染色质免疫共沉淀 ChIP Protocol及crosslink 的原理
免疫共沉淀技术原理

免疫共沉淀技术原理免疫共沉淀技术(Immunoprecipitation,简称IP)是一种常用的分析蛋白质相互作用的方法。
该技术基于抗体对目标蛋白质的高度选择性结合能力,使得能够富集含有目标蛋白质的复合物,并进一步用于蛋白质相互作用的研究。
接下来将介绍免疫共沉淀技术的原理和实验过程。
免疫共沉淀技术的原理是利用特异性抗体与目标蛋白质结合形成免疫复合物,然后通过沉淀技术将免疫复合物从细胞裂解物中分离出来。
通常,实验者需要先对目标蛋白质进行抗体的免疫标记,常用的方法包括对抗体进行染色标记、酶标记或放射性标记。
免疫标记后的抗体与目标蛋白质结合,形成免疫复合物。
免疫共沉淀技术可以分为直接法和间接法。
直接法是将抗体固定在沉淀材料(如蛋白A或蛋白G的琼脂糖糖珠)上,与细胞裂解物中的目标蛋白质共沉淀。
间接法是在细胞裂解物中,先将目标蛋白质与一种特异性抗体结合,然后再将这种结合后的复合物与固定在沉淀材料上的第二抗体结合。
实验过程中,首先将细胞裂解并制备成可用于免疫共沉淀的样品。
然后加入预先标记的抗体,与目标蛋白质结合形成免疫复合物。
接下来,将沉淀材料添加到样品中,如蛋白A或蛋白G的琼脂糖糖珠。
这些材料能够与抗体的Fc区结合,从而沉淀下免疫复合物。
混合物经过洗涤步骤后,免疫复合物得以纯化。
在纯化后,可以通过不同的方式进一步分析目标蛋白质的亚细胞分布、蛋白质相互作用或修饰状态。
例如,可以使用Western blotting检测特定的蛋白带来确定免疫共沉淀的效果。
此外,还可以使用质谱分析技术对免疫共沉淀的蛋白质进行鉴定。
免疫共沉淀技术的应用广泛,可以用于研究蛋白质复合物的组成、相互作用以及功能。
这项技术在研究细胞信号传导、基因调控和疾病发生机制等领域都有重要的应用。
通过免疫共沉淀技术,研究者可以了解目标蛋白质在细胞中的功能以及与其他蛋白质的相互作用关系,有助于深入理解生物学过程和寻找新的治疗靶点。
综上所述,免疫共沉淀技术是一种重要的蛋白质相互作用分析方法,其原理主要依赖于抗体与目标蛋白质的特异性结合能力。
染色质免疫沉淀技术及其应用

染色质免疫沉淀技术及其应用染色质免疫沉淀(ChIP)技术是一种用于研究染色质蛋白相互作用的关键技术,它可以帮助我们理解基因组上的DNA结构与功能之间的关系。
本文将介绍染色质免疫沉淀技术的原理、步骤和应用。
染色质免疫沉淀技术的原理基于特定抗体与染色质上的目标蛋白结合的能力。
通过将染色质与细胞核蛋白一起交联,然后使用适当的酶切酶切割DNA,将与目标蛋白结合的DNA 片段与抗体结合,最后通过沉淀纯化和逆交联来获取与目标蛋白相互作用的DNA片段。
这些DNA片段可以通过PCR扩增或高通量测序来分析,从而确定目标蛋白与基因组上的特定DNA区域的相互作用。
1. 细胞处理:选择适当的细胞类型和处理条件,如细胞状态(正常、疾病或处理后)、细胞密度和处理时间等。
2. 细胞交联:给细胞添加交联剂(一般为福尔马林)来固定细胞核内蛋白与DNA的相互作用。
3. 核提取:裂解交联细胞,将细胞核提取出来。
核提取过程中添加蛋白酶抑制剂来防止蛋白降解。
4. 酶切:使用适当的酶切酶切割DNA,产生与目标蛋白结合的DNA片段。
5. 免疫沉淀:将抗体与目标蛋白特异性识别的DNA结合起来。
可以使用预包被蛋白G 或蛋白A纯化好的抗体,并将其加入核提取物中。
这样就可以使抗体与特定蛋白结合,并形成免疫复合物。
6. 沉淀纯化:使用磁珠或其他材料将免疫复合物与其他非特异性结合物分离。
通过洗涤等步骤去除非特异性结合物。
7. DNA释放:对免疫复合物进行逆交联,从而释放出与蛋白相互作用的DNA。
8. DNA分析:通过PCR扩增或高通量测序等方法对所得到的DNA片段进行分析。
可以使用特定的引物或在全基因组范围内进行扩增。
染色质免疫沉淀技术已经广泛应用于生物医学研究中,特别是在基因调控和表观遗传学领域。
以下是染色质免疫沉淀技术的主要应用:1. 转录因子与基因调控:通过分析转录因子与染色质上的相互作用,可以研究转录因子对基因的调控机制。
可以确定转录因子的结合位点,并研究其对基因的表达水平和活性的影响。
免疫共沉淀实验原理及详细步骤

