关于染色质免疫共沉淀ChIP实验原理及实验总结
热点实验:CHIP染色质免疫共沉淀实验案例介绍

背景:真核生物的基因组DNA以染色质的形式存在,研究蛋白质与DNA在染色质环境下的相互作用是阐明真核生物基因表达机制的基本途径。
与传统的EMSA技术相比,染色质免疫沉淀技术(CHIP)能真实完整地反映结合在DNA序列上的调控蛋白,是目前研究体内DNA与蛋白质相互作用的最佳方法。
原理:是在活细胞状态下以甲醛固定蛋白质-DNA复合物,超声将其随机切断为一定长度范围内的染色质小片段,然后加入目的蛋白抗体,通过抗体沉淀靶蛋白-DNA复合物,通过洗脱的方法得到富集的靶蛋白-DNA复合物,特异性地富集目的蛋白结合的DNA片段,通过对目的片断的纯化与检测(PCR分析),从而获得蛋白质与DNA相互作用的信息。
应用:1.组蛋白修饰研究 2.转录调控分析 3.药物开发研究 4.有丝分裂研究 5.DNA损伤与凋亡分析。
步骤:1)甲醛处理细胞2)收集细胞,超声破碎3)加入目的蛋白的抗体,与靶蛋白-DNA复合物相互结合4)加入ProteinA,结合抗体-靶蛋白-DNA复合物,沉淀5)对沉淀下来的复合物进行清洗,除去一些非特异性结合6)洗脱,得到富集的靶蛋白-DNA复合物7)解交联,纯化富集的DNA-片断8)PCR或基因芯片分析。
实验案例证明C/EBP与Tmub1启动子或增强子序列的结合实验背景:在IL-6诱导条件下,利用CHiP技术提取C/EBP-DNA复合物,以Tmub1基因的碱基序列设计引物,以提取的DNA为底物,进行扩增,从而证明C/EBP结合的DNA含有Tmub1基因,进一步确认C/EBP与Tmub1启动子或增强子序列的相互作用。
实验分组:分2个组进行实验普通PCR检测和WB检测(检测Tmub1蛋白表达水平,抗体嘉美生物实验室提供。
注:嘉美生物实验室提供绝大多数常用国外原装进口抗体,为实验委托者节约大量实验经费。
)第一组:A组第二组:B组转染3天后收集细胞做CHIP-PCR以及WB检测实验对照:设定的对照有1、阳性对照(系统阳性对照,Anti-RNA Polymerase II)2、INPUT对照(DNA片段在沉淀以前,收集下来的对照)3、阴性对照(非免疫IgG血清吸附,Normal Mouse IgG)细胞转染流程:略EZ-ChIP™染色质免疫共沉淀实验检测流程(Upstste Catalog # 17-371)1、Kit Description:试剂盒内含的RNA聚合酶II阳性对照抗体2、试剂盒组分:A. Provided Kit ComponentsStore at 4℃:ChIP Blocked Protein G Agarose 1.5 mlChIP Dilution Buffer, One vial containing 24 mlLow Salt Immune Complex Wash Buffer 24 mlHigh Salt Immune Complex Wash Buffer 24 mlLiCl Immune Complex Wash Buffer 24 mlTE Buffer 24 ml0.5 M EDTA 250 ul5 M NaCl 500 ulSDS Lysis Buffer 10 ml1 M Tris-HCl, pH 6.5 500 ul10X Glycine 11 ml10X PBS 24 mlStore at -20℃:Protease Inhibitor Cocktail II(蛋白酶抑制剂) 2×110 ulRNase A 600 ug of RNase A in 60 ul sterile water.Proteinase K 600 ug of Proteinase K in 60 ul 1M NaHCO3 600 ulAnti-RNA Polymerase II 25ug clone CTD4H8.Normal rat IgGStore at Room Temperature:20% SDS 242 ul of 20% SDS.Spin Filters One bag containing 22 Spin Filters with Collection TubesCollection Tubes 22 Collection Tubes.Bind Reagent A 25 ml of Bind Reagent A.Wash Reagent B 12.5 ml of Wash Reagent B.Elution Reagent C 1.5 ml of Elution Reagent C.B. 