黄庆明-模式识别与机器学习-第三章-作业

合集下载

模式识别(3-1)

模式识别(3-1)

§3.2 最大似然估计
最大似然估计量: -使似然函数达到最大值的参数向量。 -最符合已有的观测样本集的那一个参数向量。 ∵学习样本从总体样本集中独立抽取的
N ) p( X | ) p( X k | i ) k 1 N个学习样本出现概率的乘积
i
i

p( X | i . i
i
§3.2 Bayes学习
假定: ①待估参数θ是随机的未知量 ②按类别把样本分成M类X1,X2,X3,… XM 其中第i类的样本共N个 Xi = {X1,X2,… XN} 并且是从总体中独立抽取的 ③ 类条件概率密度具有某种确定的函数形式,但其 参数向量未知。 ④ Xi 中的样本不包含待估计参数θj(i≠j)的信息,不 同类别的参数在函数上是独立的,所以可以对每一 类样本独立进行处理。


有时上式是多解的, 上图有5个解,只有一个解最大即 (对所有的可能解进行检查或计算二阶导数)
§3.2 最大似然估计
例:假设随机变量x服从均匀分布,但参数1, 2未知, 1 1 x 2 p ( x | ) 2 1 , 0 其他 求1, 2的最大似然估计量。 解:设从总体中独立抽取N个样本x1 , x2 , , xN , 则其似然函数为: 1 p ( x1 , x2 , , xN | 1, 2 ) ( 2 1 ) N l ( ) p ( X | ) 0




§3.2 Bayes学习
p ~ N 0 , 0

2

其中 0和 0 是已知的
2
已知的信息还包括一组抽取出来的样本X i x1 , x2 ,, xN ,从而 可以得到关于 的后验概率密度:

模式识别作业题(2)

模式识别作业题(2)
得证。 3、使用最小最大损失判决规则的错分概率是最小吗?为什么?
答:不是最小的。首先要明确当我们谈到最小最大损失判决规则时,先验概率是未知的, 而先验概率的变化会导致错分概率变化, 故错分概率也是一个变量。 使用最小最大损 失判决规则的目的就是保证在先验概率任意变化导致错分概率变化时, 错分概率的最 坏(即最大)情况在所有判决规则中是最好的(即最小)。 4、 若 λ11 = λ22 =0, λ12 = λ21 ,证明此时最小最大决策面是来自两类的错误率相等。 证明:最小最大决策面满足 ( λ11 - λ22 )+( λ21 - λ11 ) 容易得到
λ11 P(ω1 | x) + λ12 P(ω2 | x) < λ21 P(ω1 | x) + λ22 P(ω2 | x) ( λ21 - λ11 ) P (ω1 | x) >( λ12 - λ22 ) P (ω2 | x) ( λ21 - λ11 ) P (ω1 ) P ( x | ω1 ) >( λ12 - λ22 ) P (ω2 ) P ( x | ω2 ) p( x | ω1 ) (λ 12 − λ 22) P(ω2 ) > 即 p( x | ω2 ) ( λ 21 − λ 11) P (ω1 )
6、设总体分布密度为 N( μ ,1),-∞< μ <+∞,并设 X={ x1 , x2 ,… xN },分别用最大似然 估计和贝叶斯估计计算 μ 。已知 μ 的先验分布 p( μ )~N(0,1)。 解:似然函数为:
∧Байду номын сангаас
L( μ )=lnp(X|u)=
∑ ln p( xi | u) = −
i =1
N
模式识别第三章作业及其解答