免疫共沉淀实验原理及详细步骤免疫沉淀(immunoprecipitation,简称IP)是一种广泛应用于生物学和生物化学研究中的实验方法,用于检测和分离复合物中的特定蛋白质。
它结合了特异性抗体与蛋白质-抗体相互作用的原理,利用抗体选择性地沉淀出目标蛋白质,并与其相关的复合物。
本文将详细介绍免疫共沉淀实验的原理及步骤。
免疫共沉淀实验利用抗体与目标蛋白质相互结合的特异性,通过该特异性结合,将目标蛋白质及其相关的复合物选择性地沉淀出来。
该实验主要包括以下几个步骤:1.抗体与抗原的结合:在实验中,需要选择特异性的抗体与目标蛋白质结合。
2.抗体与蛋白质-抗体复合物的沉淀:将抗体结合的蛋白质与复合物从样本中沉淀。
3.洗涤:洗涤沉淀的复合物,去除非特异性结合的蛋白质和杂质。
4.释放目标蛋白质:将目标蛋白质从抗体中释放出来,以进行后续的下游分析。
1.细胞预处理:在进行免疫共沉淀实验之前,需要将细胞或组织进行必要的处理,例如刺激剂的刺激或疾病模型的建立。
可以选择不同条件下的实验处理组和对照组进行对比。
同时,还需要对实验样本进行适当的裂解,以确保目标蛋白质的充分释放。
2.抗体选择:选择特异性的抗体与目标蛋白质结合。
抗体可以是单克隆抗体或多克隆抗体,也可以是特异性抗体。
此外,需要选择适当的免疫沉淀试剂盒,确保实验的准确性。
3.抗原结合:将适当的抗体与目标蛋白质结合,形成抗原-抗体复合物。
这一步骤可以在实验前进行或将其加入样本中进行。
为确保抗原-抗体结合的充分性,可以进行一定的反应时间和反应温度。
4.免疫沉淀:将抗原-抗体复合物选择性地沉淀出来。
可以采用多种方法进行免疫沉淀,例如蛋白A/G琼脂糖,特效筛选柱等。
通过离心或过滤等方式从沉淀中收集复合物。
5.洗涤:洗涤步骤用于去除非特异性结合的蛋白质和杂质。
洗涤液的组成可以根据实验需要进行调整。
洗涤步骤需要进行多次,确保洗涤得到干净的复合物。
6.释放目标蛋白质:将目标蛋白质从抗体中释放出来,以进行后续的下游分析。
染色体免疫共沉淀介绍

