数字图像处理基础介绍

合集下载

数字图像处理基础知识

数字图像处理基础知识

处 ―量化处理:将f 映射到Z的处理;

基 ―Z的最大取值,确定像素的灰度级数Q= 2b,
础 如256。


第 二 章



Zi+1

处Z

基 Zi-1


Qi+1
黑 色


Q





Qi-1


255
0
254
1
128
128
1
254
0
255
知 连续的 识 灰度值
量化值 (整数值)
从白到黑的 连续变化

M



N



数 取样点的选取
字 图
假定一幅图像取M N个样点
像 1) M,N一般为2的整数次幂;
处 理
2) M,N可以相等,也可以不等;
基 础
3) 对于M,N数值大小确实定:

M N大到满足采样定理,重建图像就不会
识 产生失真。
第 二 章
数 采样定理

图 像
如果信号所含的最高频率成份为fN,
础 – 实验结论
知 识
• 随着采样分辨率和灰度级的提高,主观质量也提高 • 对有大量细节的图像,质量对灰度级需求相应降低
第 二 章 数 字 图 像 处 理 基 础 知 识


章 数 字
1. 灰度层次
• 灰度层次:表示灰度级的数量
图 图像数据的实际层次越多视觉效果就越好。

处 理
256个层次的图像

数字图像处理基础知识

数字图像处理基础知识

国际照明委员会(CIE)规定以 规定以700nm(红)、 国际照明委员会 规定以 红 、 546.1nm (绿)、435.8nm (蓝)三个色光为三基色。 三个色光为三基色。 绿 、 蓝 三个色光为三基色 又称为物理三基色。 又称为物理三基色。自然界的所有颜色都可以通 过选用这三基色按不同比例混合而成。 过选用这三基色按不同比例混合而成。 这三基色按不同比例混合而成 C = R(R) + G(G) + B(B)
反映了将图像信息进行离散化的程度, 反映了将图像信息进行离散化的程度,常用 灰度级来衡量
主观亮度
适应范围 夜视 昼视
-6
夜间阈值
-4
-2
0
2
4
光强的对数
人眼亮度感觉范围
总范围很宽( ① 总范围很宽( C = 108) 人眼适应某一环境亮度后, ② 人眼适应某一环境亮度后,范围限制 适当平均亮度下: 适当平均亮度下:C = 103 很低亮度下: 很低亮度下:C = 10
图象“ 图象“黑”/“白”(“亮”/“暗”)对比参 白 暗 数
眼睛中图像的形成
视网膜将图像反射在中央凹区域上, 视网膜将图像反射在中央凹区域上,由光接 收器的相应刺激作用产生感觉, 收器的相应刺激作用产生感觉,感觉把辐射 能转变为电脉冲, 能转变为电脉冲,最后由大脑进行解码
电信号 光信号 视觉细胞 视神经 视神经中枢 解码 图像
人眼视觉模型
每个图像由若干个像素点组成, 每个图像由若干个像素点组成,每个点均可看作一个 点光源,每个点光源就是一个冲激函数δ 点光源,每个点光源就是一个冲激函数δ(x,y)
任意一幅图像可以表示为: 任意一幅图像可以表示为:
人眼亮度感觉
闪光极限
人的视觉系统感觉到的亮度 (主观亮度 :是进入人眼的 主观亮度): 主观亮度 光强对数函数 人眼亮度感觉范围: 人眼亮度感觉范围:通过光 强对数衡量,一般为3-10 强对数衡量,一般为 人眼的亮度适应级: 人眼的亮度适应级:视觉系 统当前对光强的灵敏度级别

数字图像处理

数字图像处理

数字图像处理的理论基础及发展方向一、数字图像处理的起源及发展数字图像处理(Digital Image Processing) 将图像信号转换成数字信号并利用计算机对其进行处理,起源于20 世纪20年代,目前已广泛地应用于科学研究、工农业生产、生物医学工程、航空航天、军事、工业检测、机器人视觉、公安司法、军事制导、文化艺术等,已成为一门引人注目、前景远大的新型学科,发挥着越来越大的作用。

数字图像处理作为一门学科形成于20 世纪60 年代初期,早期的图像处理的目的是改善图像的质量,以人为对象,以改善人的视觉效果为目的,首次获得实际成功应用的是美国喷气推进实验室(J PL)并对航天探测器徘徊者7 号在1964 年发回的几千张月球照片使用了图像处理技术,并考虑了太阳位置和月球环境的影响,由计算机成功地绘制出月球表面地图,随后又对探测飞船发回的近十万张照片进行了更为复杂的图像处理,以致获得了月球的地形图、彩色图及全景镶嵌图,为人类登月创举奠定了坚实的基础,也推动了数字图像处理这门学科的诞生。

