中科院模式识别第三次(第五章)_作业_答案_更多

中科院模式识别第三次(第五章)_作业_答案_更多
中科院模式识别第三次(第五章)_作业_答案_更多

第5章:线性判别函数

第一部分:计算与证明

1. 有四个来自于两个类别的二维空间中的样本,其中第一类的两个样本为(1,4)T 和(2,3)T ,第二类的两个样本为(4,1)T 和(3,2)T 。这里,上标T 表示向量转置。假设初始的权向量a=(0,1)T ,且梯度更新步长ηk 固定为1。试利用批处理感知器算法求解线性判别函数g(y)=a T y 的权向量。

解:

首先对样本进行规范化处理。将第二类样本更改为(4,1)T 和(3,2)T .然后计算错分样本集: g(y 1)=(0,1)(1,4)T = 4 > 0 (正确)

g(y 2)=(0,1)(2,3)T = 3 > 0 (正确)

g(y 3)=(0,1)(-4,-1)T = -1 < 0 (错分)

g(y 4)=(0,1)(-3,-2)T = -2 < 0 (错分)

所以错分样本集为Y={(-4,-1)T ,(-3,-2)T }.

接着,对错分样本集求和:(-4,-1)T +(-3,-2)T = (-7,-3)T

第一次修正权向量a ,以完成一次梯度下降更新:a=(0,1)T + (-7,-3)T =(-7,-2)T

再次计算错分样本集:

g(y 1)=(-7,-2)(1,4)T = -15 <0 (错分)

g(y 2)=(-7,-2)(2,3)T = -20 < 0 (错分)

g(y 3)=(-7,-2)(-4,-1)T = 30 > 0 (正确)

g(y 4)=(-7,-2)(-3,-2)T = 25 > 0 (正确)

所以错分样本集为Y={(1,4)T ,(2,3)T }.

接着,对错分样本集求和:(1,4)T +(2,3)T = (3,7)T

第二次修正权向量a ,以完成二次梯度下降更新:a=(-7,-2)T + (3,7)T =(-4,5)T

再次计算错分样本集:

g(y 1) = (-4,5)(1,4)T = 16 > 0 (正确)

g(y 2) =(-4,5)(2,3)T = 7 > 0 (正确)

g(y 3) =(-4,5)(-4,-1)T = 11 > 0 (正确)

g(y 4) =(-4,5)(-3,-2)T = 2 > 0 (正确)

此时,全部样本均被正确分类,算法结束,所得权向量a=(-4,5)T 。

2. 在线性感知算法中,试证明引入正余量b 以后的解区(a T y i ≥b)位于原来的解区之中(a T y i >0),且与原解区边界之间的距离为b/||y i ||。

证明:设a*满足a T y i ≥b,则它一定也满足a T y i >0,所以引入余量后的解区位于原来的解区a T y i >0之中。

注意,a T y i ≥b 的解区的边界为a T y i =b,而a T y i >0的解区边界为a T y i =0。a T y i =b 与a T y i =0两个边界之间的距离为b/||y i ||。(因为a T y i =0过坐标原点,相关于坐标原点到a T y i =b 的距离。)

3. 试证明感知器准则函数正比于被错分样本到决策面的距离之和。

证明:感知器准则函数为:

()()

T

Y J ∈=-∑y a a y 决策面方程为a T y=0。当y 为错分样本时,有a T y ≤0。此时,错分样本到决策面的

距离为a T y/||a||。所有样本到决策面的距离之和为

()T Y r ∈=-∑y a y a

结论得证。

4. 对于多类分类情形,考虑one-vs-all 技巧,即构建c 个线性判别函数:

0(),

1,2,...,T i i i g w i c =+=x w x , 此时的决策规则为:对j ≠i , 如果g i (x ) >g j (x ), x 则被分类ωi 类。现有三个二维空间内的模式分类器,其判别函数为

g 1(x ) = -x 1+ x 2

g 2(x ) = x 1+ x 2-1

g 3(x ) = -x 2

试画出决策面,指出为何此时不存在分类不确定性区域。

解:根据上述决策规则,属于第一类ω1的区域应满足:

g 1(x )>g 2(x )且g 1(x )>g 3(x )

所以ω1的决策界面为:

g 1(x )-g 2(x ) = -2x 1 + 1 = 0。

g 1(x )-g 3(x ) = -x 1 + 2x 2 = 0。

同样地,属于第二类ω2的区域应满足:

g 2(x )>g 1(x )且g 2(x )>g 3(x )

所以ω2的决策界面为:

g 2(x )-g 1(x ) = 2x 1- 1 = 0。

g 2(x )-g 3(x ) = x 1 + 2x 2- 1= 0。

属于第三类ω3的区域应满足:

g 3(x )>g 1(x )且g 3(x )>g 2(x )

所以ω2的决策界面为:

g 3(x )-g 1(x ) = x 1-2x 2 = 0。

g 2(x )-g 3(x ) = -x 1-2x 2+ 1= 0。

由于三个决策边界交于一点,因此,不存在不确定性区域。这是因为直线g 1(x )-g 2(x )=0与直线g 1(x )-g 3(x )=0的交点一定位于 g 1(x )-g 2(x )-(g 1(x )-g 3(x )) = g 2(x )-g 3(x ) =0的直线x )-g 1(x ) 2x 2 = 0 g 2(x )-g 3(x ) =x 1 + 2x 2- 1 = 0 ω1

上,即g 2(x )-g 3(x ) =0过它们的交点。

5. 已知模式样本集:ω1 = {(0,0)T , (1,1)T }, ω2 = {(0,1)T , (1,0)T }。采用误差平方准则算法(即

Ho-kashyap 算法)验证它是线性不可分的。(提示:迭代时ηk 固定取1,初始b=(1,1,1,1)T )

解:首先对第二类样本,进行齐次表示,然后再进行规范化表示,得到如下规范化增广训练数据矩阵:

001111011101?? ? ?= ?-- ?--??