免疫学方法
在保持组蛋白和DNA联合的同时,通过运用对 在保持组蛋白和DNA联合的同时,通过运用对 应于一个特定组蛋白标记的生物抗体,染色质被 切成很小的片断,并沉淀下来。IP是利用抗原蛋 切成很小的片断,并沉淀下来。IP是利用抗原蛋 白质和抗体的特异性结合以及细菌蛋白质的 A”特异性地结合到免疫球蛋白的FC FC片 “protein A”特异性地结合到免疫球蛋白的FC片 段的现象活用开发出来的方法。目前多用精制的 protein A预先结合固化在argarose的beads上,使之 A预先结合固化在argarose的beads上,使之 与含有抗原的溶液及抗体反应后,beads上的 与含有抗原的溶液及抗体反应后,beads上的 protein A就能吸附抗原达到精制的目的。在免疫 A就能吸附抗原达到精制的目的。在免疫 沉淀之前,通过甲醛作用使DNA和蛋白质发生 沉淀之前,通过甲醛作用使DNA和蛋白质发生 共价连接,通过离心就可以得到DNA共价连接,通过离心就可以得到DNA-蛋白复合 体。染Fra bibliotek体免疫共沉淀的应用
CHIP可以检测体内反式因子与DNA的动态作用 CHIP可以检测体内反式因子与DNA的动态作用 CHIP与其他方法的结合,扩大了其应用范围: CHIP与其他方法的结合,扩大了其应用范围: CHIP与基因芯片相结合建立的 CHIP-on-chip方法 CHIP与基因芯片相结合建立的 CHIP-on-chip方法 已广泛用于特定反式因子靶基因的高通量筛选; CHIP与体内足迹法相结合,用于寻找反式因子的 CHIP与体内足迹法相结合,用于寻找反式因子的 体内结合位点; RNA-CHIP用于研究RNA在基因表达调控中的作 RNA-CHIP用于研究RNA在基因表达调控中的作 用
染色体免疫共沉淀
关于染色质免疫共沉淀ChIP实验原理及实验总结

关于染色质免疫共沉淀ChIP实验原理及实验总结ChIP实验原理在活细胞状态下固定蛋白质-DNA复合物,并将其随机切断为一定长度范围内的染色质小片段,然后通过免疫学方法沉淀此复合体,特异性地富集目的蛋白结合的DNA片段,通过对目的片断的纯化与检测,从而获得蛋白质与DNA相互作用的信息。
可以利用ChIP研究转录因子(transcription factor, TF)与启动子(promoter)的关联性。
由于ChIP采用甲醛固定活细胞或者组织的方法,所以能比较真实的反映细胞内TF与Promoter的结合情况。
这个优势是EMSA这个体外研究核酸与蛋白相互结合的实验方法所不能比拟的。
当用甲醛处理时,相互靠近的蛋白与蛋白,蛋白与核酸(DNA或RNA)之间会产生共价键。
细胞内,当TF与Promoter相互结合(生物意义上的结合)时,它们必然靠的比较近,或者契合在一起,这个时候用甲醛处理,能使它们之间产生共价键。
一般ChIP的流程是:甲醛处理细胞——收集细胞,超声破碎——加入目的蛋白的抗体,与靶蛋白-DNA复合物相互结合——加入Protein A,结合抗体-靶蛋白-DNA复合物,并沉淀——对沉淀下来的复合物进行清洗,除去一些非特异性结合——洗脱,得到富集的靶蛋白-DNA复合物——解交联,纯化富集的DNA-片断——PCR分析。
ChIP实验步骤第一天:(一)、细胞的甲醛交联与超声破碎。
1、取出1平皿细胞(10cm平皿),加入243ul 37%甲醛,使得甲醛的终浓度为1%。
(培养基共有9ml)2、37摄氏度孵育10min。
3、终止交联:加甘氨酸至终浓度为0.125M。
450ul 2.5M甘氨酸于平皿中。
混匀后,在室温下放置5min即可。
4、吸尽培养基,用冰冷的PBS清洗细胞2次。
5、细胞刮刀收集细胞于15ml离心管中(PBS依次为5ml,3ml和3ml)。
预冷后2000rpm 5min收集细胞。
6、倒去上清。
按照细胞量,加入SDS Lysis Buffer。
chip seq原理

