STM32_CAN波特率计算

合集下载

STM32单片机的串口波特率计算方法

STM32单片机的串口波特率计算方法

STM32 单片机的串口波特率计算方法
1. 什幺是波特率
不管是什幺单片机,在使用串口通信的时候,有一个非常重要的参数:波特率。

什幺是波特率:波特率就是每秒传送的字节数。

双方在传输数据的过程中,波特率一致,这是通讯成功的基本保障。

下面以STM32 单片机为例,讲解一下串口波特率的计算方法。

2. STM32 波特率相关的寄存器
STM32 单片机设置波特率的寄存器只有一个:USART_BRR 寄存器,如下图所示。

该寄存器的有效位数为16 位,前4 位用于存放小数部分,后12 位用于存放整数部分。

将波特率算出来后,数值填入这个波特率就可以了。

下面介绍。

can 波特率计算 公式

can 波特率计算 公式

can 波特率计算公式波特率是指单位时间内传输的信号次数,通常以每秒钟传输的位数来表示。

在计算机通信领域,波特率的计算非常重要,因为它决定了数据的传输速率和通信效率。

波特率计算的公式如下:波特率 = 总传输比特数 / 传输时间其中,总传输比特数表示在指定时间内要传输的比特数,传输时间为完成传输所需的时间。

在实际应用中,波特率的计算可以用于帮助确定合适的通信速率,从而提高数据传输的效率。

下面将详细介绍如何根据公式计算波特率。

首先,确定要传输的数据量。

这可以是文件的大小或数据包的数量,根据实际情况来决定。

然后,确定传输所需的时间。

这取决于系统的传输速率以及传输距离。

常见的传输速率单位有Mbps(兆比特每秒)或Kbps(千比特每秒),传输距离单位有米(m)或千米(km)。

接下来,根据数据量和传输时间,使用上述的公式进行计算。

将总传输比特数除以传输时间,即可得到所需的波特率。

在计算波特率时,还需要考虑数据传输过程中的误码率。

误码率是指传输过程中出现错误比特的比率。

通常情况下,为了保证数据传输的可靠性,会在计算波特率时留出一部分比特用于冗余校验和纠错码。

此外,波特率的计算还与数据传输的传输协议和信号编码方式有关。

常见的传输协议有RS-232、RS-485等,常见的信号编码方式有非归零码、曼彻斯特编码等。

在计算波特率时,需要根据具体的协议和编码方式来选择合适的公式和参数。

总之,波特率计算是计算机通信中非常重要的一部分。

通过合理计算波特率,可以提高数据传输的速率和效率,从而提升整个通信系统的性能。

因此,在实际应用中,要认真研究波特率计算的公式和相关参数,以确保数据传输的可靠性和稳定性。

STM32 can波特率的计算

STM32 can波特率的计算

500K/S的计算CAN_InitStructure.CAN_SJW=CAN_SJW_1tq;CAN_InitStructure.CAN_BS1=CAN_BS1_8tq;CAN_InitStructure.CAN_BS2=CAN_BS2_7tq;CAN_InitStructure.CAN_Prescaler=1;每一位的Tq数目= 1 (固定SYNC_SEG) + 8 (BS1) + 7 (BS2) = 16 如果CAN时钟是8 MHz : (8M / 1 ) / 16 = 500K其中:1 为分频系数16 为每一位的Tq数目为了设置为100K, 把分频系数改为5即可, BS1 BS2 不变每一位的Tq数目= 1 (固定) + 8 (BS1) + 7 (BS2) = 16如果CAN时钟是8 MHz : (8M / 5 ) / 16 = 100K如果想得到1M 的波特率,CAN时钟仍然是8 MHz的情况下,分频系数不变应该改变BS1 BS2CAN_InitStructure.CAN_BS1=CAN_BS1_5tq;CAN_InitStructure.CAN_BS2=CAN_BS2_2tq;每一位的Tq数目= 1 (固定) + 5 (BS1) + 2 (BS2) = 8如果CAN时钟是8 MHz : (8M / 1 ) / 8 = 1000K另外尽可能的把采样点设置为CiA 推荐的值:75% when 波特率> 800K80% when 波特率> 500K87.5% when 波特率<= 500K所以对于100K 的波特率(假定使用8MHz 时钟)可以修改该BS1 BS2 为:CAN_InitStructure.CAN_Prescaler=5;CAN_InitStructure.CAN_BS1=CAN_BS1_13tq;CAN_InitStructure.CAN_BS2=CAN_BS2_2tq;(1+13) / (1+13+2) = 87.5%所以对于500K 的波特率(假定使用8MHz 时钟)可以修改该BS1 BS2 为:CAN_InitStructure.CAN_Prescaler=1;CAN_InitStructure.CAN_BS1=CAN_BS1_13tq;CAN_InitStructure.CAN_BS2=CAN_BS2_2tq;(1+13) / (1+13+2) = 87.5%所以对于1000K 的波特率(假定使用8MHz 时钟)可以修改该BS1 BS2 为:CAN_InitStructure.CAN_Prescaler=1;CAN_InitStructure.CAN_BS1=CAN_BS1_5tq;CAN_InitStructure.CAN_BS2=CAN_BS2_2tq;(1+5) / (1+5+2) = 75%个人见解, 仅供参考。

