数的整除性规律
小学奥数关于数的整除规律

数的整除规律1、一个数的个位上是2、4、6、8、0的数都能被2整除。
2、一个数的数字之和能被3或9整除,这个数就能被3或9整除。
3、这一个数的末两位如果能被4或者25整除,这个数就能被4或者25整除。
4、个位上是0或5的数都能被5整除。
5.这个数的末位数与末三位以前的数字所组成的数之差能被7,11或13整除,则原数能被7,11或13整除。
6.这个数的末三位如果能被8或者125整除,这个数就一定能被8或者125整除。
7.若一个整数的奇位数字之和与偶位数字之和的差能被11整除,则这个数能被11整除。
能被2、3、4、5、6、7、8、9等数整除的数的特征性质1:如果数a、b都能被c整除,那么它们的和(a+b)或差(a-b)也能被c整除。
性质2:几个数相乘,如果其中有一个因数能被某一个数整除,那么它们的积也能被这个数整除。
能被2整除的数,个位上的数能被2整除(偶数都能被2整除),那么这个数能被2整除能被3整除的数,各个数位上的数字和能被3整除,那么这个数能被3整除能被4整除的数,个位和十位所组成的两位数能被4整除,那么这个数能被4整除能被5整除的数,个位上为0或5的数都能被5整除,那么这个数能被5整除能被6整除的数,各数位上的数字和能被3整除的偶数,如果一个数既能被2整除又能被3整除,那么这个数能被6整除能被7整除的数,若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。
如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。
例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 ,59-5×2=49,所以6139是7的倍数,余类推。
能被8整除的数,一个整数的末3位若能被8整除,则该数一定能被8整除。
整除的规律

整除的规律整除规则第一条(1):任何数都能被1整除。
整除规则第二条(2):个位上是2、4、6、8、0的数都能被2整除。
整除规则第三条(3):每一位上数字之和能被3整除,那么这个数就能被3整除。
整除规则第四条(4):最后两位能被4整除的数,这个数就能被4整除。
整除规则第五条(5):个位上是0或5的数都能被5整除。
整除规则第六条(6):一个数只要能同时被2和3整除,那么这个数就能被6整除。
整除规则第七条(7):把个位数字截去,再从余下的数中,减去个位数的2倍,差是7的倍数,则原数能被7整除。
整除规则第八条(8):最后三位能被8整除的数,这个数就能被8整除。
整除规则第九条(9):每一位上数字之和能被9整除,那么这个数就能被9整除。
整除规则第十条(10):若一个整数的末位是0,则这个数能被1 0整除整除规则第十一条(11):若一个整数的奇位数字之和与偶位数字之和的差能被11整除,则这个数能被11整除。
11的倍数检验法也可用上述检查7的「割尾法」处理!过程唯一不同的是:倍数不是2而是1!整除规则第十二条(12):若一个整数能被3和4整除,则这个数能被12整除。
整除规则第十三条(13):若一个整数的个位数字截去,再从余下的数中,加上个位数的4倍,如果差是13的倍数,则原数能被13整除。
如果差太大或心算不易看出是否13的倍数,就需要继续上述「截尾、倍大、相加、验差」的过程,直到能清楚判断为止。
整除规则第十四条(14):a 若一个整数的个位数字截去,再从余下的数中,减去个位数的5倍,如果差是17的倍数,则原数能被17整除。
如果差太大或心算不易看出是否17的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。
b 若一个整数的末三位与3倍的前面的隔出数的差能被17整除,则这个数能被17整除。
整除规则第十五条(15):a 若一个整数的个位数字截去,再从余下的数中,加上个位数的2倍,如果差是19的倍数,则原数能被19整除。
整除的数有哪些特征