数字图像处理取得的另一个巨大成就是在医学上获得的成果,1972 年英国EMI 公司工程师Ho usfield 发明了用于头颅诊断的X射线计算机断层摄影装置即CT(Computer Tomograph)。

1975 年EMI 公司又成功研制出全身用的CT 装置,获得了人体各个部位鲜明清晰的断层图像. 1979 年这项无损伤诊断技术获得了诺贝尔奖,说明它对人类作出了划时代的贡献. 随着图像处理技术的深入发展,从70 年代中期开始,随着计算机技术和人工智能、思维科学研究的迅速发展,数字图像处理向更高、更深层次发展。

人们已开始研究如何用计算机系统解释图像,实现类似人类视觉系统理解外部世界. 很多国家,特别是发达国家投入更多的人力、物力到这项研究,取得了不少重要的研究成果。

其中代表性的成果是70 年代末MIT 的Ma rr 提出的视觉计算理论,这个理论成为计算机视觉领域其后多年的主导思想。

考研数字图像处理知识点剖析

考研数字图像处理知识点剖析

考研数字图像处理知识点剖析数字图像处理是计算机视觉和图像处理领域的一门重要课程,也是考研计算机专业的必考内容之一。

本文将对考研数字图像处理的知识点进行剖析,并对相关概念和算法进行介绍。

一、数字图像处理基础知识1. 图像的表示和数字化图像可以通过像素矩阵来表示,每个像素由一个灰度值或颜色值来描述。

数字化过程包括采样、量化和编码三个步骤。

2. 灰度变换灰度变换是指通过像素的灰度值进行变换,常见的灰度变换函数包括线性变换、非线性变换和直方图均衡化。

3. 空间域滤波空间域滤波是指通过改变像素的邻域内像素值来实现对图像的增强或去噪。

常见的空间域滤波方法有均值滤波、中值滤波和高斯滤波等。

二、数字图像处理基本算法1. 图像锐化与模糊图像锐化算法可以提高图像的边缘信息,常用算法包括一阶导数算子、Sobel算子和Laplacian算子。

而图像模糊算法可以降低图像的细节信息,常用算法有均值滤波和高斯滤波。

2. 图像分割图像分割是将图像划分成若干个具有独立意义的区域的过程,常见算法有阈值法、边缘检测法和区域生长法等。

3. 图像压缩图像压缩是通过减少图像数据的冗余来实现图像的存储和传输。

常用的压缩算法有无损压缩算法(如Huffman编码)和有损压缩算法(如JPEG压缩)。

4. 图像恢复图像恢复是通过数学模型和算法来恢复由于传感器噪声或其它原因引起的损坏的图像。

常见的图像恢复算法包括逆滤波、最小均方误差和非负约束等。

三、数字图像处理实际应用1. 医学图像处理数字图像处理在医学领域有着广泛的应用,如X光图像的增强和分割,磁共振图像的去噪和恢复等。

2. 视频编码与处理数字图像处理技术在视频编码和处理中起着重要作用,如H.264和HEVC等视频编码标准的实现,视频的剪辑和特效处理等。

3. 计算机视觉数字图像处理是计算机视觉的基础,通过图像处理算法实现物体检测、分割、跟踪等任务。

结语本文对考研数字图像处理的知识点进行了剖析,介绍了数字图像处理的基础知识、基本算法和实际应用。

数字图像处理的基础知识

数字图像处理的基础知识

数字图像处理的基础知识数字图像处理是一种以计算机为基础的处理图像的技术。

它的核心是数字信号处理技术,其中包括数字滤波、傅里叶变换、数字图像处理等等。

数字图像处理主要是针对图像进行数字信号处理和计算机算法处理,从而得到使图像更加美观、清晰,同时也可对其进行各种分析和处理。

数字图像处理的基础知识包括图像的获取、表示和处理。

在此,我们将分别阐述这些基础知识。