STM32CAN波特率设置及采样点设置

STM32CAN波特率设置及采样点设置

STM32CAN波特率设置及采样点设置
⼀、CAN波特率
STM32 位时间定义:
●同步段(SYNC_SEG):通常期望位的变化发⽣在该时间段内。

其值固定为1
个时间单元(1 x tCAN)。

●时间段1(BS1):定义采样点的位置。

它包含CAN 标准⾥的 PROP_SEG 和
PHASE_SEG1。

其值可以编程为1 到16 个时间单元,但也可以被⾃动延
长,以补偿因为⽹络中不同节点的频率差异所造成的相位的正向漂移。

●时间段2(BS2) :定义发送点的位置。

它代表CAN 标准⾥的
PHASE_SEG2。

其值可以编程为1 到8 个时间单元,但也可以被⾃动缩短
以补偿相位的负向漂移
BRP[9:0]: 波特率分频器
PCLK1 = 36M
bps = 36M/(BRP[9:0]*(BS1+BS2+SYNC_SEG))
其中SYNC_SEG固定为1个时间单元所以 bps = 36M/(BRP[9:0]*(BS1+BS2+1)),此时注意跟同步跳转宽度SJW没关系,尽管他也⼀直设置为1.
⼆、CAN采样点
采样点位于时间段1和时间段2之间。

根据CIA推荐采样点,最好设置在85%~90%。

在⽹上查了好多,基本上都是这么计算(BS1+1)/(1+BS1+BS2),得出的结果就是BS1⽐较⼤⽽BS2⽐较⼩基本上为1.。

STM32_CAN波特率计算

STM32_CAN波特率计算

STM32_CAN波特率计算在STM32中,可以使用以下公式来计算CAN总线的波特率:波特率 = APB1_CLK / (prescaler * (sjw + bs1 + bs2 + 1))其中,APB1_CLK 是STM32的外设时钟频率,可以通过RCC_ClocksTypeDef 结构体获取。

prescaler 是一个16位的数,取值范围是1-1024、sjw (同步跳转宽度)、bs1 (位段1长度) 和 bs2 (位段2长度) 取值范围为0-15通常,CAN总线的波特率设置取决于硬件限制和所需的通信速度。

下面是一些常见的波特率计算示例:1. 125 kbps:APB1_CLK = 72 MHz,prescaler = 6,sjw = 1,bs1 = 11,bs2 = 42. 250 kbps:APB1_CLK = 72 MHz,prescaler = 3,sjw = 1,bs1 = 11,bs2 = 43. 500 kbps:APB1_CLK = 72 MHz,prescaler = 3,sjw = 1,bs1 = 7,bs2 = 4 4. 1 Mbps:APB1_CLK = 72 MHz,prescaler = 3,sjw = 1,bs1 = 3,bs2 = 4需要注意的是,上述示例中的波特率计算公式假设CAN_BS2=1,可以根据实际需要进行调整。