抗体及血清特异性抗体:Anti-CEBP Beta antibody [E299] (ab32358,嘉美生物提供)Normal rat IgGC. 仪器设备微量混匀器Vortex mixer,震摇器Rotating wheel/platform.计时器Timer,可调微量加样枪以及tip头,Variable volume (5-1000 ml) pipettes + tips高速离心机Microfuge,Variable temperature water bath,细胞刮子Cell scraper,Sonicator,1.5 Ml离心管Microfuge tubes,PCR管PCR tubes,D. 引物设计略4、CHIP 操作流程A. 细胞蛋白与染色质的交联及细胞裂解预先准备:1) 准备细胞,150 mm培养瓶(20ml培养液)密度为80-90%,细胞数量≥1 x 10-7个;2) 准备42 ml 1X PBS (4.2 ml 10X PBS +37.8 ml water),放入150 mm培养皿以冰块预冷;3) 取出SDS Lysis Buffer,放置至常温确保SDS溶解不析出;4) Protease Inhibitor Cocktail II恢复至室温。
染色质免疫共沉淀XChIP实验设计

染色质免疫共沉淀 X ChIP 实验设计ChIP是一种强大的确定蛋白或者组蛋白修饰在基因组上定位的实验方法。
染色质被分离出来后采用抗体与抗原的结合来判定目的蛋白是否结合在特定的DNA序列上或者判定目的蛋白结合位点在全基因组范围的分布(微阵列或DNA序列)。
这种方法具有空间性与时效性。
该实验设计为如何在细胞中进行ChIP实验提供了详细的步骤。
1交联和细胞收获。
甲醛可以将蛋白质交联到DNA上。
交联结果的好坏决定于交联时间的把握。
-30分钟。
过度的交联会减少抗原的结合性和我们建议样品交联的时间一般为2超声断裂的效率。
抗原决定簇也会被掩盖。
加入甘氨酸可以消除甲醛使交联反应终止。
1.准备两个长满细胞的150cm2的细胞培养皿(1*107-5*107个细胞/皿)。
将甲醛直接滴入PBS洗过的细胞培养皿中,使其终浓度为0.75%,然后在室温缓慢旋转10分钟,使蛋白和DNA发生交联。
2加入甘氨酸使其终浓度为125mM,在室温晃动孵育5分钟。
3使用10ml预冷PBS清洗细胞2次4使用细胞刮将细胞收获放入5ml预冷PBS中,并转入50ml的管子。
5.在皿里加入3mlPBS,将剩余的细胞转移到50ml管子里6 1,000g离心5分钟7.将上清倒去,使用FA裂解液将沉淀重悬浮(1x107cells/750μl).初始细胞要有1*107-5*107个,采用终浓度为0.75%甲醛和如上描述的甘氨酸处理。
预冷PBS洗3次,1,000g离心5分钟,沉淀用FA裂解液重悬浮。
2。
超声破碎超声裂解细胞悬液可以将DNA均一的打断成500-1000bp的片段。
不同的细胞系需要不同的超声时间才能达到最优效果。
交联细胞要通过时间梯度的超声来选择最优超声条件。
样品通过时间梯度,DNA的分离如部分3所描述。
片段大小序在1.5%的琼脂糖凝胶上检测分析。
如图一所示图一:2超声破碎后,8,000g,30秒,4?C,离心。
将上清移入新的管子中。
开始准备进行染色质免疫共沉淀(IP)。
染色质免疫沉淀(ChIP)实验分析

染色质免疫沉淀(ChIP)实验分析ChIP实验被用来鉴定染色质相关蛋白的定位和/或它们的翻译后修饰状态。
这种方法依赖于特异识别目的蛋白或修饰蛋白(例如组蛋白H3 Lys9甲基化)的抗体进行免疫沉淀和分析免疫共沉淀DNA。