一、图像的获取图像的获取方式有很多种,包括摄影、扫描、数码相机等等。

这些方式都可以将图像转化为数字信号,以便于计算机的处理。

在数字相机中,传感器采集光线信息并将其转化为电信号,再经过模数转换后保存在内存卡中。

而在扫描仪中,可以通过光线照射样品,然后采集样品的反射信息,保存成数字图像的形式。

二、图像的表示图像可以用矩阵的形式进行表示,其中每个矩阵的元素都对应图像中的一个像素点。

这个像素值可以代表颜色、灰度和亮度等信息。

将图像信息存储成数字矩阵的方式称为栅格画。

在黑白影像中,每个像素点只有黑和白两种颜色,每个像素点都用1或0表示。

在彩色图像中,每个像素中则由红绿蓝三原色按一定比例混合而成的颜色值来表示,并用数值表示。

这些数值也可以是整数或浮点数等形式。

另外,还有图像的压缩技术。

图像压缩通常包括有损压缩和无损压缩。

有损压缩会使压缩的图像失去一些细节,但能帮助减少图像的尺寸。

无损压缩则不会丢失图像的任何信息。

常见的无损压缩格式为PNG、BMP、TIFF等,常见的有损压缩格式为JPEG、GIF等。

三、图像的处理图像的处理包括预处理、增强、分割、检测和识别等等。

其中预处理指图像的去噪、灰度平衡、色彩校正等,以利用后续处理。

增强指通过调整图像的对比度、亮度等等,使图像更加清晰、唯美。

分割技术可以将图像分为多个区域,每个区域有独特的特征。

例如,我们可以用分割技术将人体和背景分开。

检测技术用于在图像中找到我们感兴趣的点,例如在医学图像中检测肿瘤。

识别技术允许计算机对图像中的对象进行分类,例如人脸识别技术和指纹识别技术等等。

第二章 数字图像处理基础

第二章 数字图像处理基础
主要内容
2.1 数字图像的表示 2.2 数字图像的采样与量化 2.3 人的视觉特性 2.4 光度学与色度学原理
第二章 数字图像处理基础
本章重点、难点
重点: 采样和量化 BMP图像文件格式 RGB颜色模型和HSI颜色模型 难点: 采样和量化的理解 BMP位图
2.1 数字图像
数字图像:f(x,y),函数值对应于图像点的 亮度。称亮度图像。 注意:模拟图像与数字图像的区别 动态图像:f(x,y,t)
人眼成像过程
视细胞分为两类: 锥状细胞:明视细胞,在强光下检测亮度 和颜色。 杆(柱)状细胞:暗视细胞,在弱光下检测亮 度,无色彩感觉。 人眼成像过程
图像的对比度和亮度
人眼的亮度感觉 图像 “黑”“白”(“亮”、“暗”)对比参数 对比度 : c=Bmax/Bmin 相对对比度:cr=(B-B0)/B0 人眼亮度感觉范围 总范围很宽 c = 108 人眼适应某一环境亮度后,范围限制 适当平均亮度下:c=103 很低亮度下:c=10
亮度
也称为灰度,它是颜色的明暗变化,常用 0 %~ 100 % (由黑到白) 表示。以下三幅图是 不同亮度对比。
对比度
对比度(contrast)是亮度的局部变化,定义为物体亮 度的平均值与背景亮度的比值,是画面黑与白的比 值,也就是从黑到白的渐变层次。比值越大,从黑 到白的渐变层次就越多,从而色彩表现越丰富。人 眼对亮度的敏感性成对数关系。
同时对比度
人眼对某个区域感觉到的亮度不是简单 地取决于该区域的强度,背景亮度不同 时,人眼所感觉到的明暗程度也不同。
马赫带效应
马赫带(Mach Band)效应:边界处亮度对比加强
为什么我们要在暗室评片?
马赫带效应的出现,是因为人眼对于图像中不同 空间频率具有不同的灵敏度,而在空间频率突变处 就出现了 “欠调”或“过调”

