是4416⨯=,所以样本点总数16n=.(1)记“3xy”为事件A,则事件A包含的样本点有5个,即{(1,1),(1,2),(1,3),(2,1),(3,1)}A=.所以5()16P A=,即小亮获得玩具的概率为516.(2)记“8xy”为事件B,“38xy<<”为事件C,则事件B包含的样本点有6个,即{(2,4),(3, 3) ,(3,4),(4,2),(4,3),(4,4)}B=,所以63 ()168 P B==.事件C包含的样本点有5个,即{(1,4),(2,2),(2,3),(3,2),(4,1)}C=,所以5()16P C=.因为35816>, 所以小亮获得水杯的概率大于获得饮料的概率.规律方法 解古典概型问题时,要牢牢抓住它的两个特征和其计算公式.但是这类问题的解法多样,技巧性强,在解决此类题时需要注意以下两个问题:(1)试验必须具有古典概型的两个特征一有限性和等可能性;(2)计算样本点的个数时,须做到不重不漏,常借助坐标系、表格及树状图等列出所有样本点.变式训练2 一个口袋内装有形状、大小相同,编号为123,,a a a 的3个白球和1个黑球b .(1)从中一次性摸出2个球,求摸出2个白球的概率;(2)从中连续取两次,每次取一球后放回,求取出的两个球中恰好有1个黑球的概率.答案 (1)一次性摸出2个球,此试验的样本空间为()()()()()(){}121323123,,,,,,,,,,,a a a a a a a b a b a b Ω=.Ω由6个样本点组成,而且这些样本点的出现是等可能的.用A 表示“摸出2个白球”这一事件,则({)()()}121323,,,,,A a a a a a a =. 事件A 由3个样本点组成,因而31()62P A ==. 有放回地连续取两次,此试验的样本空间为()()()()(){()()()()1112131212223231,,,,,,,,,,,,,,,,,,a a a a a a a b a a a a a a a b a a Ω=()()()()()()}32333123,,,,,,,,,,,,(,)a a a a a b b a b a b a b b .其中小括号左边的字母表示第1次取出的球,右边的字母表示第2次取出的球,Ω由16个样本点组成,而且这些样本点的出现是等可能的.用B 表示“连续取出的两球恰好有1个黑球”这一事件,则()()()()(){)}123123,,,,,,,,,,(,B a b a b a b b a b a b a =,事件B 由6个样本点组成,则63()168P B ==. 规律方法总结1.古典概型是一种最基本的概率模型.判断试验是否为古典概型要紧紧抓住其两个特征:样本点的有限性和等可能性.2.求随机事件A 包含的样本点个数和样本点总数常用的方法是列举法(画树状图和列表),注意要做到不重不漏.3.在应用公式()A m P A n==Ω包含的样本点个数包含的样本点总数时,关键是正确理解样本点与事件A 的关系,从而正确求出m 和n .4.注意“有放回取样”与“不放回取样”对样本点的影响.核心素养园地例 某单位N 名员工参加“社区低碳你我他”活动,他们的年龄在25岁至50岁之间,按年龄分组:第1组[25,30),第2组[30,35),第3组[35,40),第4组[40,45),第5组[45,50],得到的频率分布直方图如图所示,下表是年龄的频数分布表.(1)求正整数,,a b N 的值;(2)现要从年龄较小的第1,2,3组中用分层随机抽样的方法抽取6人,则年龄在第1,2,3组的人数分别是多少?(3)在(2)的条件下,从这6人中随机抽取2人参加社区宣传交流活动,求恰有1人年龄在第3组的概率.解析 (1)根据频率分布直方图的意义并结合表格内的已知数据可以求得,,a b N 的值.(2)先求出这三组的总人数,再根据分层抽样的取样方法求得每组取样的人数.(3)利用列举法列出所有的样本点,共有15个,其中满足条件的样本点有8个,利用古典概型的概率计算公式计算得出结果.答案 (1)由频率分布直方图可知,[25,30)与[30,35)两组的人数相同,所以25a =.且0.08251000.02b =⨯=.总人数252500.025N ==⨯. (2)因为第1,2,3组共有2525100150++=(人),所以利用分层随机抽样的方法在150名员工中抽取6人,第1组被抽取的人数为2561150⨯=,第2组被抽取的人数为2561150⨯=,第3组被抽取的人数为10064150⨯=. 