在实际应用中,还需要根据硬件布线、传输距离和抗干扰能力等因素对波特率进行调整和优化。

同时,还应考虑位定时误差和失败重传等问题,以确保可靠的通信。

因此,在使用STM32_CAN时,建议参考ST提供的相关文档和应用注释,根据实际需求进行波特率计算和配置。

STM32CAN发送接收的简单测试

STM32CAN发送接收的简单测试

STM32CAN发送接收的简单测试can接⼝相对是⼀种常⽤的串⾏接⼝,但是不像spi、i2c、uart等接⼝都有主从的关系,can可以任何⼀个节点主动发送数据,并且假如出现总线冲突会有硬件来处理。

can和rs485⼜有些类似,都是把ttl信号转换成了差分信号。

所以在stm32 使⽤can的时候会有⼀个can收发器。

STM32 CAN 发送的简单测试从电路上看起来也很简单,stm32也是通过can tx、rx两根线和收发器相连。

所以假如我们要测试can的发送,是不是只接can tx脚就可以了?我最开始也以为这样就可以,但是深究can的总线冲突检测原理就会发现这样⾏不通的。

因为can 在发送数据的时候也会同时接收发送的数据,通过把接收的数据和内部发送寄存器的数据做对⽐,是不是⼀致就知道总线有没有冲突。

所以在正常情况(这⾥意味着⾮正常情况下也可以)下can rx不接就到这发送出去的数据⽆法收到从⽽硬件⾃动判断为发送失败。

所以要保证发送数据成功,can tx脚和can rx脚要都接上,并且确保can收发器供电正常。

硬件上就这些主要注意点,接下来就主要是软件的配置了。

⼀般stm32 配置can有以下⼏⼤步骤:can的初始化(cubemx直接可以⽣成代码)can的启动can滤波器的设置(⽤来接收的,发送的时候可以不⽤配置它)can执⾏发送数据请求我们只测试can的发送,所以就只⽤关系1、2、4步骤就可以了。

第⼀步,配置stm32cubemxSTM32 CAN 发送的简单测试如上图所⽰,最关键主要配置如下三个参数,分频数我这⾥配置48,下⾯的time Quantum值就会⾃动计算出来。

因为can时钟是48mhz经过48分频后,⼀个单位时间就是1us=1000ns。

因为我想要100k波特率,然后填写下⾯的Time segment1(简称 Tbs1 )和Time segment2 (简称 Tbs2) 为5和4。

那么具体波特率该怎么计算还是要看看官⽅⼿册的描述:STM32 CAN 发送的简单测试根据如上描述,能决定波特率的也就是三个参数:分频值、Tbs1、Tbs2。

STM32CAN波特率计算

STM32CAN波特率计算

STM32CAN波特率计算在STM32系列微控制器中,CAN(Controller Area Network)的波特率计算可以使用以下公式:波特率=(APB1时钟频率)/(CAN分频器x(1+BSG1+BSG2))其中,APB1时钟频率是TIMx对应的APB1总线的时钟频率(单位为Hz)。

CAN分频器是BRP寄存器的值,用于将APB1时钟分频为CAN时钟。

BSG1和BSG2分别是SJW和BS1计数器和BS2计数器的值,用于确定CAN位定时器的时间段。

具体的计算步骤如下:1.确定APB1时钟频率。

在使用CAN之前,需要先设置APB1总线的时钟频率。

可以通过查阅STM32的参考手册或芯片数据手册来获取APB1时钟频率的值。

2.确定CAN分频器的值。

根据需要的波特率,以及APB1时钟频率,可以计算出CAN分频器的值。

公式如下:CAN分频器=(APB1时钟频率)/(波特率x(1+BSG1+BSG2))通常情况下,CAN分频器的值范围为1到10243.确定BSG1和BSG2的值。