整除的数有哪些特征?整除的性质:(1)如果a能被c整除,b也能被c整除,那么a+b和a-b也都能被c整除。
(2)如果a能被b整除,那么ac也能被bc所整除。
(3)如果a能被b整除,b能被c整除,那么a也能被c所整除。
(4)如果a能被b,c所整除,且(b,c)=1,那么a也能被b×c整除。
(5)如果a、b、c两两互质,且a、b、c都能整除m,那么abc能整除m。
能被1、2、3、4、5、6、7、8、9、10、11、13、14、15、16、17、18、19整除的数有哪些特征?1:所有整数2:所有偶数3:各个数位和为3的倍数4:偶数中4的倍数,后两位能被4整除5:个位为0或5的6:是3的倍数的偶数7:后三位与前几位的差能被7整除8:偶数中8的倍数,后三位能被8整除9:各个数位和为9的倍数10:末位为011:奇数位上的数字和与偶数位上的数字和的差为11的倍数13:末三位与前几位的差能被13整除14:7的倍数中的偶数15:3的倍数中末位为0或5的16:偶数中16的倍数,后四位能被16整除的17:末三位与前几位的差能被17整除18:9的倍数中的偶数19:19的倍数(7和13的可能不对,这都是小学的知识,现在都快忘了,除了那几个常用的,绝大部分应该都是正确的)11整除的特征:奇位数字的和与偶位数字的和之差可以被11整除。
举例132。
(1+2)-3=0=0*1113整除的特征:去掉个位数后的数加上个位数的4倍,能被13整除。
举例143。
14+3*4=26=13*2最佳答案能被7、11、13整除的特征是:如果一个数的末三位数字所表示的数与末三位前的数字相减(注意:大数减小数),能被7、11、13整除,这个数就是7、11、13的倍数。
若一个整数的个位数字截去,再从余下的数中,减去个位数的5倍,如果差是17的倍数,则原数是17的倍数。
4的规律是:末两位的两位数能被4整除,则原数是4的倍数.125的规律:末三位的三位数能被125整除,则原数是125的倍数.整除的性质及应用整除有几个性质。
数字的整除性质

数字的整除性质数字的整除性质是数学中一个非常重要且基础的概念。
在数学中,我们经常会遇到数字之间的整除关系,通过研究数字的整除性质,我们可以得到许多有用的结论和推论。
本文将探讨数字的整除性质,讨论其定义、性质以及应用。
一、定义在整数集合中,对于任意的整数a和b,如果存在一个整数c使得a = b * c,我们就说a能被b整除,或者b是a的因数,记作b|a。
其中,a被称为被除数,b被称为除数,c被称为商。
如果a不能被b整除,我们就说a不能被b整除,记作b∤a。
二、性质1. 对于任意的整数a,a|a。
这个性质非常显然,任何一个整数都能整除它自身。
2. 对于任意的整数a,1|a。
同样地,因为1乘以任何一个整数都等于这个整数本身,所以1能整除任意一个整数。
3. 对于任意的整数a,a|0。
这个性质是因为任何一个整数乘以0都等于0,所以任意一个整数都能整除0。
4. 如果a|b且b|c,则a|c。
这个性质表明,如果一个整数能同时整除另外两个整数,那么它也能整除它们的和。
5. 如果a|b且a|c,则a|(bx + cy),其中x和y是任意整数。
这个性质表示了如果一个整数能整除其他两个整数,那么它也能整除它们的线性组合。
三、应用1. 最大公约数和最小公倍数最大公约数和最小公倍数是关于整除性质的两个重要概念。
最大公约数指的是两个或多个整数中能够整除它们的最大的正整数,用gcd(a, b)表示。
最小公倍数指的是两个或多个整数中能够被它们整除的最小的正整数,用lcm(a, b)表示。
通过研究数字的整除性质,我们可以发现最大公约数和最小公倍数的计算方法,这对于解决实际问题非常有用。
2. 整数的因式分解通过对一个整数进行因式分解,我们可以将这个整数表示为若干个素数的乘积形式。
因式分解是数学中一个重要的内容,它不仅能够帮助我们理解整数的结构,还能够在解决一些数学问题时提供便利。
3. 同余定理同余定理是整除性质的一个重要应用,它在数论中有广泛的应用。
三位数和四位数的整除性规律

三位数和四位数的整除性规律整除是数学中一个重要的概念,它描述了两个数之间的特殊关系。
在这篇文章中,我将讨论三位数和四位数的整除性规律。
通过深入研究,我们可以了解到一些有趣的性质和规律,希望对读者有所启发。
一、三位数的整除性规律三位数是由三个数字组成的数,范围从100到999。
对于任意一个三位数,我们可以观察到一些整除性规律。
1. 对于一个三位数abc,如果abc能够被2整除,那么c一定是2的倍数。
例如,如果abc能够被2整除,那么c只能是0、2、4、6或8。
2. 如果abc能够被3整除,那么a+b+c一定是3的倍数。
例如,如果abc能够被3整除,那么a+b+c只能是3、6、9、12、 (27)3. 如果abc能够被4整除,那么bc一定是4的倍数。
例如,如果abc能够被4整除,那么bc只能是04、08、12、16、 (96)4. 如果abc能够被5整除,那么c一定是5的倍数或0。
例如,如果abc能够被5整除,那么c只能是0、5。
定是2的倍数。
例如,如果abc能够被6整除,那么a+b+c只能是6、12、18、...、27,并且c只能是0、2、4、6或8。
二、四位数的整除性规律四位数是由四个数字组成的数,范围从1000到9999。
对于任意一个四位数,我们同样可以观察到一些整除性规律。
1. 对于一个四位数abcd,如果abcd能够被2整除,那么d一定是2的倍数。
例如,如果abcd能够被2整除,那么d只能是0、2、4、6或8。
2. 如果abcd能够被3整除,那么a+b+c+d一定是3的倍数。
例如,如果abcd能够被3整除,那么a+b+c+d只能是3、6、9、12、 (36)3. 如果abcd能够被4整除,那么cd一定是4的倍数。
例如,如果abcd能够被4整除,那么cd只能是04、08、12、 (96)4. 如果abcd能够被5整除,那么d一定是5的倍数或0。
例如,如果abcd能够被5整除,那么d只能是0、5。
1.数的整除性