Y Y 的伪逆矩阵为:122221()222243111T T +---?? ?==-- ? ?---??

Y Y Y Y 进行第一次迭代a=Y +b=(0,0,0)T

计算误差e=Ya-b=(-1,-1,-1,-1) T

此时,不必再更新b 即可知道不等式组Ya>0无解。因为e 中部分元素为负(此时全为负)。根据Ho-kashyap 算法相关(收敛性)原理,可知原样本集线性不可分。

6. Consider the hyperplane used in discrimination:

(a) Show that the distance from the hyperplane g (x ) = w T x + w 0 = 0 to the point x a is

|g (x a )|/||w || by minimizing ||x -x a ||2subject to the constraint g (x ) = 0. (提示需要证明两点:其一,点x a 到超平面g (x ) = 0的距离为|g (x a )|/||w ||;其二,该距离是位于超平面g (x ) = 0上使目标函数||x -x a ||2最小的点x 到点x a 的距离。)

(b) Show that the projection of x a onto the hyperplane is given by (即证明点x a 到超平面g (x )

= 0的投影x p 为如下公式):

2

()||||a p a g =-

x x x w w 证明

注意,在以下表达中,x要换成x a

(b) 根据对(a)的证明的第二个公式,结论显然成立。

第二部分:计算机编程题

本章所使用的数据:

1.Write a program to implement the “batch perception” algorithm (see page 44 or 45 in PPT).

(a). Starting with a = 0, apply your program to the training data from ω1 and ω2. Note

that the number of iterations required for convergence(即记录下收敛的步数)。

(b). Apply your program to the training data from ω3and ω2.Again, note that the

number of iterations required for convergence.

(c). Explain the difference between the iterations required in the two cases.

2. Implement the Ho-Kashyap algorithm and apply it to the training data from ω1 and ω

3. Repeat to apply it to the training data from ω2and ω

4. Point out the training errors, and give some analyses.

3. Consider relaxation methods as described in the PPT. (See the slides for the "Batch Relaxation with Margin" algorithm and page 62 in PPT for the "Single Sample Relaxation with Margin" algorithm):

(a) Implement the batch relaxation with margin, set b = 0.1 and initialize a = 0, and apply it to the data in ω1and ω3. Plot the criterion function as a function of the number of passes through the training set.

(b) Repeat for b = 0.5 and a0= 0(namely, initialize a= 0). Explain qualitatively any differences you find in the convergence rates.

(c) Modify your program to use single sample learning. Again, Plot the criterion function as a

function of the number of passes through the training set.

黄庆明 模式识别与机器学习 第三章 作业

·在一个10类的模式识别问题中,有3类单独满足多类情况1,其余的类别满足多类情况2。问该模式识别问题所需判别函数的最少数目是多少? 应该是252142 6 *74132 7=+=+ =++C 其中加一是分别3类 和 7类 ·一个三类问题,其判别函数如下: d1(x)=-x1, d2(x)=x1+x2-1, d3(x)=x1-x2-1 (1)设这些函数是在多类情况1条件下确定的,绘出其判别界面和每一个模式类别的区域。 (2)设为多类情况2,并使:d12(x)= d1(x), d13(x)= d2(x), d23(x)= d3(x)。绘出其判别界面和多类情况2的区域。

(3)设d1(x), d2(x)和d3(x)是在多类情况3的条件下确定的,绘出其判别界面和每类的区域。 ·两类模式,每类包括5个3维不同的模式,且良好分布。如果它们是线性可分的,问权向量至少需要几个系数分量?假如要建立二次的多项式判别函数,又至少需要几个系数分量?(设模式的良好分布不因模式变化而改变。) 如果线性可分,则4个 建立二次的多项式判别函数,则102 5 C 个 ·(1)用感知器算法求下列模式分类的解向量w: ω1: {(0 0 0)T , (1 0 0)T , (1 0 1)T , (1 1 0)T } ω2: {(0 0 1)T , (0 1 1)T , (0 1 0)T , (1 1 1)T } 将属于ω2的训练样本乘以(-1),并写成增广向量的形式。 x ①=(0 0 0 1)T , x ②=(1 0 0 1)T , x ③=(1 0 1 1)T , x ④=(1 1 0 1)T x ⑤=(0 0 -1 -1)T , x ⑥=(0 -1 -1 -1)T , x ⑦=(0 -1 0 -1)T , x ⑧=(-1 -1 -1 -1)T 第一轮迭代:取C=1,w(1)=(0 0 0 0) T 因w T (1) x ① =(0 0 0 0)(0 0 0 1) T =0 ≯0,故w(2)=w(1)+ x ① =(0 0 0 1) 因w T (2) x ② =(0 0 0 1)(1 0 0 1) T =1>0,故w(3)=w(2)=(0 0 0 1)T 因w T (3)x ③=(0 0 0 1)(1 0 1 1)T =1>0,故w(4)=w(3) =(0 0 0 1)T 因w T (4)x ④=(0 0 0 1)(1 1 0 1)T =1>0,故w(5)=w(4)=(0 0 0 1)T 因w T (5)x ⑤=(0 0 0 1)(0 0 -1 -1)T =-1≯0,故w(6)=w(5)+ x ⑤=(0 0 -1 0)T 因w T (6)x ⑥=(0 0 -1 0)(0 -1 -1 -1)T =1>0,故w(7)=w(6)=(0 0 -1 0)T 因w T (7)x ⑦=(0 0 -1 0)(0 -1 0 -1)T =0≯0,故w(8)=w(7)+ x ⑦=(0 -1 -1 -1)T 因w T (8)x ⑧=(0 -1 -1 -1)(-1 -1 -1 -1)T =3>0,故w(9)=w(8) =(0 -1 -1 -1)T 因为只有对全部模式都能正确判别的权向量才是正确的解,因此需进行第二轮迭代。 第二轮迭代: 因w T (9)x ①=(0 -1 -1 -1)(0 0 0 1)T =-1≯0,故w(10)=w(9)+ x ① =(0 -1 -1 0)T