BS1和BS2的值通常介于1到16之间。

它们的和(BS1+BS2)确定了CAN位定时器的长度。

其中,BS1用于传输的时间段,包括同步段、传输段和前部分的惯例部分。

而BS2用于接收的时间段,包括后部分的惯例部分和重同步段。

通常情况下,可以选择BS1和BS2的值为84.计算波特率。

将得到的CAN分频器、BSG1和BSG2的值带入公式:波特率=(APB1时钟频率)/(CAN分频器x(1+BSG1+BSG2))即可计算出所需的波特率。

需要注意的是,以上公式是用于计算CAN的时钟频率,实际的波特率可能会稍有偏差。

如果精确的波特率很关键,则可以进一步对BRP和BS1/BS2进行微调来达到所需的精度。

这是一个简化的波特率计算方法。

对于更复杂或特定的应用场景,建议参考STMicroelectronics提供的CAN计算器工具或查阅相关资料来进行具体的计算。

STM32_CAN波特率计算

STM32_CAN波特率计算

一般设置CAN_SJW = 1,总结程序发现!!!can时钟是RCC_APB1PeriphClock(APB1从APB2而来,分频系数不同,导致APB1不同,mini版中一般是APB2为72Mhz,APB1是36MHz),你要注意CAN时钟频率CAN波特率=RCC_APB1PeriphClock/(1+CAN_BS1+CAN_BS2)/CAN_Prescaler ;另外尽可能的把采样点设置为CiA 推荐的值:75% when 波特率> 800K80% when 波特率> 500K87.5% when 波特率<= 500K所以对于100K 的波特率(假定使用8MHz 时钟)可以修改该BS1 BS2 为:CAN_InitStructure.CAN_Prescaler=5;CAN_InitStructure.CAN_BS1=CAN_BS1_13tq;CAN_InitStructure.CAN_BS2=CAN_BS2_2tq;(1+13) / (1+13+2) = 87.5%CAN波特率计算—网友总结STM32里的CAN 支持2.0A,2.0B, 带有FIFO,中断等, 这里主要提一下内部的时钟应用.bxCAN挂接在APB1总线上,采用总线时钟,所以我们需要知道APB1的总线时钟是多少. 我们先看看下图,看看APB1总线时钟:APB1时钟取自AHB的分频, 而AHB又取自系统时钟的分频, 系统时钟可选HSI,HSE, PLLCLK, 这个在例程的RC设置里都有的,然后再看看有了APB1的时钟后,如何算CAN的总线速率, 先看下图:有了上边的这个图,基本就清楚了.总线时钟MHz (3+TS1+TS2)*(BRP+1)===================================================下面是我的计算:CAN_InitStructure.CAN_SJW = CAN_SJW_1tq;(lyp发现大部分都是设置这个SJW为1tq,导致一些人把这个当做一个系数,这是错误的,因为这个公式里的1tq是固定的同步段(SYNC_SEG),与SJW无关!!!)CAN_InitStructure.CAN_BS1 = CAN_BS1_3tq;CAN_InitStructure.CAN_BS2 = CAN_BS2_5tq;CAN_InitStructure.CAN_Prescaler = 4;//2nominal bit time(3+5+1)tq=9tq关于分频系数查看system_stm32f10x.c下面的static void SetSysClockTo72(void) 函数/* HCLK = SYSCLK *//* PCLK2 = HCLK *//* PCLK1 = HCLK/2 */所以can时钟72MHZ/2/4=9 Mhz????????============================================================================================= void CAN_Configuration(void){CAN_InitTypeDef CAN_InitStructure;CAN_FilterInitTypeDef CAN_FilterInitStructure;/* CAN register init */CAN_DeInit();CAN_StructInit(&CAN_InitStructure);/* CAN cell init */CAN_InitStructure.CAN_TTCM=DISABLE;CAN_InitStructure.CAN_ABOM=DISABLE;CAN_InitStructure.CAN_AWUM=DISABLE;CAN_InitStructure.CAN_NART=DISABLE;CAN_InitStructure.CAN_RFLM=DISABLE;CAN_InitStructure.CAN_TXFP=DISABLE;CAN_InitStructure.CAN_Mode=CAN_Mode_Normal;CAN_InitStructure.CAN_SJW=CAN_SJW_1tq;CAN_InitStructure.CAN_BS1=CAN_BS1_9tq;CAN_InitStructure.CAN_BS2=CAN_BS2_8tq;CAN_InitStructure.CAN_Prescaler=200;CAN_Init(&CAN_InitStructure);/* CAN filter init */CAN_FilterInitStructure.CAN_FilterNumber=0;CAN_FilterInitStructure.CAN_FilterMode=CAN_FilterMode_IdMa