数字图像处理技术解析

数字图像处理技术解析

数字图像处理技术解析第一章:数字图像处理基础知识数字图像处理是一门研究如何处理和操作数字图像的学科。

数字图像是离散的表示了光的强度和颜色分布的连续图像。

数字图像处理技术可以应用于许多领域,如医学影像、机器视觉、遥感图像等。

1.1 数字图像表示与存储数字图像可以使用像素(pixel)来表示,每个像素包含一定数量的位元(bit),用于表示图像的灰度值或颜色信息。

常见的像素表示方法有灰度图像和彩色图像。

在计算机中,数字图像可以以不同的方式进行存储,如位图存储、压缩存储等。

1.2 数字图像处理的基本操作数字图像处理的基本操作包括图像增强、图像恢复、图像压缩和图像分割等。

图像增强可以改善图像的质量,使其更适于人眼观察或用于其他应用。

图像恢复是指通过去除图像中的噪声、模糊等不良因素,使图像恢复到原始清晰状态。

图像压缩可以减少图像的存储空间和传输带宽。

图像分割是将图像分成几个具有独立特征的区域,用于目标检测、目标跟踪等应用。

第二章:数字图像增强技术数字图像增强技术可以提高图像的质量和信息内容,使其更适合进行后续处理或人眼观察。

常用的图像增强方法包括灰度变换、直方图均衡化和空域滤波等。

2.1 灰度变换灰度变换是通过对图像的灰度值进行变换,来改变图像的对比度和亮度。

常见的灰度变换方法包括线性变换、非线性变换和直方图匹配等。

线性变换通过对灰度值进行线性和平移变换,可改变图像的对比度和亮度。

非线性变换使用非线性函数对灰度值进行变换,如对数变换、反转变换等。

直方图匹配是将图像的直方图变换为期望直方图,以达到对比度和亮度的调整。

2.2 直方图均衡化直方图均衡化是一种常用的图像增强方法,可以通过对图像的直方图进行变换,使得图像的灰度分布更加均匀。

直方图均衡化可以增加图像的对比度,使得图像细节更加清晰。

该方法适用于灰度图像和彩色图像。

2.3 空域滤波空域滤波是一种基于像素的图像处理方法,通过对图像的局部像素进行加权平均或非线性操作,来改变图像的特征。

数字图像处理的数学基础

数字图像处理的数学基础

梯度的幅值为: 为避免平方根运算,可以采用梯度近似值:
为避免平方根运算,可以采用梯度近似值: ①

离散系统梯度幅值与近似值关系:
本章重点
线性系统与调谐信号 卷积与滤波 二维位置不变系统
2. 相关函数与卷积的关系 数学上可以证明,相关本质上是一个信号
反折后的卷积
相关实质上也是一种滤波,因此,有些专著上 将相关称为相关滤波。
五. 二维系统
1 二维线性系统 设 若该系统输入输出满足以下特性
则称该二维系统为线性系统。
2. 二维位置不变线性系统
对于任意一个二维系统,若给定输入f(x,y), 产生输出g(x,y) 即:
将输入信号自变量x和y分别平移x0和y0,若满 足以下条件
则称为二维位置不变线性系统
(1) 连3续. 系二统维梯系度算统子的梯度算子
对于连续系统,在坐标位置(x,y)处的梯 度向量为:
可写为:
由于梯度是向量,因此其幅值为: 梯度的方向为:
(2) 离散系统梯度算子
在数字图像处理中,罗伯特算子、索贝 尔算子、普瑞维特等各种梯度算子均以差 分形式表示。
即线性移不变系统的输出可通过输入信号与 代表了系统特性的冲击响应函数h(t)的卷积得 到。 (滤波器的设计将在第6章详细讨论)
其中h(t)与系统的冲激响应一致,因此称为冲 击响应函数,即当输入为单位冲激函数时
三、相关函数 1.相关函数的定义
任意两个信号的相关函数定义:
相关函数是信号之间相似性的一种量度
一、线性系统
应用系统模型
线性系统的特性:
பைடு நூலகம்
二、调谐信号分析
3. 系统的传递函数
三、卷积与滤波 1. 连续卷积
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4
这是什么图 像?
5
什么是图像?
众所周知的事情正因为 众所周知而不为人所知
图像? 卡斯尔曼:一幅图像就是指某些事物的 表示,并包含关于目标的描述性信息。 你会如何定义?
6
什么是图像?
图像的类型 图像以各种不同的形式出现: 数学上
连续的、离散的
是一种二维函数 f(x,y), 其中 x,y是空 间(平面) 坐标,幅度f 称为亮度或灰度
理解人类视觉特性,有助于开发模拟人眼视觉过程的模型,并对图 像处理系统的设计具有重要的指导作用。
30 2020/4/21
视觉生理和视觉心理
通过人眼所形成的图像包括物理范畴的像和心理范畴的像: 即来自外界物体的光线,通过人眼的折光系统在视网膜上 所形成的物象,它与外界物体通过照相机中的透镜组在底 片上成像并无原则上的区别;而来自视网膜的神经信息, 则通过人脑的神经信息处理在视觉中枢内形成主观意识上 的映像。 以下分别从视觉生理和心理两个方面来讨论人眼的视觉特 性。
14
X射线成像
•Aortic angiogram: 大动脉血管造影 •Anatomical:解剖的, 解剖学的
15 15
显微成像
•Taxol 红豆杉醇 •cholesterol胆固醇 •Nickel oxide镍氧化物 •organic superconducting 有机超导
16
多频谱成像
17
因此数字图像处理的应用领域必然涉及人 类生活和工作的方方面面。 技术进步
计算机:不断增长的性能和不断降低的价格 图像数字化与显示设备的不断出现
– 数字相机, 扫描仪, 视频捕获设备, … – CRT, LCD, 打印机, …
9
为什么要数字图像处理?
具有的独特优势
图像数字化,以便于图像的传输、打印和存储 图像的增强和复原,改善图像质量 图像的分割和描述,获得图像的信息 大量图像的高速处理 三维及更高维图像数据的测量和显示(如遥感
光学成像
•Intraocular implant: 眼内植入
18
光学成像
19
红外成像
20
磁共振成像,MRI
21
超声波成像
•Thyroid:甲状腺, 甲状软骨
22
计算机图形学
•Fractal: 分维
23
图像处理系统的基本步骤
24
一个典型的通用图像处理系统