所以年龄在第1,2,3组的人数分别是1,1,4.(3)由(2)可设第1组的1人为A ,第2组的1人为B ,第3组的4人分别为1234,,,C C C C ,则从6人中随机抽取人的所有可能结果为()()1,,,,A B A C ())()()()()()()()()2341234121314,,(,,,,,,,,,,,,,,,,,,A C A C A C B C B C B C B C C C C C C C ()()()232434,,,,,C C C C C C ,共有15个样本点.其中恰有1人年龄在第3组的所有结果为()()()()()()()()12341234,,,,,,,,,,,,,,,A C A C A C A C B C B C B C B C ,共有8个样本点.所以恰有1人年龄在第3组的概率为815. 讲评 概率问题常常与统计问题结合在一起考查.在此类问题中,概率与频率的区别并不是十分明显,通常直接用题目中的频率代替概率进行计算.第(3)题是古典概型问题.解决与古典概型交汇的问题时,应明确相关事件,列举样本点,然后利用古典概型的概率计算公式求解.如果能正确理解题意,分析求解第(1)题与第(2)题,那么可以认为达到数学运算、直观想象、数学建模核心素养水平一的要求;如果能正确求解第(3)题,那么可以认为达到数学建模核心素养水平二与数学运算核心素养水平一的要求.。
高中 古典概型 知识点+例题+练习

教学过程【训练2】(2014·滨州一模)甲、乙两名考生在填报志愿时都选中
了A,B,C,D四所需要面试的院校,这四所院校的面试安排在同
一时间.因此甲、乙都只能在这四所院校中选择一所做志愿,假设
每位同学选择各个院校是等可能的,试求:
(1)甲、乙选择同一所院校的概率;
(2)院校A,B至少有一所被选择的概率.
1.古典概型计算三步曲
第一,本试验是否是等可能的;第二,本试验的基本事件有多少个;
第三,事件A是什么,它包含的基本事物有多少个.
2.确定基本事件的方法
列举法、列表法、树形图法.
教
学
效
果
分
析。
古典概型例题及解析

古典概型例题及解析
摘要:
1.概论古典概型
2.古典概型的性质与运算
3.例题解析
4.总结
正文:
一、概论古典概型
古典概型是概率论中的一个基本概念,主要用于描述随机试验的结果。
古典概型假设每个试验的结果都是等可能的,即每个结果的概率相等。
古典概型可以应用于各种实际问题,例如掷骰子、抽取扑克牌等。
二、古典概型的性质与运算
1.性质
古典概型的性质主要体现在以下几点:
(1)每个结果的概率相等。
(2)所有可能结果的概率和为1。
(3)任意两个结果的概率和可以表示为它们交集的概率。
2.运算
古典概型的运算主要包括加法和乘法。
(1)加法:对于两个古典概型A 和B,若它们是互斥的,即A 和B 没有相同的结果,则A 和B 的并集的概率为P(A∪B)=P(A)+P(B)。
(2)乘法:对于两个古典概型A 和B,若它们是独立的,即A 的结果不影响B 的结果,则A 和B 的交集的概率为P(A∩B)=P(A)P(B)。
三、例题解析
例题:一个袋子里有3 个红球和2 个绿球,从中随机抽取一个球,求抽到红球的概率。
解析:这是一个典型的古典概型问题。
根据古典概型的性质,抽到红球的概率为红球的个数除以总球数,即P(红球)=3/(3+2)=3/5。
四、总结
古典概型是概率论中的一个基本概念,它具有一些基本的性质和运算规律。
通过理解古典概型的概念和运算,我们可以解决许多实际问题。
古典概型知识点总结

古典概型知识点总结关键信息项:1、古典概型的定义2、古典概型的特点3、古典概型的概率计算公式4、基本事件的概念5、基本事件的特点6、古典概型的常见例题7、古典概型与其他概率类型的区别11 古典概型的定义古典概型是一种概率模型,它具有以下两个特点:试验中所有可能出现的基本结果是有限的。
每个基本结果出现的可能性相等。
111 有限性意味着试验的结果是可以一一列举出来的,不是无穷无尽的。
112 等可能性表明每个基本结果发生的概率相同,不存在某些结果更容易发生的情况。
12 古典概型的特点确定性:试验的条件和结果都是明确的。
互斥性:不同的基本事件之间是相互排斥的,不会同时发生。
121 可重复性相同的条件下,重复进行试验,结果具有稳定性。
122 规范性符合概率的基本定义和性质,能够通过计算得出准确的概率值。