模式识别大作业02125128(修改版)

模式识别大作业 班级 021252 姓名 谭红光 学号 02125128 1.线性投影与Fisher 准则函数 各类在d 维特征空间里的样本均值向量: ∑∈= i k X x k i i x n M 1 ,2,1=i (1) 通过变换w 映射到一维特征空间后,各类的平均值为: ∑∈= i k Y y k i i y n m 1,2,1=i (2) 映射后,各类样本“类内离散度”定义为: 22 ()k i i k i y Y S y m ∈= -∑,2,1=i (3) 显然,我们希望在映射之后,两类的平均值之间的距离越大越好,而各类的样本类内离 散度越小越好。因此,定义Fisher 准则函数: 2 1222 12||()F m m J w s s -= + (4) 使F J 最大的解* w 就是最佳解向量,也就是Fisher 的线性判别式. 从 )(w J F 的表达式可知,它并非w 的显函数,必须进一步变换。 已知: ∑∈= i k Y y k i i y n m 1,2,1=i , 依次代入上两式,有: i T X x k i T k X x T i i M w x n w x w n m i k i k === ∑∑∈∈)1 (1 ,2,1=i (5) 所以:2 21221221||)(||||||||M M w M w M w m m T T T -=-=- w S w w M M M M w b T T T =--=))((2121 (6)

其中:T b M M M M S ))((2121--= (7) b S 是原d 维特征空间里的样本类内离散度矩阵,表示两类均值向量之间的离散度大 小,因此,b S 越大越容易区分。 将(4.5-6) i T i M w m =和(4.5-2) ∑∈= i k X x k i i x n M 1代入(4.5-4)2i S 式中: ∑∈-= i k X x i T k T i M w x w S 22)( ∑∈?--? =i k X x T i k i k T w M x M x w ))(( w S w i T = (8) 其中:T i X x k i k i M x M x S i k ))((--= ∑=,2,1=i (9) 因此:w S w w S S w S S w T T =+=+)(212221 (10) 显然: 21S S S w += (11) w S 称为原d 维特征空间里,样本“类内离散度”矩阵。 w S 是样本“类内总离散度”矩阵。 为了便于分类,显然 i S 越小越好,也就是 w S 越小越好。

模式识别特征选择与提取

模式识别特征选择与提取 中国矿业大学计算机科学与技术学院电子信息科学系 班级:信科11-1班,学号:08113545,姓名:褚钰博 联系方法(QQ或手机):390345438,e-mail:390345438@https://www.360docs.net/doc/309595112.html, 日期:2014 年06月10日 摘要 实际问题中常常需要维数约简,如人脸识别、图像检索等。而特征选择和特征提取是两种最常用的维数约简方法。特征选择是从某些事物中提取出本质性的功能、应用、优势等,而特征提取是对特征空间进行变换,将原始特征空间映射到低维空间中。 本文是对主成分分析和线性判别分析。 关键词:特征选择,特征提取,主成分分析,线性判别分析 1.引言 模式识别的主要任务是利用从样本中提取的特征,并将样本划分为相应的模式类别,获得好的分类性能。而分类方法与分类器设计,都是在d(变量统一用斜体)维特征空间已经确定的前提下进行的。因此讨论的分类器设计问题是一个选择什么准则、使用什么方法,将已确定的d维特征空间划分成决策域的问题。对分类器设计方法的研究固然重要,但如何确定合适的特征空间是设计模式识别系统另一个十分重要,甚至更为关键的问题。如果所选用的特征空间能使同类物体分布具有紧致性,即各类样本能分布在该特征空间中彼此分割开的区域内,这就为分类器设计成功提供良好的基础。反之,如果不同类别的样本在该特征空间中混杂在一起,再好的设计方法也无法提高分类器的准确性。本文要讨论的问题就是特征空间如何设计的问题。 基于主成分分析的特征选择算法的思想是建立在这样的基础上的:主成分分析方法将原始特征通过线性变换映射到新的低维空间时,获得的主成分是去了新的物理意义,难以理解,并且主成分是所有原始特征的线性组合。所以将主成分分析与特征选择相结合,设计多种相似性度量准则,通过找到与主成分相关的关键特征或者删除冗余、不相关以及没有意义的特征,将主成分又重新映射到原始空间,来理解成主成分的实际意义。 基于线性判别分析的高维特征选择将单个特征的Fisher准则与其他特征选择算法相结合,分层消除不相关特征与冗余特征。不相关特征滤波器按照每个特征的Fisher评价值进行特征排序,来去除噪音和不相关特征。通过对高维数据特征关联性的分析,冗余特征滤波器选用冗余度量方法和基于相关性的快速过滤器算法。分别在不同情境下进行数据分类实验,验证其性能。