– 输入Input – 存储Storage – 处理器Processor – 输出Output
物理上:某种物质或能量的分布 可见的、不可见的
7
什么是数字图像处理
处理 连续的、离散的 数字图像 一个2D数字化采样值的方形阵列,只有 数字图像才能用计算机处理 以相等间隔采样的方形格栅模式 (光
栅 以等幅度间隔量化
8
为什么要数字图像处理 ?
应用需求 图像是人们获取和交换信息的主要来源,
25 2020/4/21
某些相关术语
广义图像
➢非光学图像 ➢高维图像 (包括多频谱图像) ➢非标准采样的图像 ➢非标准量化的图像
图像处理 与 图像分析
➢图像处理是指为了能更好地观察图像或其他目的而产 生一个修改了的图像 ➢图像分析把图像转换成某种非图像的形式,诸如目标 的数量、类型、尺寸等
计算机图形学: 关于用计算机产生图像的学科 计算机视觉:对景物进行解释
图像和各种内脏器官及血管形状的测量与显示)
10
为什么要数字图像处理
• 历史
– the 1950s: NASA, IC – the 1960s: 大型主机, CCD 相机 – the 1970s: CT (Computerized Tomography),
LSI – the 1980s: PC, VLSI, 计算机视觉(Computer
26 2020/4/21
如何学习?
阅读 教科书 参考文献 讨论 课堂、小组 实验 C, C++, Java
自己动手!
27
参考书
Gonzalez RC and Woods RE. Digital Image Processing, 2ed. 北京, 电子工业出版社. 2002 K.R.Castleman,Digital Image Processing,清 华大学出版社 何东健,《数字图像处理》,西安电子科技大学 陈桂明,张明照,戚红雨编.应用MATLAB语言处理数字 信号与数字图像.北京, 科学出版社.2000
Vision) – the 1990s: 一系列图像压缩国际标准
11 2020/4/21
应用举例
医学和生物学成像: CT, B超,磁共振… 工业: 机器视觉, 自动控制, … 空间: 航空, 导航, 遥感 (森林, 环境,资 源), … 监控:视频监控, 牌照识别, 人脸识别,… 军事:侦察,导航,声纳成像, … 艺术 ……
28
第2章 数字图像处理基础
2.1 人眼的视觉
为什么要讨论人类视觉系统 (Human Vision System, HVS) ?
图像的信息来源于观察。数字图像处理的目的在于提供与观察者的 视觉能力相匹配的图像输出,以便于观察者理解和解释图像的内容, 提取图像信息。
人们从外界所获取的信息中有80%是通过视觉获得的。通过HVS, 人们能感知外界物体的大小、形状、颜色、明暗、动静和远近等。 数字图像处理是从模拟人类的视觉开始的。尽管数字图像处理系统 已可以完成相当多的工作,但其性能比起HVS来说还差得很远。
31 2020/4/21
数字图像处理
第1章 绪论
提要
1.1 人眼的视觉 1.2 图像数字化 1.3 数字图像表达 1.4 数字图像质量
3
导论
什么是数字图像处理? 数字图像处理(Digital Image Processing)
是一个迅速发展的专业领域。它的主要目的 是将图像信号转换成数字信号并利用计算机 对其进行处理和加工,以便提取图像中的信 息。
12
成像的能量源
电磁能量谱: Gamma-射线, X-射线, 紫外,可见光, 红外, 微波, 无线 电波;CT, MRI, EIT, PET 声波与超声波: B超, 声纳 电子: 电子显微镜 计算机图形学
13 2020/4/21
Gamma射线成像
•PET(positron emission tomography): 正 电子射线层析 术 •Cygnus:天鹅座
相关文档
最新文档