模式识别与机器学习第一章

模式识别与机器学习第一章

结构模式识别
• 该方法通过考虑识别对象的各部分之间的联 系来达到识别分类的目的。
• 识别采用结构匹配的形式,通过计算一个匹 配程度值(matching score)来评估一个未知 的对象或未知对象某些部分与某种典型模式 的关系如何。
• 当成功地制定出了一组可以描述对象部分之 间关系的规则后,可以应用一种特殊的结构 模式识别方法 – 句法模式识别,来检查一个 模式基元的序列是否遵守某种规则,即句法 规则或语法。
• 图像处理 • 计算机视觉 • 人工智能 • 数据挖掘 • 控制论
……
教学方法
• 着重讲述模式识别与机器学习的基本概 念,基本理论和方法、关键算法原理以 及典型应用情况。
• 注重理论与实践紧密结合
–实例教学:通过实例讲述如何将所学知识 运用到实际应用之中
• 尽量避免引用过多的、繁琐的数学推导。
ቤተ መጻሕፍቲ ባይዱ
教学目标
Applications, Springer, New York, USA, 2002. • Christopher M. Bishop (2006),Pattern Recognition and Machine
Learning,Springer. • Trevor Hastie, Robert Tibshirani, and Jerome Friedman (2001),The
期。研究的是以40年代兴起的神经网络模型为理论基础的“没
有知识”的学习。模式识别发展的同时形成了机器学习的两种 重要方法:判别函数法和进化学习
• 第二阶段是在60年代中叶至70年代中叶,被称为机器 学习的冷静时期。研究的目标是模拟人类的概念学习阶段,
并采用逻辑结构或图结构作为机器内部描述。神经网络学习机 因理论缺陷转入低潮。

模式识别课后习题答案

模式识别课后习题答案

• 2.16 证明M ahalanobis距离r符合距离定义三定理,即 – (1) r(a, b) = r(b, a) – (2) 当且仅当a = b时,r(a, b) = 0 – (3) r(a, c) ≤ r(a, b) + r(b, c) 证明: (1) r(a, b) = (a − b)T Σ−1 (a − b) = (b − a)T Σ−1 (b − a) = r(b, a) (2) Σ为半正定矩阵所以r(a, b) = (a − b)T Σ−1 (a − b) ≥ 0,只有当a = b时,才有r(a, b) = 0。 (3) Σ−1 可对角化,Σ−1 = P ΛP T • 2.17 若将Σ−1 矩阵写为:Σ−1 h1d h2d ,证明M ahalanobis距离平方为 . . . hdd
• 2.13 把连续情况的最小错误率贝叶斯决策推广到离散情况,并写出其判别函数。 • 2.14 写出离散情况条件风险R(ai |x)的定义,并指出其决策规则。 解: R(ai |x) = = R(ak |x) = min
c ∑ j =1 c ∑ j =1
λij P (wj |x) λij pቤተ መጻሕፍቲ ባይዱx|wj )P (wj )////omit the same part p(x)
j =1,...,c j =1,...,c
考虑两类问题的分类决策面为:P (w1 |x) = P (w2 |x),与p(x|w1 )P (w1 ) = p(x|w2 )P (w2 ) 是相同的。 • 2.9 写出两类和多类情况下最小风险贝叶斯决策判别函数和决策面方程。 • 2.10 随机变量l(x)定义为l(x) = p(x|w1 ) ,l(x)又称为似然比,试证明 p(x|w2 )
1

模式识别与机器学习 作业 中科院 国科大 来源网络 (3)

模式识别与机器学习 作业 中科院 国科大 来源网络 (3)

{ double sum=0.0; for(int j=0;j<T;j++) sum+=a[j]*C[j][i]; res[i]=sum; } } int main() { int T; int w1_num,w2_num; double w1[10][5],w2[10][5],m1[5]={0},m2[5]={0},C1[5][5]={0},C2[5][5]={0}; cin>>T>>w1_num>>w2_num; for(int i=0;i<w1_num;i++) { for(int j=0;j<T;j++) { cin>>w1[i][j]; m1[j]+=w1[i][j]; } } for(int i=0;i<w2_num;i++) { for(int j=0;j<T;j++) { cin>>w2[i][j]; m2[j]+=w2[i][j]; } } for(int i=0;i<w1_num;i++) m1[i]=m1[i]/w1_num; for(int i=0;i<w2_num;i++) m2[i]=m2[i]/w2_num; for(int i=0;i<w1_num;i++) { double res[5][5],a[5]; for(int j=0;j<T;j++) a[j]=w1[i][j]-m1[j]; get_matrix(T,res,a); for(int j=0;j<T;j++) { for(int k=0;k<T;k++) C1[j][k]+=res[j][k]; }