13 古典概型的概率计算公式假设试验的基本事件总数为 n,事件 A 包含的基本事件数为 m,则事件 A 发生的概率 P(A) = m / n 。
131 计算步骤确定基本事件的总数 n 。
确定事件 A 包含的基本事件数 m 。
代入公式计算 P(A) 。
132 注意事项计算要准确,避免遗漏或重复计算基本事件。
确保对基本事件的界定清晰无误。
14 基本事件的概念基本事件是试验中不能再分的最简单的随机事件,其他事件可以由基本事件组合而成。
141 基本事件的性质独立性:每个基本事件的发生与否互不影响。
完整性:所有基本事件的集合构成了试验的全部可能结果。
15 基本事件的特点最小性:不能再分解为更小的随机事件。
明确性:能够清晰地定义和区分。
151 基本事件的表示通常用简单的符号或数字来表示。
152 基本事件的数量确定根据试验的具体情况,通过分析得出。
16 古典概型的常见例题掷骰子问题:计算掷出特定点数的概率。
抽奖问题:在有限数量的抽奖券中计算中奖的概率。
摸球问题:从装有不同颜色球的容器中摸出特定颜色球的概率。
161 例题分析详细阐述如何确定基本事件和所求事件包含的基本事件数。
高考数学冲刺古典概型考点全面解析

高考数学冲刺古典概型考点全面解析高考对于每一位学子来说,都是人生中的一次重要挑战。
而数学作为其中的关键学科,更是备受关注。
在数学的众多考点中,古典概型是一个不容忽视的重要部分。
在高考冲刺阶段,对古典概型进行全面且深入的复习,对于提高数学成绩具有重要意义。
一、古典概型的基本概念古典概型是一种概率模型,具有两个重要特征:有限性和等可能性。
有限性指的是试验中所有可能出现的基本事件只有有限个;等可能性则表示每个基本事件出现的可能性相等。
例如,掷一枚质地均匀的骰子,出现的点数就是一个古典概型问题。
因为骰子的点数只有 1、2、3、4、5、6 这六种可能,且每种点数出现的可能性相同。
二、古典概型的概率计算公式在古典概型中,事件 A 的概率可以通过以下公式计算:P(A) =事件 A 包含的基本事件个数/试验中所有可能的基本事件个数例如,从装有 3 个红球和 2 个白球的口袋中随机取出一个球,求取出红球的概率。
这里试验中所有可能的基本事件个数为 5(3 个红球和2 个白球),取出红球的基本事件个数为 3,所以取出红球的概率为3/5。
三、古典概型的常见题型1、摸球问题这是古典概型中常见的一类问题。
例如,一个袋子里装有 5 个红球和 3 个白球,从中随机摸出 2 个球,求摸出一红一白的概率。
解决这类问题时,首先要确定总的基本事件个数,即从 8 个球中选2 个的组合数。
然后计算摸出一红一白的基本事件个数,可以分两步考虑,先选一个红球,再选一个白球,两者相乘即为摸出一红一白的基本事件个数。
2、掷骰子问题掷骰子问题常常会与其他条件相结合。
比如,同时掷两枚质地均匀的骰子,求点数之和大于 8 的概率。
对于这种问题,需要列出所有可能的基本事件,然后找出点数之和大于 8 的基本事件个数,最后计算概率。
3、抽样问题抽样问题可以分为有放回抽样和无放回抽样。
例如,从 10 件产品中抽取 3 件,有放回抽样和无放回抽样时,抽到特定产品的概率是不同的。
古典概型题型归纳

题型一 古典概型1袋中共有6个除了颜色外完全相同的球,其中有1个红球,2个白球和3个黑球,从袋中任取两球,两球颜色为一白一黑的概率等于(A )15 (B )25 (C )35 (D )452从装有3个红球、2个白球的袋中任取3个球,则所取的3个球中至少有1个白球的概率是 (A )110 (B )310 (C )35 (D )9103盒中装有形状、大小完全相同的5个球,其中红色球3个,黄色球2个.若从中随机取出2个球,则所取出的2个球颜色不同的概率等于_______.4从1,2,3,4这四个数中一次随机地取两个数,则其中一个数是另一个的两倍的概率是______ 5从边长为1的正方形的中心和顶点这五点中,随机(等可能)取两点,则该两点间的距离为22的概率是___________。
6三位同学参加跳高、跳远、铅球项目的比赛,若每人只选择一个项目,则有且仅有两位同学选择的项目相同的概率是 (结果用最简分数表示)7现有10个数,它们能构成一个以1为首项,3 为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是 .题型二 几何概型1如图,矩形ABCD 中,点E 为边CD 的中点,若在矩形ABCD 内部随机取一个点Q ,则点Q 取自△ABE 内部的概率等于( )(A ).14 (B ). 13 (C ). 12 (D ). 232如图,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆。