ChIP-seq(Chromatin Immunoprecipitation followed by sequencing)是一种用于研究染色质上特定蛋白质与DNA相互作用的技术。
它结合了染色质免疫沉淀(ChIP)和高通量测序技术。
ChIP-seq的基本原理如下:
1. 交联:首先,细胞或组织中的染色质与蛋白质相互作用需要被交联,通常使用甲醛进行交联。
2. 染色质免疫沉淀(ChIP):交联后的细胞或组织被裂解,染色质与特定的抗体结合,形成染色质-抗体复合物。
这些复合物可以通过抗体的亲和力选择性地富集。
3. DNA解交联:染色质-抗体复合物被洗脱,并通过加热或酶解去除交联。
4. DNA测序:富集的DNA被提取,并通过高通量测序技术进行测序。
这可以产生大量的短序列片段。
5. 数据分析:测序数据经过质量控制和预处理后,可以通过比对到参考基因组上,确定染色质-抗体复合物结合的位置。
通过统计分析,可以确定特定蛋白质与DNA相互作用的区域。
ChIP-seq技术的优势在于可以高分辨率地确定特定蛋白质与DNA相互作用的位置,从而帮助研究人员理解基因调控、表观遗传学和疾病发生机制等方面的问题。
CHIP原理

关于染色质免疫共沉淀ChIP实验原理及实验总结ChIP实验原理在活细胞状态下固定蛋白质-DNA复合物,并将其随机切断为一定长度范围内的染色质小片段,然后通过免疫学方法沉淀此复合体,特异性地富集目的蛋白结合的DNA片段,通过对目的片断的纯化与检测,从而获得蛋白质与DNA相互作用的信息。
可以利用ChIP研究转录因子(transcription factor,TF)与启动子(promoter)的关联性。
由于ChIP采用甲醛固定活细胞或者组织的方法,所以能比较真实的反映细胞内TF与Promoter的结合情况。
这个优势是EMSA这个体外研究核酸与蛋白相互结合的实验方法所不能比拟的。
当用甲醛处理时,相互靠近的蛋白与蛋白,蛋白与核酸(DNA或RNA)之间会产生共价键。
细胞内,当TF与Promoter 相互结合(生物意义上的结合)时,它们必然靠的比较近,或者契合在一起,这个时候用甲醛处理,能使它们之间产生共价键。
一般ChIP的流程是:甲醛处理细胞——收集细胞,超声破碎——加入目的蛋白的抗体,与靶蛋白-DNA复合物相互结合——加入Protein A,结合抗体-靶蛋白-DNA复合物,并沉淀——对沉淀下来的复合物进行清洗,除去一些非特异性结合——洗脱,得到富集的靶蛋白-DNA复合物——解交联,纯化富集的DNA-片断——PCR分析。
ChIP实验步骤第一天:(一)、细胞的甲醛交联与超声破碎。
1、取出1平皿细胞(10cm平皿),加入243ul37%甲醛,使得甲醛的终浓度为1%。
(培养基共有9ml)2、37摄氏度孵育10min。
3、终止交联:加甘氨酸至终浓度为0.125M。
450ul2.5M甘氨酸于平皿中。
混匀后,在室温下放置5min即可。
4、吸尽培养基,用冰冷的PBS清洗细胞2次。
5、细胞刮刀收集细胞于15ml离心管中(PBS 依次为5ml,3ml和3ml)。
预冷后2000rpm5min收集细胞。
6、倒去上清。
按照细胞量,加入SDS Lysis Buffer。
免疫共沉淀技术原理

免疫共沉淀技术原理
免疫共沉淀技术是一种在生物学实验中常用的技术,是由免疫学和共沉淀技术两种方法结合构成的。
免疫共沉淀技术基本原理为:首先用抗体(抗原特异性免疫球蛋白)和抗原(蛋白质、多糖类或核酸分子)结合,形成抗原-抗体复合物,然后将抗原-抗体复合物及抗原混合悬浮液置于离心机或离心管中,进行离心,将复合物沉淀在管底,抗原在此过程中被抑制,经离心或超滤操作从抗原-抗体复合物中抽提出抗体,最后可用SDS-PAGE或ELISA技术鉴定抗体的纯度。
该技术在抗原和抗体可溶性、亲和力足够强的情况下,可大规模地制备抗体。