中科院模式识别第三次(第五章)_作业_答案_更多

第5章:线性判别函数 第一部分:计算与证明 1. 有四个来自于两个类别的二维空间中的样本,其中第一类的两个样本为(1,4)T 和(2,3)T ,第二类的两个样本为(4,1)T 和(3,2)T 。这里,上标T 表示向量转置。假设初始的权向量a=(0,1)T ,且梯度更新步长ηk 固定为1。试利用批处理感知器算法求解线性判别函数g(y)=a T y 的权向量。 解: 首先对样本进行规范化处理。将第二类样本更改为(4,1)T 和(3,2)T .然后计算错分样本集: g(y 1)=(0,1)(1,4)T = 4 > 0 (正确) g(y 2)=(0,1)(2,3)T = 3 > 0 (正确) g(y 3)=(0,1)(-4,-1)T = -1 < 0 (错分) g(y 4)=(0,1)(-3,-2)T = -2 < 0 (错分) 所以错分样本集为Y={(-4,-1)T ,(-3,-2)T }. 接着,对错分样本集求和:(-4,-1)T +(-3,-2)T = (-7,-3)T 第一次修正权向量a ,以完成一次梯度下降更新:a=(0,1)T + (-7,-3)T =(-7,-2)T 再次计算错分样本集: g(y 1)=(-7,-2)(1,4)T = -15 <0 (错分) g(y 2)=(-7,-2)(2,3)T = -20 < 0 (错分) g(y 3)=(-7,-2)(-4,-1)T = 30 > 0 (正确) g(y 4)=(-7,-2)(-3,-2)T = 25 > 0 (正确) 所以错分样本集为Y={(1,4)T ,(2,3)T }. 接着,对错分样本集求和:(1,4)T +(2,3)T = (3,7)T 第二次修正权向量a ,以完成二次梯度下降更新:a=(-7,-2)T + (3,7)T =(-4,5)T 再次计算错分样本集: g(y 1) = (-4,5)(1,4)T = 16 > 0 (正确) g(y 2) =(-4,5)(2,3)T = 7 > 0 (正确) g(y 3) =(-4,5)(-4,-1)T = 11 > 0 (正确) g(y 4) =(-4,5)(-3,-2)T = 2 > 0 (正确) 此时,全部样本均被正确分类,算法结束,所得权向量a=(-4,5)T 。 2. 在线性感知算法中,试证明引入正余量b 以后的解区(a T y i ≥b)位于原来的解区之中(a T y i >0),且与原解区边界之间的距离为b/||y i ||。 证明:设a*满足a T y i ≥b,则它一定也满足a T y i >0,所以引入余量后的解区位于原来的解区a T y i >0之中。 注意,a T y i ≥b 的解区的边界为a T y i =b,而a T y i >0的解区边界为a T y i =0。a T y i =b 与a T y i =0两个边界之间的距离为b/||y i ||。(因为a T y i =0过坐标原点,相关于坐标原点到a T y i =b 的距离。) 3. 试证明感知器准则函数正比于被错分样本到决策面的距离之和。 证明:感知器准则函数为: ()() T Y J ∈=-∑y a a y 决策面方程为a T y=0。当y 为错分样本时,有a T y ≤0。此时,错分样本到决策面的

模式识别-作业4

第五章作业: 作业一: 设有如下三类模式样本集ω1,ω2和ω3,其先验概率相等,求S w 和S b ω1:{(1 0)T , (2 0) T , (1 1) T } ω2:{(-1 0)T , (0 1) T , (-1 1) T } ω3:{(-1 -1)T , (0 -1) T , (0 -2) T } 答案: 由于三类样本集的先验概率相等,则概率均为1/3。 多类情况的类内散布矩阵,可写成各类的类内散布矩阵的先验概率的加权和,即: ∑∑=== --= c i i i T i i c i i w C m x m x E P S 1 1 }|))(({)(ωω 其中C i 是第i 类的协方差矩阵。 其中1m = ,2m = 则=++=321S w w w w S S S 1/3 + + = 类间散布矩阵常写成: T i i c i i b m m m m P S ))(()(001 --= ∑=ω 其中,m 0为多类模式(如共有c 类)分布的总体均值向量,即:

c i m P x E m i c i i i ,,2,1,,)(}{1 0K =?= =∑=ωω 0m = = 则 T i i c i i b m m m m P S ))(()(001 --= ∑=ω=++ = 作业二: 设有如下两类样本集,其出现的概率相等: ω1:{(0 0 0)T , (1 0 0) T , (1 0 1) T , (1 1 0) T } ω2:{(0 0 1)T , (0 1 0) T , (0 1 1) T , (1 1 1) T } 用K-L 变换,分别把特征空间维数降到二维和一维,并画出样本在该空间中的位置。 答案: =+=∑∑==i i N j j N j j x x m 1 21 1)4 1 4 1 ( 21 将所有这些样本的各分量都减去0.5,便可以将所有这些样本 的均值移到原点,即(0,0,0)点。 新得到的两类样本集为:

模式识别作业(全)

模式识别大作业 一.K均值聚类(必做,40分) 1.K均值聚类的基本思想以及K均值聚类过程的流程图; 2.利用K均值聚类对Iris数据进行分类,已知类别总数为3。给出具体的C语言代码, 并加注释。例如,对于每一个子函数,标注其主要作用,及其所用参数的意义,对程序中定义的一些主要变量,标注其意义; 3.给出函数调用关系图,并分析算法的时间复杂度; 4.给出程序运行结果,包括分类结果(只要给出相对应的数据的编号即可)以及循环 迭代的次数; 5.分析K均值聚类的优缺点。 二.贝叶斯分类(必做,40分) 1.什么是贝叶斯分类器,其分类的基本思想是什么; 2.两类情况下,贝叶斯分类器的判别函数是什么,如何计算得到其判别函数; 3.在Matlab下,利用mvnrnd()函数随机生成60个二维样本,分别属于两个类别(一 类30个样本点),将这些样本描绘在二维坐标系下,注意特征值取值控制在(-5,5)范围以内; 4.用样本的第一个特征作为分类依据将这60个样本进行分类,统计正确分类的百分 比,并在二维坐标系下将正确分类的样本点与错误分类的样本点用不同标志(正确分类的样本点用“O”,错误分类的样本点用“X”)画出来; 5.用样本的第二个特征作为分类依据将这60个样本再进行分类,统计正确分类的百分 比,并在二维坐标系下将正确分类的样本点与错误分类的样本点用不同标志画出来; 6.用样本的两个特征作为分类依据将这60个样本进行分类,统计正确分类的百分比, 并在二维坐标系下将正确分类的样本点与错误分类的样本点用不同标志画出来; 7.分析上述实验的结果。 8.60个随即样本是如何产生的的;给出上述三种情况下的两类均值、方差、协方差矩 阵以及判别函数; 三.特征选择(选作,15分) 1.经过K均值聚类后,Iris数据被分作3类。从这三类中各选择10个样本点; 2.通过特征选择将选出的30个样本点从4维降低为3维,并将它们在三维的坐标系中