sk;CAN_FilterInitStructure.CAN_FilterScale=CAN_FilterScale_16bit; CAN_FilterInitStructure.CAN_FilterIdHigh=0x0000;CAN_FilterInitStructure.CAN_FilterIdLow=0x0000;CAN_FilterInitStructure.CAN_FilterMaskIdHigh=0x0000;CAN_FilterInitStructure.CAN_FilterMaskIdLow=0x0000;CAN_FilterInitStructure.CAN_FilterFIFOAssignment=0;CAN_FilterInitStructure.CAN_FilterActivation=ENABLE;CAN_FilterInit(&CAN_FilterInitStructure);}注意//#define CAN_BS1_3tq ((uint8_t)0x02) /*!< 3 time quantum */拨特率10K,公式:72MHZ/2/200/(1+9+8)=0.01,即10K,和SJA1000测试通过================================================120欧姆电阻要加上!!!哦确实是CAN->BTR = (u32)((u32)CAN_InitStruct->CAN_Mode << 30) | ((u32)CAN_InitStruct->CAN_SJW << 24) |((u32)CAN_InitStruct->CAN_BS1 << 16) |((u32)CAN_InitStruct->CAN_BS2 << 20) |((u32)CAN_InitStruct->CAN_Prescaler - 1);总结一下Fpclk=36M 时can波特率为250k 的配置为/* CAN cell init */CAN_InitStructure.CAN_TTCM=DISABLE;CAN_InitStructure.CAN_ABOM=DISABLE;CAN_InitStructure.CAN_AWUM=DISABLE;CAN_InitStructure.CAN_NART=DISABLE;CAN_InitStructure.CAN_RFLM=DISABLE;CAN_InitStructure.CAN_TXFP=DISABLE;CAN_InitStructure.CAN_Mode=CAN_Mode_LoopBack;CAN_InitStructure.CAN_SJW=CAN_SJW_1tq;CAN_InitStructure.CAN_BS1=CAN_BS1_8tq;CAN_InitStructure.CAN_BS2=CAN_BS2_7tq;CAN_InitStructure.CAN_Prescaler=9;CAN_Init(&CAN_InitStructure); 250k======================================的:将can总线波特率设置为250k在官方的can例程上给出了100k 查询和500k 中断方式的例子分别设置如下:CAN_Polling:/* CAN cell init */CAN_InitStructure.CAN_TTCM=DISABLE;CAN_InitStructure.CAN_ABOM=DISABLE;CAN_InitStructure.CAN_AWUM=DISABLE;CAN_InitStructure.CAN_NART=DISABLE;CAN_InitStructure.CAN_RFLM=DISABLE;CAN_InitStructure.CAN_TXFP=DISABLE;CAN_InitStructure.CAN_Mode=CAN_Mode_LoopBack;CAN_InitStructure.CAN_SJW=CAN_SJW_1tq;CAN_InitStructure.CAN_BS1=CAN_BS1_8tq;CAN_InitStructure.CAN_BS2=CAN_BS2_7tq;CAN_InitStructure.CAN_Prescaler=5;CAN_Init(&CAN_InitStructure); 100k/* CAN cell init */ CAN_InterruptCAN_InitStructure.CAN_TTCM=DISABLE;CAN_InitStructure.CAN_ABOM=DISABLE;CAN_InitStructure.CAN_AWUM=DISABLE;CAN_InitStructure.CAN_NART=DISABLE;CAN_InitStructure.CAN_RFLM=DISABLE;CAN_InitStructure.CAN_TXFP=DISABLE;CAN_InitStructure.CAN_Mode=CAN_Mode_LoopBack;CAN_InitStructure.CAN_SJW=CAN_SJW_1tq;CAN_InitStructure.CAN_BS1=CAN_BS1_8tq;CAN_InitStructure.CAN_BS2=CAN_BS2_7tq;CAN_InitStructure.CAN_Prescaler=1;CAN_Init(&CAN_InitStructure); //500k一般设置CAN_SJW = 1,总结程序发现!!!can时钟是RCC_APB1PeriphClock(APB1从APB2而来,分频系数不同,导致APB1不同,mini版中一般是APB2为72Mhz,APB1是36MHz),你要注意CAN时钟频率CAN波特率=RCC_APB1PeriphClock/(1+CAN_BS1+CAN_BS2)/CAN_Prescaler; 