早期实验方法依赖于使用温和的裂解条件,以保护蛋白质--DNA相互作用,但这种方法只适用于和DNA直接结合的蛋白。
甲醛交联方法的使用使得这样的分析可以扩展到与染色质关联的几乎任何蛋白。
非变性、非交联免疫沉淀实验使用直接和特定DNA结合蛋白结合的抗体从细胞中分离蛋白质--DNA复合物依赖于抽提和免疫沉淀的条件,尤其是在该条件下怎样使蛋白可溶并保持蛋白质-DNA的结合。
有几种方法已被成功使用,但是要注意到这一点,要根据蛋白质-DNA复合物所需的条件来调整实验条件。
该方法本质来说是利用低渗透压裂解细胞,分离细胞核,在低盐条件下使用核酸酶(DNaseI或微球菌核酸酶—Mnase)溶解染色质,接着使用抗体进行免疫沉淀识别目标蛋白。
使用多肽可以从免疫复合物中最先洗下蛋白质-DNA复合物,这可以减少在更严格的洗脱下来的,与DNA非特异性结合的蛋白污染。
提取的DNA可以克隆用于进一步分析、测序或用于探针阵列分析。
甲醛交联免疫沉淀实验这已成为研究染色质中动态蛋白质--DNA的强有力方法。
甲醛交联的染色质免疫沉淀的实验步骤见图二。
甲醛交联使我们能够检测到可能不直接结合DNA的蛋白质--染色质的结合。
这种交联方法产生蛋白质-蛋白质、蛋白质-DNA和蛋白质-RNA交联,因此适合于染色质不同成分以及瞬时关联的分析。
这也有效地被用于分析染色质翻译后修饰的存在与否。
这种方法最初在果蝇体系中是由Varshavski及其同事开发的,由Paro 修正的由两个酵母小组广泛使用和修正的。
图二该技术实验步骤适用于所有的ChIP实验,由于研究系统的不同或研究小组的偏好,在实验细节上略有不同。
此外,在新研究系统的第一次实验需要优化实验步骤。
染色质与蛋白研究:染色质免疫共沉淀(ChIP)实验介绍(一)

染色质与蛋白研究:染色质免疫共沉淀(ChIP)实验介绍(一)前面的文章中已经向大家介绍了免疫共沉淀技术(IP)的原理和方法,这一技术可以帮助我们便捷地探究蛋白与蛋白之间的互相作用。
但若研究的靶蛋白可能发挥组蛋白修饰酶的功能,或是可能作为某种转录因子发挥作用,那么就要应用染色质免疫共沉淀技术(chromatin-immunoprecipitation,ChIP)方法来探究其与DNA 的直接调控了。
ChIP可以真实、完整地反映结合在DNA启动子区上的靶蛋白的调控信息,是目前基于全基因组水平研究DNA-蛋白质相互作用的标准实验技术。
接下来,我们一起来学习一下ChIP技术吧!1ChIP基本原理ChIP是在活细胞状态下固定蛋白质-DNA复合物,并将其随机切断为一定长度范围内的染色质小片段,然后通过免疫学方法沉淀此复合体,特异性地富集目的蛋白结合的DNA片段,通过对目的片断的纯化与检测,从而获得蛋白质与DNA相互作用的信息。
ChIP不仅可以检测转录因子与DNA的动态作用,还可以用来研究组蛋白的各种共价修饰与基因表达的关系。
基因的转录是从启动子区开始,由一系列的转录因子结合到基因的启动子区,通用转录因子结合在基本启动子区起始转录,而这个过程通常需要一些特异的转录因子结合在上游调节序列,使基因特异表达并维持的合适水平。
此外,基因的转录还会受到表观遗传的调控,如组蛋白甲基化修饰、乙酰化修饰等,组蛋白特异位点的修饰均可以直接影响基因的转录水平。
因此,ChIP主要用于研究特异的转录因子或组蛋白修饰酶与下游基因启动子区的结合,如果ChIP发现二者可以结合,那么这说明该基因可能是其下游基因。
要想进一步证明,还要做高低表达和荧光素酶等实验。
目前,ChIP与一些高通量测序的结合,扩大了其应用范围:比如,ChIP与基因芯片相结合建立的ChIP-ChIP已广泛用于特定反式因子靶基因的高通量筛选;ChIP-Seq是将深度测序技术与ChIP实验相结合,可分析全基因组范围内DNA结合蛋白结合位点、组蛋白修饰、核小体定位或DNA甲基化的高通量方法,可以应用到任何基因组序列已知的物种,并能确切得到每一个片段的序列信息;RNA-ChIP用于研究RNA在基因表达调控中的作用。
CHIP原理