数的整除性质1:如果数a、b都能被c整除,那么它们的和(a+b)或差(a-b)也能被c整除。
性质2:几个数相乘,如果其中有一个因数能被某一个数整除,那么它们的积也能被这个数整除。
能被2整除的数,个位上的数能被2整除(偶数都能被2整除),那么这个数能被2整除能被3整除的数,各个数位上的数字和能被3整除,那么这个数能被3整除能被5整除的数,个位上的数都能被5整除(即个位为0或5)那么这个数能被5整除能被7整除的数,若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。
能被11整除的数,奇数位(从左往右数)上的数字和与偶数位上的数字和之差(大数减小数)能被11整除,则该数就能被11整除。
例1在下面的数中,哪些能被4整除?哪些能被8整除?哪些能被9整除?234,789,7756,8865,3728,8064。
例2从0,2,5,7四个数字中任选三个,组成能同时被2,5,3整除的数,并将这些数从小到大进行排列。
例3六位数是6的倍数,这样的六位数有多少个?例4要使六位数能被36整除,而且所得的商最小,问A,B,C各代表什么数字?1、能被3整除的最小三位数是(),能被5整除的最大三位数是()2,又能被3整除,而且还是5的倍数的最小三位数是()3、在自然数中,()既不是质也不是合。
既是奇数又是质数的最小的数是(),()既是质数又是合数。
4、用三个一位质数组成能同时被3和5整除的三位数,最大的是(),最小的数是()。
4、自然数a除以自然数b,商是15,那么a和b的最大公约数是()。
5、三个质数的最小公倍数是42,这三个质数是()。
6、100以内同时能被3和7整除的最大奇数是(),最大偶数是()。
1.6539724能被4,8,9,24,36,72中的哪几个数整除?2.个位数是5,且能被9整除的三位数共有多少个?3.一些四位数,百位上的数字都是3,十位上的数字都是6,并且它们既能被2整除又能被3整除。
数的整除性质技巧

数的整除性质技巧1.数的整除性质:1)若a整除b,b整除c,则a整除c。
(传递性)2)若a整除b且a整除c,则a整除b+c。
3)若a和b是正整数,且a整除b,那么a≤b。
4) 若a整除b,且c是任意整数,则a整除bc。
2.奇偶性质:1)若数a的个位数是偶数,则a整除22)若一个数是奇数,那么它的倍数一定是奇数。
3)若一个数是偶数,那么它的倍数一定是偶数。
3.除法性质:1) 若b整除a,且c是任意整数,则b整除ac。
2)若b整除a且b≠0,那么a除以b的商和余数唯一确定。
4.数位和性质:1)若数a的数位和是n,则a整除n。
2)若数a的数位和是9的倍数,那么a也是9的倍数。
3)若数a的数位和是3的倍数,那么a也是3的倍数。
5.数和运算性质:1)若a整除c且b整除c,则a+b整除c。
2)若a整除c且b整除c,则a-b整除c。
3)若a和b都整除c,则a+b也整除c。
4) 若a整除c且b整除c,则ax + by也整除c,其中x和y是任意整数。
6.乘法性质:1)若数a整除c且数b整除c,则a×b整除c。
2) 若数a整除bc且a和b互质,那么a整除c。
3)若数a整除b且数b整除a,则a和b的最大公约数等于其中的较小数。
7.倍数性质:1)若a整除b,并且b是a的倍数,那么a整除b的任意倍数。
2)一个数是另一个数的倍数时,它们的公倍数一定也是这个数的倍数。
8.整除和余数的关系:1)如果数a是数b的整数倍,那么a和b的余数相同。
2)如果数a和b除以数c的余数相同,那么a-b是c的倍数。
以上是一些常用的数的整除性质技巧,通过灵活运用这些技巧可以在解题过程中减少计算量,提高解题效率。
在实际运用中,我们可以根据题目的要求和条件选择相应的技巧,以求解问题。
同时,深入理解这些性质背后的原理,能够更好地理解数的整除关系,为数的整除性质的使用提供更大的帮助。
数的整除性质技巧