黄庆明 模式识别与机器学习 第三章 作业

黄庆明 模式识别与机器学习 第三章 作业
T d1(7)= w1 (7) x①=(-1 -1 -1)(-1 -1 1) =1
T
d2(7)= w2 (7) x①=(0 0 0)(-1 -1 1) =0
T
T
d3(7)= w3 (7) x①=(2 2 -2)(-1 -1 1) =-6
T
T
因 d1(7)>d2(7),d1(7)>d3(7),分类结果正确,故权向量不变。 由于第五、六、七次迭代中 x①、x②、x③均已正确分类,所以权向量的解为: T w1=(-1 -1 -1) T w2=(0 0 0) T w3=(2 2 -2) 三个判别函数: d1(x)=- x1 -x2-1 d2(x)=0 d3(x)=2x1+2x2-2
·采用梯度法和准则函数
J ( w, x, b)
1 8x
2
[( wT x b) wT x b ]2
式中实数 b>0,试导出两类模式的分类算法。
J 1 ( wT x b) | wT x b | * x - x * sign(wT x b) 2 w 4 | | x ||
用二次埃尔米特多项式的势函数算法求解以下模式的分类问题 ω1: {(0 1)T, (0 -1)T} ω2: {(1 0)T, (-1 0)T} (1)
1 ( x) 1 ( x1 , x2 ) H 0 ( x1 ) H 0 ( x2 ) 1 2 ( x) 2 ( x1 , x2 ) H 0 ( x1 ) H1 ( x2 ) 2 x2 3 ( x) 3 ( x1 , x2 ) H 0 ( x1 ) H 2 ( x2 ) 4 x22 2 4 ( x) 4 ( x1 , x2 ) H1 ( x1 ) H 0 ( x2 ) 2 x1 5 ( x) 5 ( x1 , x2 ) H1 ( x1 ) H1 ( x2 ) 4 x1 x2 6 ( x) 6 ( x1 , x2 ) H1 ( x1 ) H 2 ( x2 ) 2 x1 (4 x22 2) 7 ( x) 7 ( x1 , x2 ) H 2 ( x1 ) H 0 ( x2 ) 4 x12 2 8 ( x) 8 ( x1 , x2 ) H 2 ( x1 ) H1 ( x2 ) 2 x2 (4 x12 2) 9 ( x) 9 ( x1 , x2 ) H 2 ( x1 ) H 2 ( x2 ) (4 x12 2)(4 x22 2)

模式识别第三章

模式识别第三章

3 回归的线性模型至此,本书都聚焦在无监督学习,包括的议题有密度估计和数据聚类。

我们现在转向监督学习,并从回归开始。

回归的目的是:对给定的输入变量的D 维向量x 值,预测一个或更多连续目标变量t 值。

我们在第一章考虑多项式曲线拟合时,已经遇到过一个回归问题的例子。

多项式是线性回归模型的一大类函数中一个具体的例子,它也有含可调参数的线性函数的性质,并将组成本章的焦点。

最简单的线性回归模型也是输入变量的线性函数。

但是,通过取输入变量的一组给定的非线性函数的线性组合,我们可以获得更有用的函数类,称为基函数。

这样的模型是参数的线性函数,它们有简单的解析性,并且关于输入变量仍是非线性的。

给定一个训练数据集合,它有N 个观察值{}n x ,其中n=1,…,N ,以及对应的目标值{}n t ,目的是给定一个新的x 预测t 的值。

最简单方法是直接构造一个适当的函数()y x ,对一个新输入x ,它的值组成对应的t 的预测值。

更一般地,从概率角度考虑,我们想建立一个预测分布()p t x ,因为它表示了对x 的每一个值,t 值的不确定性。

由这个条件分布,我们可以为任意的新x 值预测t ,这相当于最小化一个适当选择的损失函数的期望。

如在第1.5.5所讨论的,通常选择损失函数的平方作为实值变量的损失函数,因为它的最优解由t 的条件期望给出。

对模式识别来说,虽然线性模型作为实用的技术有显著的限制,特别是涉及到高维输入空间的问题,但是它们具有好的解析性质,并且是以后章节要讨论的更复杂模型的基础。

3.1 线性基函数模型最简单的线性回归模型是输入变量的线性组合:011(,)D D y w w x w x =+++x w L (3.1) 其中1(,,)T D x x =x L ,这就是通常简称的线性回归。