关于染色质免疫共沉淀ChIP实验原理及实验总结ChIP实验原理在活细胞状态下固定蛋白质-DNA复合物,并将其随机切断为一定长度范围内的染色质小片段,然后通过免疫学方法沉淀此复合体,特异性地富集目的蛋白结合的DNA片段,通过对目的片断的纯化与检测,从而获得蛋白质与DNA相互作用的信息。
可以利用ChIP研究转录因子(transcription factor,TF)与启动子(promoter)的关联性。
由于ChIP采用甲醛固定活细胞或者组织的方法,所以能比较真实的反映细胞内TF与Promoter的结合情况。
这个优势是EMSA这个体外研究核酸与蛋白相互结合的实验方法所不能比拟的。
当用甲醛处理时,相互靠近的蛋白与蛋白,蛋白与核酸(DNA或RNA)之间会产生共价键。
细胞内,当TF与Promoter 相互结合(生物意义上的结合)时,它们必然靠的比较近,或者契合在一起,这个时候用甲醛处理,能使它们之间产生共价键。
一般ChIP的流程是:甲醛处理细胞——收集细胞,超声破碎——加入目的蛋白的抗体,与靶蛋白-DNA复合物相互结合——加入Protein A,结合抗体-靶蛋白-DNA复合物,并沉淀——对沉淀下来的复合物进行清洗,除去一些非特异性结合——洗脱,得到富集的靶蛋白-DNA复合物——解交联,纯化富集的DNA-片断——PCR分析。
ChIP实验步骤第一天:(一)、细胞的甲醛交联与超声破碎。
1、取出1平皿细胞(10cm平皿),加入243ul37%甲醛,使得甲醛的终浓度为1%。
(培养基共有9ml)2、37摄氏度孵育10min。
3、终止交联:加甘氨酸至终浓度为0.125M。
450ul2.5M甘氨酸于平皿中。
混匀后,在室温下放置5min即可。
4、吸尽培养基,用冰冷的PBS清洗细胞2次。
5、细胞刮刀收集细胞于15ml离心管中(PBS 依次为5ml,3ml和3ml)。
预冷后2000rpm5min收集细胞。
6、倒去上清。
按照细胞量,加入SDS Lysis Buffer。
(原创)染色质免疫共沉淀(CHIP)

(原创)染色质免疫共沉淀(CHIP)说明:以下实验方法使用了millipore公司的ChromatinImmunoprecipitation (ChIP) Assay Kit (Catalog #17-295)。
第一天(一)细胞的甲醛交联与超声破碎。
1、取出三个10cm平皿均匀种下细胞,在转录的最佳条件下培养,三个分别用来计数、对照、实验,待细胞数目达到约1×106时,直接加入270 μl 37%甲醛,使得甲醛的终浓度为1%(培养基共有10 ml);2、37℃孵育10min;3、吸尽培养基,用冰冷的PBS(临用之前加入蛋白酶抑制剂PMSF使终浓度达到1mM)清洗细胞2次;4、细胞刮刀收集细胞于15ml离心管中,预冷后2000rpm 4℃离心 5min收集细胞;同时将SDS LysisBuffer从冰箱中取出平衡至室温;5、倒去上清,加入200 μl SDS LysisBuffer(对应细胞数为1×106,可以按照实际细胞数进行倍增)裂解细胞,并保证加入蛋白酶抑制剂PMSF,冰上孵育10 min;6、超声破碎:VCX750,25%功率,4-5S冲击,9S间隙。
共14次,使DNA断裂成200-1000bp的片段,(第一次试验前可以加入8μl 5 M NaCl,65℃水浴4 h解交链,然后提取DNA进行电泳检测,以获得最适的超声破碎条件)。
(二)除杂及抗体哺育。
7、超声破碎结束后,13000 rpm 4℃离心10 min,转移上清至2 ml离心管中,取做实验,其余可以保存于-80℃冰箱中;8、300 μl中,100 μl加抗体作为实验组;100 μl不加抗体做为对照组;100 μl加入4 μl 5 M NaCl(NaCl终浓度为0.2M),65℃处理4 h解交联,跑电泳,检测超声破碎的效果;9、在100 μl的离心上清液中,加入900 μl ChIP DilutionBuffer 和20 μl的50×PIC,再各加入60 μl ProteinA Agarose。
02 CHIP染色质免疫共沉淀实验方法简介

Ago----argonaute蛋白
谢 谢!