模式识别导论习题参考-齐敏-第6章-句法模式识别

第6章 句法模式识别习题解答 6.1 用链码法描述5~9五个数字。 解:用弗利曼链码表示,基元如解图6.1所示: 数字5~9的折线化和量化结果如解图6.2所示: 各数字的链码表示分别为: “5”的链码表示为434446600765=x ; “6”的链码表示为3444456667012=x ; “7”的链码表示为00066666=x ; “8”的链码表示为21013457076543=x ; “9”的链码表示为5445432107666=x 。 1 7 解图6.1 弗利曼链码基元 解图6.2 数字5~9的折线化和量化结果

6.2 定义所需基本基元,用PDL 法描述印刷体英文大写斜体字母“H ”、“K ”和 “Z ”。 解:设基元为: 用PDL 法得到“H ”的链描述为)))))(~((((d d c d d x H ?+?+=; “K ”的链描述为))((b a d d x K ??+=; “Z ”的链描述为))((c c g x Z ?-=。 6.3 设有文法),,,(S P V V G T N =,N V ,T V 和P 分别为 },,{B A S V N =,},{b a V T = :P ①aB S →,②bA S →,③a A →,④aS A → ⑤bAA A →,⑥b B →,⑦bS B →,⑧aBB B → 写出三个属于)(G L 的句子。 解: 以上句子ab ,abba ,abab ,ba ,baab ,baba 均属于)(G L 。 6.4 设有文法),,,(S P V V G T N =,其中},,,{C B A S V N =,}1,0{=T V ,P 的各 生成式为 ①A S 0→,②B S 1→,③C S 1→ b c a d e abba abbA abS aB S ???? ① ⑦ ② ③ ab aB S ?? ① ⑥ ba bA S ?? ② ③ abab abaB abS aB S ???? ① ⑦ ① ⑥ baab baaB baS bA S ???? ② ④ ① ⑥ baba babA baS bA S ???? ② ④ ② ③

神经网络大作业

神经网络的基本特征及其在战斗识别领域的应用前景简介 —神经网络原理及应用报告 课程名称:神经网络原理及应用 课程编号: 指导教师: 学院: 班级: 姓名: 学号: 日期:

神经网络的基本特征及其在战斗识别领域的应用前景简介 摘要:在未来的军事对抗上,对军事打击的物理距离越来越大,对打击的反应时间的要求越来越短,对打击的精度要求越来越高。在这种情况下,迅速且精确的敌我识别系统显得尤其重要。传统的战斗识别方式早已遇到了瓶颈,而神经网络因为它在信息、信号处理、模式识别方面有些独到之处,近年来受到各国军界的普遍重视。 关键词:军事,战斗识别,模式识别,敌我识别,神经网络 1 引言 众多科学家预言,21世纪将是“生物”世纪。这说明生物学的研究和应用已进入了空前繁荣的时代。神经网络系统理论就是近十多年来受其影响而得到飞速发展的一个世界科学研究的前沿领域。这股研究热潮必然会影响到军事技术的研究。在现代战争中,因为远程制导武器的广泛应用,绝大多数军事打击都不再依靠肉眼来辨析敌我,战场上的敌我识别变成了一个重要的问题。据统计,1991年的海湾战争期间,美军与友军之间的误伤比例高达24%;在伊拉克战争期间,共发生17起误伤事件,死18人,伤47人。两场战争的伤亡结果表明,单一的敌我识别武器已不能适应现代战争复杂的作战环境和作战要求。所以提高军队战斗识别的效率是现代军事科技研究中一个极其重要的课题。神经网络作为新的热门技术,必然受到军事研究学者们的青睐。本文只选取战斗识别这一领域,简要探讨神经网络技术在战斗识别领域中的应用前景,但求管中一窥,抛砖引玉。 2 神经网络简介 2.1 神经网络的历史 神经网络的研究可以追溯到上个世纪的1890年。但真正展开神经网络理论研究却始于本世纪40年代。1943年,有心理学家McCulloch和数学家Pitts合作提出了形式神经元的数学模型——MP模型,从此开创了神经网络理论研究的新时代。MP模型以集体并行计算结构来描述神经网络及网络的运行机制,可完成有限的逻辑运算。 1949年,Hebb通过对大脑神经的细胞、人的学习行为和条件反射等一系列

模式识别大作业

作业1 用身高和/或体重数据进行性别分类(一) 基本要求: 用FAMALE.TXT和MALE.TXT的数据作为训练样本集,建立Bayes分类器,用测试样本数据对该分类器进行测试。调整特征、分类器等方面的一些因素,考察它们对分类器性能的影响,从而加深对所学内容的理解和感性认识。 具体做法: 1.应用单个特征进行实验:以(a)身高或者(b)体重数据作为特征,在正态分布假设下利用最大似然法或者贝叶斯估计法估计分布密度参数,建立最小错误率Bayes分类器,写出得到的决策规则,将该分类器应用到测试样本,考察测试错误情况。在分类器设计时可以考察采用不同先验概率(如0.5对0.5, 0.75对0.25, 0.9对0.1等)进行实验,考察对决策规则和错误率的影响。 图1-先验概率0.5:0.5分布曲线图2-先验概率0.75:0.25分布曲线 图3--先验概率0.9:0.1分布曲线图4不同先验概率的曲线 有图可以看出先验概率对决策规则和错误率有很大的影响。 程序:bayesflq1.m和bayeszcx.m