数的整除性质技巧1.末尾数字的整除性质:当一个数能被2整除时,它的末尾数字必定是0、2、4、6、8中的一位。
当一个数能被5整除时,它的末尾数字必须是0或5当一个数能被10整除时,它的末尾数字必须是0。
2.数字的整除性质:一个数能被3整除的条件是,该数的各个位上的数字之和能被3整除。
一个数能被9整除的条件是,该数的各个位上的数字之和能被9整除。
3.数的因数乘积性质:如果一个数能分解成两个整数的乘积,那么这两个整数一定是这个数的因数,并且这个数能同时被这两个因数整除。
例如,120可以分解成2和60的乘积,所以2和60是120的因数,并且120能同时被2和60整除。
4.数的因数关系性质:如果一个数能被另一个数整除,并且这两个数都是另一个数的因数,那么这两个数的倍数也是该数的因数。
例如,12能被3整除,而3是12的因数,那么6、9、15等都是12的因数。
5.因数的奇偶性质:如果一个数能整除另一个数,那么这个数的因数中也有整除关系。
例如,6能被2整除,2是6的因数,而2能被1整除,所以1也是6的因数,即6能整除16.数的整除性质的逆运算:如果一个数能被另一个数整除,那么这个被除数乘上一个整数得到的结果也能被另一个数整除。
例如,如果12能被3整除,那么12×2=24也能被3整除。
7.两个数的公因数性质:如果两个数有公因数,并且其中一个数能整除另一个数,那么这个因数也就同时是这两个数的公因数。
例如,6和9有公因数3,并且9能整除6,所以3是6和9的公因数。
8.最大公因数和最小公倍数的性质:两个数的最大公因数和最小公倍数可以通过两个数的乘积除以最大公因数来计算。
例如,72和90的最大公因数是18,最小公倍数是360,因为72×90/18=360。
通过掌握数的整除性质技巧,可以在解题过程中更加快速和准确地计算数的整除关系,从而提高解题效率。
同时,数的整除性质技巧也有助于理解数的因数与倍数之间的关系,进一步深化对数学概念的理解和运用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数的整除性规律
【能被2或5整除的数的特征】一个数的末位能被2或5整除,这个数就能被2或5
整除
【能被3或9整除的数的特征】一个数,当且仅当它的各个数位上的数字之和能被3
和9整除时,这个数便能被3或9整除。
例如,1248621各位上的数字之和是1+2+4+8+6+2+1=24
3|24,则3|1248621。
又如,372681各位上的数字之和是3+7+2+6+8+1=27
9|27,则9|372681。
【能被4或25整除的数的特征】一个数,当且仅当它的末两位数能被4或25整除时,这个数便能被4或25整除。
例如,
173824的末两位数为24,4|24,则4|173824。
43586775的末两位数为75,25|75,则25|43586775。
【能被8或125整除的数的特征】一个数,当且仅当它的末三位数字为0,或者末三位数能被8或125整除时,这个数便能被8或125整除。
例如,
32178000的末三位数字为0,则这个数能被8整除,也能够被125整除。
3569824的末三位数为824,8|824,则8|3569824。
214813750的末三位数为750,125|750,则125|214813750。
【能被7、11、13整除的数的特征】一个数,当且仅当它的末三位数字所表示的数,与末三位以前的数字所表示的数的差(大减小的差)能被7、11、13整除时,这个数就能被7、11、13整除。
例如,75523的末三位数为523,末三位以前的数字所表示的数是75,523-75=448,448÷7=64,即7|448,则7|75523。
又如,1095874的末三位数为874,末三位以前的数字所表示的数是1095,1095-874=221,221÷13=17,即13|221,则13|1095874。
再如,868967的末三位数为967,末三位以前的数字所表示的数是868,967-868=99,99÷11=9,即11|99,则11|868967。
此外,能被11整除的数的特征,还可以这样叙述:一个数,当且仅当它的奇数位上数字之和,与偶数位上数字之和的差(大减小)能被11整除时,则这个数便能被11整除。
例如,4239235的奇数位上的数字之和为4+3+2+5=14,偶数位上数字之和为2+9+3=14,二者之差为14-14=0,0÷11=0,即11|0,则11|4239235。