概述 原理 方法 比较 举例
Saleh A, Alvarez-Venegas R, Avramova Z. An efficient chromatin immunoprecipitation (ChIP) protocol for studying histone modifications in Arabidopsis plants. Nat Protoc. 2008;3(6):1018-1025.
概述
原理 染色质免疫沉淀实验(CHIP)
方法 比较
举例 ➢ 研究体内DNA-蛋白质相互作用的重要 工具。 它不仅可以灵敏地检测目标蛋 白与特异DNA 片段的结合情况,还可以 用来研究组蛋白与基因表达的关系。
概述
原理 CHIP原理
方法
比较 在活细胞状态下固定蛋白质-DNA复合物
举例
将其随机切断为一定长度范围内的染色质
概述
原理 应用举例
方法
比较
举例
Mantovani F, Tocco F, Girardini J, et al. The prolyl isomerase Pin1 orchestrates p53 acetylation and dissociation from the apoptosis inhibitor iASPP. Nat Struct Mol Biol. 2007 Oct;14(10):912-920.
方法
比较
举例
条 超声波破碎条件的选择
件 选
抗体量的选择
择 PCR反应条件的选择
对 Input对照
照 设
阳性对照:如组蛋白抗体
置 阴性对照:阴性引物
染色质免疫共沉淀技术

染色质免疫共沉淀技术染色质免疫共沉淀技术(ChIP)是一种广泛应用于生物学研究的技术,它可以用来检测蛋白质与染色质之间的相互作用。
该技术能够帮助研究人员确定蛋白质在基因表达中的作用,以及探究细胞的调节机制。
本文将详细介绍染色质免疫共沉淀技术的原理、步骤、优缺点和应用。
一、原理染色质免疫共沉淀技术是基于抗体特异性识别蛋白质的原理。
在该技术中,首先将抗体与磁珠或琼脂糖等载体结合,形成免疫复合物。
接着,将该免疫复合物加入到含有细胞或组织的裂解液中,使其与目标蛋白结合。
随后,使用磁力或离心等手段将免疫复合物与与其结合的蛋白、核酸等分离出来。
最后,利用PCR、微阵列芯片等技术对分离出来的蛋白、核酸等进行检测和分析。
二、步骤染色质免疫共沉淀技术的步骤主要包括:1. 细胞或组织的裂解:将细胞或组织加入到含有蛋白酶抑制剂、核酸酶抑制剂、盐和缓冲液等的裂解液中,使其破裂并释放出蛋白、DNA等。
2. 免疫复合物的制备:将抗体与磁珠或琼脂糖等载体结合,形成免疫复合物。
3. 免疫复合物与目标蛋白的结合:将免疫复合物加入到裂解液中,与目标蛋白结合。
4. 免疫复合物的分离:使用磁力或离心等手段将免疫复合物与与其结合的蛋白、核酸等分离出来。
5. 分析:利用PCR、微阵列芯片等技术对分离出来的蛋白、核酸等进行检测和分析。
三、优缺点染色质免疫共沉淀技术具有以下优点:1. 高特异性:该技术可以通过抗体特异性识别蛋白质,具有高特异性。
2. 高灵敏度:该技术可以检测到极低浓度的蛋白质。
3. 可重复性:该技术具有较高的可重复性,可以用于多次实验。
4. 可广泛应用:该技术可以应用于不同种类的细胞和组织。
然而,染色质免疫共沉淀技术也存在以下缺点:1. 受抗体质量限制:抗体的质量、特异性和亲和力等因素会影响该技术的结果。
2. 受组织分解程度限制:组织分解不彻底会导致目标蛋白无法完全释放,从而影响该技术的结果。
3. 受背景干扰影响:免疫复合物的制备和分离过程中,可能会出现背景干扰,影响结果的准确性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
关于染色质免疫共沉淀ChIP实验原理及实验总结
ChIP实验原理