此模型的关键特征是:它是参数0,,D w w L 的一个线性函数。

但同时它也是输入变量i x 的一个线性函数,这对模型产生了很大的限制。

模式识别Chapter 3归纳.ppt

模式识别Chapter 3归纳.ppt

最新.课件
11
Discriminant functions
yk (x)
1 2
(x
k
)
t
k
1
(
x
k )
d 2
ln
2
1 2
ln
| k
| ln
p(ck )
Case 1 k 2I
yk
(x)
1
2
k t
x
kt k
ln
p(ck
)
yk (x) wkt x wk0
wk
1
2
k , wk 0
ktk
最新.课件
21
Introduction
we could design an optional classifier if we knew the priori probabilities and the class-conditional densities
Unfortunately, we rarely, if ever, have this kind of completely knowledge about the probabilistic structure
Feature space, feature point in space
Classification
-- Bayesian decision theory
-- Discriminant function
-- Decision region, Decision boundary
最新.课件
15
Example
Drawbacks -- the number of parameters grows with the size of the data -- slow
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

·在一个10类的模式识别问题中,有3类单独满足多类情况1,其余的类别满足多类情况2。

问该模式识别问题所需判别函数的最少数目是多少?应该是2521426*741327=+=+=++C 其中加一是分别3类 和 7类·一个三类问题,其判别函数如下: d1(x)=-x1, d2(x)=x1+x2-1, d3(x)=x1-x2-1(1)设这些函数是在多类情况1条件下确定的,绘出其判别界面和每一个模式类别的区域。

(2)设为多类情况2,并使:d12(x)= d1(x), d13(x)= d2(x), d23(x)= d3(x)。

绘出其判别界面和多类情况2的区域。

(3)设d1(x), d2(x)和d3(x)是在多类情况3的条件下确定的,绘出其判别界面和每类的区域。

·两类模式,每类包括5个3维不同的模式,且良好分布。

如果它们是线性可分的,问权向量至少需要几个系数分量?假如要建立二次的多项式判别函数,又至少需要几个系数分量?(设模式的良好分布不因模式变化而改变。

) 如果线性可分,则4个建立二次的多项式判别函数,则1025 C 个·(1)用感知器算法求下列模式分类的解向量w: ω1: {(0 0 0)T , (1 0 0)T , (1 0 1)T , (1 1 0)T } ω2: {(0 0 1)T , (0 1 1)T , (0 1 0)T , (1 1 1)T }将属于ω2的训练样本乘以(-1),并写成增广向量的形式。

x ①=(0 0 0 1)T , x ②=(1 0 0 1)T , x ③=(1 0 1 1)T , x ④=(1 1 0 1)Tx ⑤=(0 0 -1 -1)T , x ⑥=(0 -1 -1 -1)T , x ⑦=(0 -1 0 -1)T , x ⑧=(-1 -1 -1 -1)T第一轮迭代:取C=1,w(1)=(0 0 0 0) T因w T (1) x ① =(0 0 0 0)(0 0 0 1) T=0 ≯0,故w(2)=w(1)+ x ① =(0 0 0 1)因w T (2) x ② =(0 0 0 1)(1 0 0 1) T =1>0,故w(3)=w(2)=(0 0 0 1)T因w T (3)x ③=(0 0 0 1)(1 0 1 1)T =1>0,故w(4)=w(3) =(0 0 0 1)T因w T (4)x ④=(0 0 0 1)(1 1 0 1)T =1>0,故w(5)=w(4)=(0 0 0 1)T因w T (5)x ⑤=(0 0 0 1)(0 0 -1 -1)T =-1≯0,故w(6)=w(5)+ x ⑤=(0 0 -1 0)T因w T (6)x ⑥=(0 0 -1 0)(0 -1 -1 -1)T =1>0,故w(7)=w(6)=(0 0 -1 0)T因w T (7)x ⑦=(0 0 -1 0)(0 -1 0 -1)T =0≯0,故w(8)=w(7)+ x ⑦=(0 -1 -1 -1)T因w T (8)x ⑧=(0 -1 -1 -1)(-1 -1 -1 -1)T =3>0,故w(9)=w(8) =(0 -1 -1 -1)T因为只有对全部模式都能正确判别的权向量才是正确的解,因此需进行第二轮迭代。