如果CAN时钟为8M,CAN_SJW = 1,CAN_BS1 = 8,CAN_BS2 =7,CAN_Prescaler = 2那么波特率就是=8M/(1+8+7)/2=250K=========================================得到500Kb/s的波特率CAN_InitStructure.CAN_SJW=CAN_SJW_1tq;CAN_InitStructure.CAN_BS1=CAN_BS1_8tq;CAN_InitStructure.CAN_BS2=CAN_BS2_7tq;CAN_InitStructure.CAN_Prescaler=1;每一位的Tq数目= 1 (固定SYNC_SEG) + 8 (BS1) + 7 (BS2) = 16如果CAN时钟是8 MHz : (8M / 1 ) / 16 = 500K其中:1 为分频系数16 为每一位的Tq数目为了设置为100K, 把分频系数改为5即可, BS1 BS2 不变每一位的Tq数目= 1 (固定) + 8 (BS1) + 7 (BS2) = 16如果CAN时钟是8 MHz : (8M / 5 ) / 16 = 100K如果想得到1M 的波特率,CAN时钟仍然是8 MHz的情况下,分频系数不变应该改变BS1 BS2CAN_InitStructure.CAN_BS1=CAN_BS1_5tq;CAN_InitStructure.CAN_BS2=CAN_BS2_2tq;每一位的Tq数目= 1 (固定) + 5 (BS1) + 2 (BS2) = 8如果CAN时钟是8 MHz : (8M / 1 ) / 8 = 1000K另外尽可能的把采样点设置为CiA 推荐的值:75% when 波特率> 800K80% when 波特率> 500K87.5% when 波特率<= 500K所以对于100K 的波特率(假定使用8MHz 时钟)可以修改该BS1 BS2 为:CAN_InitStructure.CAN_Prescaler=5;CAN_InitStructure.CAN_BS1=CAN_BS1_13tq;CAN_InitStructure.CAN_BS2=CAN_BS2_2tq;(1+13) / (1+13+2) = 87.5%所以对于500K 的波特率(假定使用8MHz 时钟)可以修改该BS1 BS2 为:CAN_InitStructure.CAN_Prescaler=1;CAN_InitStructure.CAN_BS1=CAN_BS1_13tq;CAN_InitStructure.CAN_BS2=CAN_BS2_2tq;(1+13) / (1+13+2) = 87.5%所以对于1000K 的波特率(假定使用8MHz 时钟)可以修改该BS1 BS2 为:CAN_InitStructure.CAN_Prescaler=1;CAN_InitStructure.CAN_BS1=CAN_BS1_5tq;CAN_InitStructure.CAN_BS2=CAN_BS2_2tq;(1+5) / (1+5+2) = 75%个人见解, 仅供参考。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一般设置CAN_SJW = 1,总结程序发现!!!can时钟是RCC_APB1PeriphClock(APB1从APB2而来,分频系数不同,导致APB1不同,mini版中一般是APB2为72Mhz,APB1是36MHz),你要注意CAN时钟频率CAN波特率=RCC_APB1PeriphClock/(1+CAN_BS1+CAN_BS2)/CAN_Prescaler ;另外尽可能的把采样点设置为CiA 推荐的值:75% when 波特率> 800K80% when 波特率> 500K87.5% when 波特率<= 500K所以对于100K 的波特率(假定使用8MHz 时钟)可以修改该BS1 BS2 为:CAN_InitStructure.CAN_Prescaler=5;CAN_InitStructure.CAN_BS1=CAN_BS1_13tq;CAN_InitStructure.CAN_BS2=CAN_BS2_2tq;(1+13) / (1+13+2) = 87.5%CAN波特率计算—网友总结STM32里的CAN 支持2.0A,2.0B, 带有FIFO,中断等, 这里主要提一下内部的时钟应用.bxCAN挂接在APB1总线上,采用总线时钟,所以我们需要知道APB1的总线时钟是多少. 我们先看看下图,看看APB1总线时钟:APB1时钟取自AHB的分频, 而AHB又取自系统时钟的分频, 系统时钟可选HSI,HSE, PLLCLK, 这个在例程的RC设置里都有的,然后再看看有了APB1的时钟后,如何算CAN的总线速率, 先看下图:有了上边的这个图,基本就清楚了.总线时钟MHz (3+TS1+TS2)*(BRP+1)===================================================下面是我的计算:CAN_InitStructure.CAN_SJW = CAN_SJW_1tq;(lyp发现大部分都是设置这个SJW为1tq,导致一些人把这个当做一个系数,这是错误的,因为这个公式里的1tq是固定的同步段(SYNC_SEG),与SJW无关!!!)CAN_InitStructure.CAN_BS1 = CAN_BS1_3tq;CAN_InitStructure.CAN_BS2 = CAN_BS2_5tq;CAN_InitStructure.CAN_Prescaler = 4;//2nominal bit time(3+5+1)tq=9tq关于分频系数查看system_stm32f10x.c下面的static void SetSysClockTo72(void) 函数/* HCLK = SYSCLK *//* PCLK2 = HCLK *//* PCLK1 = HCLK/2 */所以can时钟72MHZ/2/4=9 Mhz????????