在扇形OAB 内随机取一点,则此点取自阴影部分的概率是A. B. . C. D.3设不等式组⎩⎨⎧≤≤≤≤20,20y x ,表示平面区域为D ,在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是(A )4π (B )22π- (C )6π (D )44π- 4小波通过做游戏的方式来确定周末活动,他随机地往单位圆内投掷一点,若此点到圆心的距离大于12,则周末去看电影;若此点到圆心的距离小于14,则去打篮球;否则,在家看书.则小波周末不.在家看书的概率为 .5已知圆C :,y x 1222=+直线l :4x+3y=25.(1)圆C 的圆心到直线l 的距离为_____;(2)圆C 上任意一点A 到直线l 的距离小于2的概率为____题型三 大题题型1某日用品按行业质量标准分成五个等级,等级系数X 依次为1,2,3,4,5.现从一批该日用品中随机抽取20件,对其等级系数进行统计分析,得到频率分布表如下: X 1 2 34 5 fa 0.2 0.45b c(I)若所抽取的20件日用品中,等级系数为4的恰有3件,等级系数为5的恰有2件,求a,b,c 的值; (II)在(1)的条件下,将等级系数为4的3件日用品记为x 1,x 2,x 3,等级系数为5的2件日用品记为y 1,y 2,现从x 1,x 2,x 3,y 1,y 2,这5件日用品中任取两件(假定每件日用品被取出的可能性相同),写出所有可能的结果,并求这两件日用品的等级系数恰好相等的概率.2袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2.(Ⅰ)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率;(Ⅱ)现袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率.3甲、乙两校各有3名教师报名支教,其中甲校2男1女,乙校1男2女.(I)若从甲校和乙校报名的教师中各任选1名,写出所有可能的结果,并求选出的2名教师性别相同的概率;(II)若从报名的6名教师中任选2名,写出所有可能的结果,并求选出的2名教师来自同一学校的概率.4某饮料公司对一名员工进行测试以便确定其考评级别,公司准备了两种不同的饮料共5杯,其颜色完全相同,并且其中3杯为A饮料,另外2杯为B饮料,公司要求此员工一一品尝后,从5杯饮料中选出3杯A饮料.若该员工3杯都选对,则评为优秀;若3杯选对2杯,则评为良好;否则评为合格.假设此人对A 和B两种饮料没有鉴别能力.(1)求此人被评为优秀的概率;(2)求此人被评为良好及以上的概率.5以下茎叶图记录了甲、乙两组各四名同学的植树棵数.乙组记录中有一个数据模糊,无法确认,在图中以X 表示.(Ⅰ)如果X =8,求乙组同学植树棵数的平均数和方差;(Ⅱ)如果X =9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率. (注:方差2222121[()()()]n s x x x x x x n=-+-++- ,其中x 为12,,,n x x x 的平均数)6如图,从A 1(1,0,0),A 2(2,0,0),B 1(0,1,0,)B 2(0,2,0),C 1(0,0,1),C 2(0,0,2)这6个点中随机选取3个点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
题型一 古典概型
1袋中共有6个除了颜色外完全相同的球,其中有1个红球,2个白球和3个黑球,从袋中任取两球,两球颜色为一白一黑的概率等于
(A )15 (B )25 (C )35 (D )45
2从装有3个红球、2个白球的袋中任取3个球,则所取的3个球中至少有1个白球的概率是 (A )
110 (B )310 (C )35 (D )910
3盒中装有形状、大小完全相同的5个球,其中红色球3个,黄色球2个.若从中随机取出2个球,则所取出的2个球颜色不同的概率等于_______.