关(在正态分布下一定独立),在正态分布假设下估计概率密度,建立最小错误率Bayes 分类器,写出得到的决策规则,将该分类器应用到训练/测试样本,考察训练/测试错误情况。比较相关假设和不相关假设下结果的差异。在分类器设计时可以考察采用不同先验概率(如0.5 vs. 0.5, 0.75 vs. 0.25, 0.9 vs. 0.1等)进行实验,考察对决策和错误率的影响。 训练样本female来测试 图1先验概率0.5 vs. 0.5 图2先验概率0.75 vs. 0.25 图3先验概率0.9 vs. 0.1 图4不同先验概率 对测试样本1进行试验得图

《模式识别》大作业人脸识别方法

《模式识别》大作业人脸识别方法 ---- 基于PCA 和欧几里得距离判据的模板匹配分类器 一、 理论知识 1、主成分分析 主成分分析是把多个特征映射为少数几个综合特征的一种统计分析方法。在多特征的研究中,往往由于特征个数太多,且彼此之间存在着一定的相关性,因而使得所观测的数据在一定程度上有信息的重叠。当特征较多时,在高维空间中研究样本的分布规律就更麻烦。主成分分析采取一种降维的方法,找出几个综合因子来代表原来众多的特征,使这些综合因子尽可能地反映原来变量的信息,而且彼此之间互不相关,从而达到简化的目的。主成分的表示相当于把原来的特征进行坐标变换(乘以一个变换矩阵),得到相关性较小(严格来说是零)的综合因子。 1.1 问题的提出 一般来说,如果N 个样品中的每个样品有n 个特征12,,n x x x ,经过主成分分析,将 它们综合成n 综合变量,即 11111221221122221122n n n n n n n nn n y c x c x c x y c x c x c x y c x c x c x =+++?? =+++?? ? ?=+++? ij c 由下列原则决定: 1、i y 和j y (i j ≠,i,j = 1,2,...n )相互独立; 2、y 的排序原则是方差从大到小。这样的综合指标因子分别是原变量的第1、第2、……、 第n 个主分量,它们的方差依次递减。 1.2 主成分的导出 我们观察上述方程组,用我们熟知的矩阵表示,设12n x x X x ??????= ?????? 是一个n 维随机向量,12n y y Y y ??????=?????? 是满足上式的新变量所构成的向量。于是我们可以写成Y=CX,C 是一个正交矩阵,满足CC ’=I 。 坐标旋转是指新坐标轴相互正交,仍构成一个直角坐标系。变换后的N 个点在1y 轴上

模式识别习题及答案

第一章 绪论 1.什么是模式?具体事物所具有的信息。 模式所指的不是事物本身,而是我们从事物中获得的___信息__。 2.模式识别的定义?让计算机来判断事物。 3.模式识别系统主要由哪些部分组成?数据获取—预处理—特征提取与选择—分类器设计/ 分类决策。 第二章 贝叶斯决策理论 1.最小错误率贝叶斯决策过程? 答:已知先验概率,类条件概率。利用贝叶斯公式 得到后验概率。根据后验概率大小进行决策分析。 2.最小错误率贝叶斯分类器设计过程? 答:根据训练数据求出先验概率 类条件概率分布 利用贝叶斯公式得到后验概率 如果输入待测样本X ,计算X 的后验概率根据后验概率大小进行分类决策分析。 3.最小错误率贝叶斯决策规则有哪几种常用的表示形式? 答: 4.贝叶斯决策为什么称为最小错误率贝叶斯决策? 答:最小错误率Bayes 决策使得每个观测值下的条件错误率最小因而保证了(平均)错误率 最小。Bayes 决策是最优决策:即,能使决策错误率最小。 5.贝叶斯决策是由先验概率和(类条件概率)概率,推导(后验概率)概率,然后利用这个概率进行决策。 6.利用乘法法则和全概率公式证明贝叶斯公式 答:∑====m j Aj p Aj B p B p A p A B p B p B A p AB p 1) ()|()() ()|()()|()(所以推出贝叶斯公式 7.朴素贝叶斯方法的条件独立假设是(P(x| ωi) =P(x1, x2, …, xn | ωi) = P(x1| ωi) P(x2| ωi)… P(xn| ωi)) 8.怎样利用朴素贝叶斯方法获得各个属性的类条件概率分布? 答:假设各属性独立,P(x| ωi) =P(x1, x2, …, xn | ωi) = P(x1| ωi) P(x2| ωi)… P(xn| ωi) 后验概率:P(ωi|x) = P(ωi) P(x1| ωi) P(x2| ωi)… P(xn| ωi) 类别清晰的直接分类算,如果是数据连续的,假设属性服从正态分布,算出每个类的均值方差,最后得到类条件概率分布。 均值:∑==m i xi m x mean 11)( 方差:2)^(11)var(1∑=--=m i x xi m x 9.计算属性Marital Status 的类条件概率分布 给表格计算,婚姻状况几个类别和分类几个就求出多少个类条件概率。 ???∈>=<2 11221_,)(/)(_)|()|()(w w x w p w p w x p w x p x l 则如果∑==21 )()|()()|()|(j j j i i i w P w x P w P w x P x w P 2,1),(=i w P i 2,1),|(=i w x p i ∑==2 1)()|()()|()|(j j j i i i w P w x P w P w x P x w P ∑=== M j j j i i i i i A P A B P A P A B P B P A P A B P B A P 1) ()| ()()|()()()|()|(