============================================================================================= void CAN_Configuration(void){CAN_InitTypeDef CAN_InitStructure;CAN_FilterInitTypeDef CAN_FilterInitStructure;/* CAN register init */CAN_DeInit();CAN_StructInit(&CAN_InitStructure);/* CAN cell init */CAN_InitStructure.CAN_TTCM=DISABLE;CAN_InitStructure.CAN_ABOM=DISABLE;CAN_InitStructure.CAN_AWUM=DISABLE;CAN_InitStructure.CAN_NART=DISABLE;CAN_InitStructure.CAN_RFLM=DISABLE;CAN_InitStructure.CAN_TXFP=DISABLE;CAN_InitStructure.CAN_Mode=CAN_Mode_Normal;CAN_InitStructure.CAN_SJW=CAN_SJW_1tq;CAN_InitStructure.CAN_BS1=CAN_BS1_9tq;CAN_InitStructure.CAN_BS2=CAN_BS2_8tq;CAN_InitStructure.CAN_Prescaler=200;CAN_Init(&CAN_InitStructure);/* CAN filter init */CAN_FilterInitStructure.CAN_FilterNumber=0;CAN_FilterInitStructure.CAN_FilterMode=CAN_FilterMode_IdMa sk;CAN_FilterInitStructure.CAN_FilterScale=CAN_FilterScale_16bit; CAN_FilterInitStructure.CAN_FilterIdHigh=0x0000;CAN_FilterInitStructure.CAN_FilterIdLow=0x0000;CAN_FilterInitStructure.CAN_FilterMaskIdHigh=0x0000;CAN_FilterInitStructure.CAN_FilterMaskIdLow=0x0000;CAN_FilterInitStructure.CAN_FilterFIFOAssignment=0;CAN_FilterInitStructure.CAN_FilterActivation=ENABLE;CAN_FilterInit(&CAN_FilterInitStructure);}注意//#define CAN_BS1_3tq ((uint8_t)0x02) /*!< 3 time quantum */拨特率10K,公式:72MHZ/2/200/(1+9+8)=0.01,即10K,和SJA1000测试通过================================================120欧姆电阻要加上!!!哦确实是CAN->BTR = (u32)((u32)CAN_InitStruct->CAN_Mode << 30) | ((u32)CAN_InitStruct->CAN_SJW << 24) |((u32)CAN_InitStruct->CAN_BS1 << 16) |((u32)CAN_InitStruct->CAN_BS2 << 20) |((u32)CAN_InitStruct->CAN_Prescaler - 1);总结一下Fpclk=36M 时can波特率为250k 的配置为/* CAN cell init */CAN_InitStructure.CAN_TTCM=DISABLE;CAN_InitStructure.CAN_ABOM=DISABLE;CAN_InitStructure.CAN_AWUM=DISABLE;CAN_InitStructure.CAN_NART=DISABLE;CAN_InitStructure.CAN_RFLM=DISABLE;CAN_InitStructure.CAN_TXFP=DISABLE;CAN_InitStructure.CAN_Mode=CAN_Mode_LoopBack;CAN_InitStructure.CAN_SJW=CAN_SJW_1tq;CAN_InitStructure.CAN_BS1=CAN_BS1_8tq;CAN_InitStructure.CAN_BS2=CAN_BS2_7tq;CAN_InitStructure.CAN_Prescaler=9;CAN_Init(&CAN_InitStructure); 250k======================================的:将can总线波特率设置为250k在官方的can例程上给出了100k 查询和500k 中断方式的例子分别设置如下:CAN_Polling:/* CAN