4从1,2,3,4这四个数中一次随机地取两个数,则其中一个数是另一个的两倍的概率是______ 5从边长为1的正方形的中心和顶点这五点中,随机(等可能)取两点,则该两点间的距离为
22的概率是___________。
6三位同学参加跳高、跳远、铅球项目的比赛,若每人只选择一个项目,则有且仅有两位同学选择的项目相同的概率是 (结果用最简分数表示)
7现有10个数,它们能构成一个以1为首项,3 为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是 .
题型二 几何概型
1如图,矩形ABCD 中,点E 为边CD 的中点,若在矩形ABCD 内部随机取一
个点Q ,则点Q 取自△ABE 内部的概率等于( )
(A ).14 (B ). 13 (C ). 12 (D ). 23
2如图,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆。
在扇形OAB 内随机取一点,则此点取自阴影部分的概率是
A. B. . C. D.
3设不等式组⎩⎨
⎧≤≤≤≤20,20y x ,表示平面区域为D ,在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是
(A )4π (B )22π- (C )6π (D )44
π- 4小波通过做游戏的方式来确定周末活动,他随机地往单位圆内投掷一点,若此点到圆心的距离大于
12,则周末去看电影;若此点到圆心的距离小于
14
,则去打篮球;否则,在家看书.则小波周末不.在家看书的概率为 .
5已知圆C :,y x 1222=+直线l :4x+3y=25.
(1)圆C 的圆心到直线l 的距离为_____;
(2)圆C 上任意一点A 到直线l 的距离小于2的概率为____
题型三 大题题型
1某日用品按行业质量标准分成五个等级,等级系数X 依次为1,2,3,4,5.现从一批该日用品中随机抽取20件,对其等级系数进行统计分析,得到频率分布表如下: X 1 2 3
4 5 f
a 0.2 0.45
b c
(I)若所抽取的20件日用品中,等级系数为4的恰有3件,等级系数为5的恰有2件,求a,b,c 的值; (II)在(1)的条件下,将等级系数为4的3件日用品记为x 1,x 2,x 3,等级系数为5的2件日用品记为y 1,y 2,现从x 1,x 2,x 3,y 1,y 2,这5件日用品中任取两件(假定每件日用品被取出的可能性相同),写出所有可能的结果,并求这两件日用品的等级系数恰好相等的概率.
2袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2.
(Ⅰ)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率;
(Ⅱ)现袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率.
3甲、乙两校各有3名教师报名支教,其中甲校2男1女,乙校1男2女.
(I)若从甲校和乙校报名的教师中各任选1名,写出所有可能的结果,并求选出的2名教师性别相同的概率;
(II)若从报名的6名教师中任选2名,写出所有可能的结果,并求选出的2名教师来自同一学校的概率.
4某饮料公司对一名员工进行测试以便确定其考评级别,公司准备了两种不同的饮料共5杯,其颜色完全相同,并且其中3杯为A饮料,另外2杯为B饮料,公司要求此员工一一品尝后,从5杯饮料中选出3杯A饮料.若该员工3杯都选对,则评为优秀;若3杯选对2杯,则评为良好;否则评为合格.假设此人对A 和B两种饮料没有鉴别能力.
(1)求此人被评为优秀的概率;(2)求此人被评为良好及以上的概率.
5以下茎叶图记录了甲、乙两组各四名同学的植树棵数.乙组记录中有一个数据模糊,无法确认,在图中以X 表示.
(Ⅰ)如果X =8,求乙组同学植树棵数的平均数和方差;
(Ⅱ)如果X =9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率. (注:方差2222121[()()()]n s x x x x x x n
=-+-++- ,其中x 为12,,,n x x x 的平均数)
6如图,从A 1(1,0,0),A 2(2,0,0),B 1(0,1,0,)B 2(0,2,0),C 1(0,0,1),C 2(0,0,2)这6个点中随机选取3个点。
(1) 求这3点与原点O 恰好是正三棱锥的四个顶点的概率;
(2) 求这3点与原点O 共面的概率。
甲组 乙组
9 9 0 X 8 9
1 1 1 0。