模式识别作业Homework#2

Homework #2 Note:In some problem (this is true for the entire quarter) you will need to make some assumptions since the problem statement may not fully specify the problem space. Make sure that you make reasonable assumptions and clearly state them. Work alone: You are expected to do your own work on all assignments; there are no group assignments in this course. You may (and are encouraged to) engage in general discussions with your classmates regarding the assignments, but specific details of a solution, including the solution itself, must always be your own work. Problem: In this problem we will investigate the importance of having the correct model for classification. Load file hw2.mat and open it in Matlab using command load hw2. Using command whos, you should see six array c1, c2, c3 and t1, t2, t3, each has size 500 by 2. Arrays c1, c2, c3 hold the training data, and arrays t1, t2, t3 hold the testing data. That is arrays c1, c2, c3 should be used to train your classifier, and arrays t1, t2, t3 should be used to test how the classifier performs on the data it hasn’t seen. Arrays c1 holds training data for the first class, c2 for the second class, c3 for the third class. Arrays t1, t2, t3 hold the test data, where the true class of data in t1, t2, t3 comes from the first, second, third classed respectively. Of course, array ci and ti were drawn from the same distribution for each i. Each training and testing example has 2 features. Thus all arrays are two dimensional, the number of rows is equal to the number of examples, and there are 2 columns, column 1 has the first feature, column 2 has the second feature. (a)Visualize the examples by using Matlab scatter command a plotting each class in different color. For example, for class 1 use scatter(c1(:,1),c1(:,2),’r’);. Other possible colors can be found by typing help plot. (b)From the scatter plot in (a), for which classes the multivariate normal distribution looks like a possible model, and for which classes it is grossly wrong? If you are not sure how to answer this part, do parts (c-d) first. (c)Suppose we make an erroneous assumption that all classed have multivariate normal Nμ. Compute the Maximum Likelihood estimates for the means and distributions()∑, covariance matrices (remember you have to do it separately for each class). Make sure you use only the training data; this is the data in arrays c1, c2, and c3. (d)You can visualize what the estimated distributions look like using Matlab contour(). Recall that the data should be denser along the smaller ellipse, because these are closer to the estimated mean. (e)Use the ML estimates from the step (c) to design the ML classifier (this is the Bayes classifier under zero-one loss function with equal priors). Thus we are assuming that priors are the same for each class. Now classify the test example (that is only those

华南理工大学《模式识别》大作业报告

华南理工大学《模式识别》大作业报告 题目:模式识别导论实验 学院计算机科学与工程 专业计算机科学与技术(全英创新班) 学生姓名黄炜杰 学生学号201230590051 指导教师吴斯 课程编号145143 课程学分2分 起始日期2015年5月18日

实验概述 【实验目的及要求】 Purpose: Develop classifiers,which take input features and predict the labels. Requirement: ?Include explanations about why you choose the specific approaches. ?If your classifier includes any parameter that can be adjusted,please report the effectiveness of the parameter on the final classification result. ?In evaluating the results of your classifiers,please compute the precision and recall values of your classifier. ?Partition the dataset into2folds and conduct a cross-validation procedure in measuring the performance. ?Make sure to use figures and tables to summarize your results and clarify your presentation. 【实验环境】 Operating system:window8(64bit) IDE:Matlab R2012b Programming language:Matlab

模式识别课程教学大纲

《模式识别》课程教学大纲 课程编号:50420361 课程名称:模式识别 英文名称:Pattern Recognition 课程类别:专业限选课 学分:2 学时:40 开课学期:一 开课周次:11-20 开课教研室:自动化系计算机控制教研室 任课教师及职称:刘禾教授 先修课程:概率论 适用专业:模式识别与智能系统、控制理论与控制工程 课程目的和基本要求: 课程设置的目的使硕士研究生掌握模式识别的基本理论与方法。通过课程学习要求学生掌握模式识别的基本理论与方法,了解这些理论与方法的一些典型应用。通过本课程学习使学生初步具有运用相应理论解决实际问题的能力。 课程主要内容: 本课程总学时40学时,从统计模式识别、聚类分析和模糊模式识别等几个方面介绍模式识别的基本理论和知识,全部课程内容分九章,各章具体内容、学时分配如下: 第一章概述(4 学时) 内容:模式识别分类、系统构成、一些模式识别实用技术和模式识别系统评价方法。 第二章贝叶斯分类方法(4学时) 内容:几种常用的分类决策方法:如基于最小错误率的贝叶斯决策、基于最小风险的贝叶斯决策和最大最小决策等。介绍分类器设计一般规则。 第三章特征的选择与提取(2学时) 内容:特征的选择原则和基本方法,特征提取对分类的影响分析。

第四章线性判别函数(4学时) 内容:线性分类的基本概念和线性判别函数基本形式,Fisher线性判别方法,支持向量机和多类问题的分类方法。 第五章非线性判别函数(4学时) 内容:非线性的分段线性判别方法,特征空间变换,非线性空间的支持向量机和决策树方法。 第六章人工神经网络(8学时) 内容:神经网络基础,常用神经网络介绍,基于神经网络的模式识别方法。 第七章聚类分析(6学时) 内容:模式的相似性测度,类的定义及类间距和各种聚类算法介绍,如层次聚类算法、动态聚类法和概念合取聚类法等。 第八章模糊模式识别方法(4学时) 内容:模糊集、模糊关系和模糊分类方法。 第九章应用举例(4学时) 内容:介绍国内外最新研究成果和应用实例。 使用教材: 1、《模式识别》,边肇祺,清华大学出版社、1999年; 2、《神经网络模式识别系统理论》,黄德双,电子工业出版社、1996年。 参考书目: 1、《模式识别》,李晶皎,朱志良,王爱侠等译,电子工业出版社、2004年; 2、《现代模式识别》,孙即祥,国防科技大学出版社、2002年。 考试方式: 课程成绩根据学生课堂参与情况、平时作业情况和期末考试成绩综合评定学习成绩,期末考试为专题研究论文或闭卷考试,平时成绩占百分之三十。 教研室意见: 系(院、部)意见: 研究生处审核意见:

模式识别作业

模式识别作业 班级: 学号: 姓名:

一、实验内容 (1)了解与熟悉模式识别系统的基本组成和系统识别原理。 (2)使用增添特征法对特征进行提取与选择。 (3)编写MATLAB程序,对原始数据特征进行提取与选择,并选择适当的分类器对样本进行训练和分类,得出最后的分类结果以及识别正确率。二、实验原理 模式识别系统的原理图如下: 图1.模式识别系统原理图 对原始样本数据进行一些预处理,使用增添特征法进行特征提取与选择。增添特征法也称为顺序前进法(SFS),每次从未选择的特征中选择一个,使得它与已选特征组合后判据值J最大,直到选择的特征数目达到d。特征选取后用SVM分类器对随机选取的训练样本和测试样本进行分类,最后得出不同特征维数下的最高SVM分类正确率,以及不同特征维数下的最大类别可分性判据。 三、实验方法及程序 clear; clc; load('C:\Users\Administrator\Desktop\homework\ionosphere.mat'); m1=225;m2=126; p1=m1/(m1+m2);p2=m2/(m1+m2); chosen=[]; for j=1:34 [m,n]=size(chosen);n=n+1; J1=zeros(1,33); for i=1:34 Sw=zeros(n,n);Sb=zeros(n,n); S1=zeros(n,n);S2=zeros(n,n); p=any(chosen==i); if p==0 temp_pattern1=data(1:225,[chosen i]); temp_pattern2=data(226:351,[chosen i]);

模式识别习题及答案

第一章 绪论 1.什么是模式具体事物所具有的信息。 模式所指的不是事物本身,而是我们从事物中获得的___信息__。 2.模式识别的定义让计算机来判断事物。 3.模式识别系统主要由哪些部分组成数据获取—预处理—特征提取与选择—分类器设计/ 分类决策。 第二章 贝叶斯决策理论 1.最小错误率贝叶斯决策过程 答:已知先验概率,类条件概率。利用贝叶斯公式 得到后验概率。根据后验概率大小进行决策分析。 2.最小错误率贝叶斯分类器设计过程 答:根据训练数据求出先验概率 类条件概率分布 利用贝叶斯公式得到后验概率 如果输入待测样本X ,计算X 的后验概率根据后验概率大小进行分类决策分析。 3.最小错误率贝叶斯决策规则有哪几种常用的表示形式 答: 4.贝叶斯决策为什么称为最小错误率贝叶斯决策 答:最小错误率Bayes 决策使得每个观测值下的条件错误率最小因而保证了(平均)错误率 最小。Bayes 决策是最优决策:即,能使决策错误率最小。 5.贝叶斯决策是由先验概率和(类条件概率)概率,推导(后验概率)概率,然后利用这个概率进行决策。 6.利用乘法法则和全概率公式证明贝叶斯公式 答:∑====m j Aj p Aj B p B p A p A B p B p B A p AB p 1) ()|()() ()|()()|()(所以推出贝叶斯公式 7.朴素贝叶斯方法的条件独立假设是(P(x| ωi) =P(x1, x2, …, xn | ωi) ???∈>=<2 11221_,)(/)(_)|()|()(w w x w p w p w x p w x p x l 则如果∑==21 )()|()()|()|(j j j i i i w P w x P w P w x P x w P 2,1),(=i w P i 2,1),|(=i w x p i ∑==21)()|()()|()|(j j j i i i w P w x P w P w x P x w P ∑=== M j j j i i i i i A P A B P A P A B P B P A P A B P B A P 1) ()| ()()|()()()|()|(

中科院模式识别大作业——人脸识别

人脸识别实验报告 ---- 基于PCA 和欧氏距离相似性测度 一、理论知识 1、PCA 原理 主成分分析(PCA) 是一种基于代数特征的人脸识别方法,是一种基于全局特征的人脸识别方法,它基于K-L 分解。基于主成分分析的人脸识别方法首次将人脸看作一个整体,特征提取由手工定义到利用统计学习自动获取是人脸识别方法的一个重要转变[1]。简单的说,它的 原理就是将一高维的向量,通过一个特殊的特征向量矩阵,投影到一个低维的向量空间中,表示为一个低维向量,并不会损失任何信息。即通过低维向量和特征向量矩阵,可以完全重构出所对应的原来高维向量。特征脸方法就是将包含人脸的图像区域看作是一种随机向量,因此,可以采用K-L 变换获得其正交K-L 基底。对应其中较大特征值的基底具有与人脸相似的形状,因此又称为特征脸。利用这些基底的线性组合可以描述、表达和逼近人脸图像,因此可以进行人脸识别与合成。识别过程就是将人脸图像映射到由特征脸张成的子空间上,比较其与己知人脸在特征空间中的位置,从而进行判别。 2、基于PCA 的人脸识别方法 2.1 计算特征脸 设人脸图像f(x,y)为二维N×M 灰度图像,用NM 维向量R 表示。人脸图像训练集为{}|1,2,...,i R i P =,其中P 为训练集中图像总数。这P 幅图像的平均向量为: _ 11P i i R R P ==∑ 对训练样本规范化,即每个人脸i R 与平均人脸_ R 的差值向量: i A =i R -_R (i= 1,2,…,P) 其中列向量i A 表示一个训练样本。 训练图像由协方差矩阵可表示为: T C AA = 其中训练样本NM ×P 维矩阵12[,,...,]P A A A A = 特征脸由协方差矩阵C 的正交特征向量组成。对于NM 人脸图像,协方差矩

相关文档
最新文档