cell init */CAN_InitStructure.CAN_TTCM=DISABLE;CAN_InitStructure.CAN_ABOM=DISABLE;CAN_InitStructure.CAN_AWUM=DISABLE;CAN_InitStructure.CAN_NART=DISABLE;CAN_InitStructure.CAN_RFLM=DISABLE;CAN_InitStructure.CAN_TXFP=DISABLE;CAN_InitStructure.CAN_Mode=CAN_Mode_LoopBack;CAN_InitStructure.CAN_SJW=CAN_SJW_1tq;CAN_InitStructure.CAN_BS1=CAN_BS1_8tq;CAN_InitStructure.CAN_BS2=CAN_BS2_7tq;CAN_InitStructure.CAN_Prescaler=5;CAN_Init(&CAN_InitStructure); 100k/* CAN cell init */ CAN_InterruptCAN_InitStructure.CAN_TTCM=DISABLE;CAN_InitStructure.CAN_ABOM=DISABLE;CAN_InitStructure.CAN_AWUM=DISABLE;CAN_InitStructure.CAN_NART=DISABLE;CAN_InitStructure.CAN_RFLM=DISABLE;CAN_InitStructure.CAN_TXFP=DISABLE;CAN_InitStructure.CAN_Mode=CAN_Mode_LoopBack;CAN_InitStructure.CAN_SJW=CAN_SJW_1tq;CAN_InitStructure.CAN_BS1=CAN_BS1_8tq;CAN_InitStructure.CAN_BS2=CAN_BS2_7tq;CAN_InitStructure.CAN_Prescaler=1;CAN_Init(&CAN_InitStructure); //500k一般设置CAN_SJW = 1,总结程序发现!!!can时钟是RCC_APB1PeriphClock(APB1从APB2而来,分频系数不同,导致APB1不同,mini版中一般是APB2为72Mhz,APB1是36MHz),你要注意CAN时钟频率CAN波特率=RCC_APB1PeriphClock/(1+CAN_BS1+CAN_BS2)/CAN_Prescaler; 如果CAN时钟为8M,CAN_SJW = 1,CAN_BS1 = 8,CAN_BS2 =7,CAN_Prescaler = 2那么波特率就是=8M/(1+8+7)/2=250K=========================================得到500Kb/s的波特率CAN_InitStructure.CAN_SJW=CAN_SJW_1tq;CAN_InitStructure.CAN_BS1=CAN_BS1_8tq;CAN_InitStructure.CAN_BS2=CAN_BS2_7tq;CAN_InitStructure.CAN_Prescaler=1;每一位的Tq数目= 1 (固定SYNC_SEG) + 8 (BS1) + 7 (BS2) = 16如果CAN时钟是8 MHz : (8M / 1 ) / 16 = 500K其中:1 为分频系数16 为每一位的Tq数目为了设置为100K, 把分频系数改为5即可, BS1 BS2 不变每一位的Tq数目= 1 (固定) + 8 (BS1) + 7 (BS2) = 16如果CAN时钟是8 MHz : (8M / 5 ) / 16 = 100K如果想得到1M 的波特率,CAN时钟仍然是8 MHz的情况下,分频系数不变应该改变BS1 BS2CAN_InitStructure.CAN_BS1=CAN_BS1_5tq;CAN_InitStructure.CAN_BS2=CAN_BS2_2tq;每一位的Tq数目= 1 (固定) + 5 (BS1) + 2 (BS2) = 8如果CAN时钟是8 MHz : (8M / 1 ) / 8 = 1000K另外尽可能的把采样点设置为CiA 推荐的值:75% when 波特率> 800K80% when 波特率> 500K87.5% when 波特率<= 500K所以对于100K 的波特率(假定使用8MHz 时钟)可以修改该BS1 BS2 为:CAN_InitStructure.CAN_Prescaler=5;CAN_InitStructure.CAN_BS1=CAN_BS1_13tq;CAN_InitStructure.CAN_BS2=CAN_BS2_2tq;(1+13) / (1+13+2) = 87.5%所以对于500K 的波特率(假定使用8MHz 时钟)可以修改该BS1 BS2 为:CAN_InitStructure.CAN_Prescaler=1;CAN_InitStructure.CAN_BS1=CAN_BS1_13tq;CAN_InitStructure.CAN_BS2=CAN_BS2_2tq;(1+13) / (1+13+2) = 87.5%所以对于1000K 的波特率(假定使用8MHz 时钟)可以修改该BS1 BS2 为:CAN_InitStructure.CAN_Prescaler=1;CAN_InitStructure.CAN_BS1=CAN_BS1_5tq;CAN_InitStructure.CAN_BS2=CAN_BS2_2tq;(1+5) / (1+5+2) = 75%个人见解, 仅供参考。

相关文档
最新文档