在活细胞状态下固定蛋白质-DNA复合物,并将其随机切断为一定长度范围内的染色质小片段,然后通过免疫学方法沉淀此复合体,特异性地富集目的蛋白结合的DNA片段,通过对目的片断的纯化与检测,从而获得蛋白质与DNA相互作用的信息。
可以利用ChIP研究转录因子(transcription factor, TF)与启动子(promoter)的关联性。
由于ChIP采用甲醛固定活细胞或者组织的方法,所以能比较真实的反映细胞内TF与Promoter 的结合情况。
这个优势是EMSA这个体外研究核酸与蛋白相互结合的实验方法所不能比拟的。
当用甲醛处理时,相互靠近的蛋白与蛋白,蛋白与核酸(DNA或RNA)之间会产生共价键。
细胞内,当TF与Promoter相互结合(生物意义上的结合)时,它们必然靠的比较近,或者契合在一起,这个时候用甲醛处理,能使它们之间产生共价键。
一般ChIP的流程是:甲醛处理细胞——收集细胞,超声破碎——加入目的蛋白的抗体,与靶蛋白-DNA复合物相互结合——加入Protein A,结合抗体-靶蛋白-DNA复合物,并沉淀——对沉淀下来的复合物进行清洗,除去一些非特异性结合——洗脱,得到富集的靶蛋白-DNA 复合物——解交联,纯化富集的DNA-片断——PCR分析。
ChIP实验步骤
第一天:
(一)、细胞的甲醛交联与超声破碎。
1、取出1平皿细胞(10cm平皿),加入243ul 37%甲醛,使得甲醛的终浓度为1%。
(培养基共有9ml)
2、37摄氏度孵育10min。
3、终止交联:加甘氨酸至终浓度为0.125M。
450ul 2.5M甘氨酸于平皿中。
混匀后,在室温下放置5min即可。
4、吸尽培养基,用冰冷的PBS清洗细胞2次。
5、细胞刮刀收集细胞于15ml离心管中(PBS依次为5ml,3ml和3ml)。
预冷后2000rpm 5min 收集细胞。
6、倒去上清。
按照细胞量,加入SDS Lysis Buffer。
使得细胞终浓度为每200ul含2×106个细胞。
这样每100ul溶液含1×106个细胞。
再加入蛋白酶抑制剂复合物。
假设MCF7长满板为5×106个细胞。
本次细胞长得约为80%。
即为4×106个细胞。
因此每管加入400ul SDS Lysis Buffer。
将2管混在一起,共800ul。
7、超声破碎:VCX750,25%功率,4.5S冲击,9S间隙。
共14次。
当然,如果实验室有Bioruptor这种神器的话那就轻松了。
(二)、除杂及抗体哺育。
8、超声破碎结束后,10,000g 4度离心10min。
去除不溶物质。
留取300ul做实验,其余保存于-80度。
300ul中,100ul加抗体做为实验组;100ul不加抗体做为对照组;100ul加入4ul 5M NaCl (NaCl终浓度为0.2M),65度处理3h解交联,跑电泳,检测超声破碎的效果。
9、在100ul的超声破碎产物中,加入900ul ChIP Dilution Buffer和20ul的50×PIC。
再各加入60ul Protein A Agarose/Salmon Sperm DNA。
4度颠转混匀1h。
10、1h后,在4度静置10min沉淀,700rpm离心1min。
11、取上清。
各留取20ul做为input。
一管中加入1ul 抗体,另一管中则不加抗体。
4度颠转过夜。
(三)、检验超声破碎的效果。
取100ul超声破碎后产物,加入4ul 5M NaCl,65度处理2h解交联。
分出一半用酚/氯仿抽提。
电泳检测超声效果。
第二天:
(一)、免疫复合物的沉淀及清洗。
12、孵育过夜后,每管中加入60ul Protein A Agarose/Salmon Sperm DNA。
4度颠转2h。
13、4度静置10min后,700rpm离心1min。
除去上清。
14、依次用下列溶液清洗沉淀复合物。
清洗的步骤:加入溶液,在4度颠转10min,4度静置10min沉淀,700rpm离心1min,除去上清。