第二轮迭代:因w T (9)x ①=(0 -1 -1 -1)(0 0 0 1)T =-1≯0,故w(10)=w(9)+ x ① =(0 -1 -1 0)T因w T (10)x ②=(0 -1 -1 0)( 1 0 0 1)T =0≯0,故w(11)=w(10)+ x ② =(1 -1 -1 1)T因w T (11)x ③=(1 -1 -1 1)( 1 0 1 1)T =1>0,故w(12)=w(11) =(1 -1 -1 1)T因w T (12)x ④=(1 -1 -1 1)( 1 1 0 1)T =1>0,故w(13)=w(12) =(1 -1 -1 1)T因w T (13)x ⑤=(1 -1 -1 1)(0 0 -1 -1)T =0≯0,故w(14)=w(13)+ x ⑤ =(1 -1 -2 0)T因w T (14)x ⑥=(1 -1 -2 0)( 0 -1 -1 -1)T =3>0,故w(15)=w(14) =(1 -1 -2 0)T因w T (15)x ⑧=(1 -1 -2 0)( 0 -1 0 -1)T =1>0,故w(16)=w(15) =(1 -1 -2 0)T因w T (16)x ⑦=(1 -1 -2 0)( -1 -1 -1 -1)T =2>0,故w(17)=w(16) =(1 -1 -2 0)T因为只有对全部模式都能正确判别的权向量才是正确的解,因此需进行第三轮迭代。

第三轮迭代:w(25)=(2 -2 -2 0);因为只有对全部模式都能正确判别的权向量才是正确的解,因此需进行第四轮迭代。

第四轮迭代:w(33)=(2 -2 -2 1)因为只有对全部模式都能正确判别的权向量才是正确的解,因此需进行第五轮迭代。

第五轮迭代:w(41)=(2 -2 -2 1)因为该轮迭代的权向量对全部模式都能正确判别。

所以权向量即为(2 -2 -2 1),相应的判别函数为123()2221d x x x x =--+(2)编写求解上述问题的感知器算法程序。

见附件·用多类感知器算法求下列模式的判别函数: ω1: (-1 -1)T ω2: (0 0)T ω3: (1 1)T 将模式样本写成增广形式:x ①=(-1 -1 1)T , x ②=(0 0 1)T , x ③=(1 1 1)T取初始值w 1(1)=w 2(1)=w 3(1)=(0 0 0)T,C=1。