洗涤溶液:a. low salt wash buffer----one wash
b. high salt wash buffer-----one wash
c. LiCl wash buffer------one wash
d. TE buffer------two wash
15、清洗完毕后,开始洗脱。
洗脱液的配方:100ul 10%SDS,100ul 1M NaHCO3,800ul ddH2O,共1ml。
每管加入250ul洗脱buffer,室温下颠转15min,静置离心后,收集上清。
重复洗涤一次。
最终的洗脱液为每管500ul。
16、解交联:每管中加入20ul 5M NaCl(NaCl终浓度为0.2M)。
混匀,65度解交联过夜。
第三天:
(一)、DNA样品的回收
17、解交联结束后,每管加入1ul RNaseA(MBI),37度孵育1h。
18、每管加入10ul 0.5M EDTA,20ul 1M Tris.HCl(PH 6.5),2ul 10mg/ml 蛋白酶K。
45度处理2h。
19、DNA片段的回收―――omega胶回收试剂盒。
最终的样品溶于100ul ddH2O。
(二)、PCR分析
ChIP技术总结
(一)、关于细胞
细胞的生长状态要好。
因为细胞的生长状态直接影响细胞内部的基因表达调控网络,也很有
可能影响你所研究的TF与其靶Promoter的结合。
一般细胞长到75%-80%比较好。
(二)、关于抗体!
抗体是实验成败的致命因素之一!必须是IP级别的抗体,另外如果经济条件许可的话,尽量买大厂的抗体。
不推荐国产抗体和santa cruz的抗体,即使是IP级别的。
单抗与多抗的选择也需要仔细考虑。
两种抗体各有利弊。
单抗特异性强,背景低。
但是单抗有一个致命的弱点,就是识别位点单一,而在ChIP甲醛交联的过程中,很有可能该位点被其它蛋白或核酸结合而被封闭,导致单抗不能识别靶蛋白。
多抗虽然没有这个问题,但是多抗特异性较差,背景可能会偏高。
一般而言,如果没有十足把握(单抗的识别位点远离靶蛋白与核酸结合的区域),选择多抗比较稳妥一些。
(三)、关于交联与超声破碎!
这一块的确是ChIP实验中比较难把握的部分。
交联的程度会影响到超声破碎的效果,交联的程度越高,超声破碎就越不易把基因组打碎成小片段。
交联不充分,只有一部分靶蛋白与其Promoter相结合,富集得到的Promoter的量不高,实验假阴性。
交联过充分,基因组上结合了太多的蛋白,对超声破碎造成障碍。
另外也会增加背景。
一般来讲,按照我的经验,交联条件取决于细胞类型。
不同的细胞系,交联的条件也不一样。
例如:NIH-3T3的交联条件是室温(25摄氏度)下15min,1%的甲醛浓度,而别的细胞系则可能完全不一样。
而超声破碎的条件,机器不一样,条件也不一样。
当然如果你有bioruptor这样的神器,那么超声破碎对你而言就是小菜一碟了。
一般,理想的超声破碎得到的片段大小是200bp-1000bp。
但是200bp-2000bp的范围也是可以接受的。
(四)、关于操作
希望尽可能的保持低温(4度)。
沉淀的时候可以先在4度放置一会,等它自然沉降一些,再超低转速(500rpm等)离心使其完全沉降。
虽然说明书上说ChIP实验的过程中有几个可以停顿的地方,我还是希望你能够连续把它做完,直到PCR结果出来为止。
尽量避免实验中不可预知的影响因素。
(五)、关于解交联
虽然说明书上说4小时已经足够,但是我还是希望你可以解交联过夜。
因为在那样的环境里,DNA不会降解,过夜解交联更充分些。
只是不要忘记在EP管口封上封口膜。
(六)、关于DNA片段的回收
需要注意的是:样品中SDS样品较高,普通的PCR产物回收试剂盒回收,很有可能会在最终的样品中混入SDS,影响PCR实验结果。
小Tip:过柱前,在样品中加入一定量的异丙醇,能有效的消除SDS沉淀。