第一轮迭代(k=1):以x ①=(-1 -1 1)T作为训练样本。

d 1(1)=)1(1Tw x ①=(0 0 0)(-1 -1 1)T=0d 2(1)=)1(2Tw x ①=(0 0 0)(-1 -1 1)T=0d 3(1)=)1(3T w x ①=(0 0 0)(-1 -1 1)T=0因d 1(1)≯d 2(1),d 1(1)≯d 3(1),故w 1(2)=w 1(1)+x ①=(-1 -1 1)Tw 2(2)=w 2(1)-x ①=(1 1 -1)Tw 3(2)=w 3(1)-x ①=(1 1 -1)T第二轮迭代(k=2):以x ②=(0 0 1)T作为训练样本d 1(2)=)2(1Tw x ②=(-1 -1 1)(0 0 1)T=12d 3(2)=)2(3Tw x ②=(1 1 -1)(0 0 1)T=-1因d 2(2)≯d 1(2),d 2(2)≯d 3(2),故w 1(3)=w 1(2)-x ②=(-1 -1 0)Tw 2(3)=w 2(2)+x ②=(1 1 0)Tw 3(3)=w 3(2)-x ②=(1 1 -2)T第三轮迭代(k=3):以x ③=(1 1 1)T作为训练样本d 1(3)=)3(1Tw x ③=(-1 -1 0)(1 1 1)T=-2d 2(3)=)3(2Tw x ③=(1 1 0)(1 1 1)T=2d 3(3)=)3(3T w x ③=(1 1 -2)(1 1 1)T=0因d 3(3)≯d 2(3),故w 1(4)=w 1(3) =(-1 -1 0)Tw 2(4)=w 2(3)-x ③=(0 0 -1)Tw 3(4)=w 3(3)+x ③=(2 2 -1)T第四轮迭代(k=4):以x ①=(-1 -1 1)T作为训练样本d 1(4)=)4(1Tw x ①=(-1 -1 0)(-1 -1 1)T=2d 2(4)=)4(2Tw x ①=(0 0 -1)(-1 -1 1)T=-1d 3(4)=)4(3T w x ①=(2 2 -1)(-1 -1 1)T=-5因d 1(4)>d 2(4),d 1(4)>d 3(4),故w 1(5)=w 1(4) =(-1 -1 0)Tw 2(5)=w 2(4) =(0 0 -1)Tw 3(5)=w 3(4) =(2 2 -1)T第五轮迭代(k=5):以x ②=(0 0 1)T作为训练样本d 1(5)=)5(1Tw x ②=(-1 -1 0)(0 0 1)T=0d 2(5)=)5(2Tw x ②=(0 0 -1)(0 0 1)T=-1d 3(5)=)5(3Tw x ②=(2 2 -1)(0 0 1)T=-1因d 2(5) ≯d 1(5),d 2(5) ≯d 3(5),故w 1(6)=w 1(5)-x ② =(-1 -1 -1)w 2(6)=w 2(5)+x ②=(0 0 0) w 3(6)=w 3(5)-x ②=(2 2 -2)第六轮迭代(k=6):以x ③=(1 1 1)T作为训练样本d 1(6)=)6(1Tw x ③=(-1 -1 -1)(1 1 1)T=-32d 3(6)=)6(3Tw x ③=(2 2 -2)(1 1 1)T=2因d 3(6)>d 1(6),d 3(6)>d 2(6),故w 1(7)=w 1(6)w 2(7)=w 2(6) w 3(7)=w 3(6)第七轮迭代(k=7):以x ①=(-1 -1 1)T作为训练样本d 1(7)=)7(1Tw x ①=(-1 -1 -1)(-1 -1 1)T=1d 2(7)=)7(2Tw x ①=(0 0 0)(-1 -1 1)T=0d 3(7)=)7(3Tw x ①=(2 2 -2)(-1 -1 1)T =-6因d 1(7)>d 2(7),d 1(7)>d 3(7),分类结果正确,故权向量不变。

由于第五、六、七次迭代中x ①、x ②、x ③均已正确分类,所以权向量的解为:w 1=(-1 -1 -1)Tw 2=(0 0 0)Tw 3=(2 2 -2)T三个判别函数:d 1(x)=- x 1 -x 2-1 d 2(x)=0d 3(x)=2x 1+2x 2-2·采用梯度法和准则函数22])[(81),,(b x w b x w xb x w J T T ---=式中实数b>0,试导出两类模式的分类算法。

[][])sign(*x -x *||)(|||412b x w b x w b x w x w J TT T ----=∂∂|其中,⎩⎨⎧≤-->+=-010-1)(b x w if b x w if b x w sign TT T当0>-b x w T 时,则w(k+1) = w(k),此时不对权向量进行修正;当0≤-b x w T 时,则)(|||)()1(2b x w x Cx k w k w k Tk k k -+=+|,需对权向量进行校正,初始权向量w(1)的值可任选。

相关文档
最新文档