初中数学网格作图
中考数学网格作图题复习教案

《网格作图题》复习专题教学设计一、教材分析网格作图题是对图形变换的综合考查,在网格中可以同时考察平移、旋转、轴对称、中心对称等几种图形变换。
这类题目属于图形的操作问题,在网格中进行图形变换的操作时,图形的每一个顶点都是关键点,可以将图形的变换操作转化为点的变换操作。
本节课,知识点较多,但应该抓住关键点,分清变换类型,用变换的性质来解决实际问题,以训练为主。
2.考标要求:(1)应用平移、旋转、轴对称、中心对称等几种图形变换的性质解决数学问题。
(2)培养学生几何空间思维能力。
二、教学目标:(1).知识与技能:回忆所学的平移、旋转、轴对称、中心对称等几种图形变换的基础知识,理解掌握运用基础知识解决相关问题,提高解决问题的能力。
(2).数学思考:建立几何空间思维能力。
(3).过程与方法:学生自查遗忘的知识点,通过讨论、交流,教师答疑、解惑、指导,经历例题、习题的解答,提高技能,(4).情感态度:经历对所学的平移、旋转、轴对称、中心对称等几种图形变换的基础知识的复习,用所学知识解决相关问题,提高解决问题的能力。
三、教学重、难点:教学重点:对面积的计算。
教学难点:教学准备:多媒体课件、导学案、四、教学过程教学内容与教师活动学生活动设计意图一、知识梳理加强理解(1)中考题型(2)考点1.对称图形的计算和运用;2.平移图形的计算和运用;3.旋转图形的计算和运用;4.在网格中求面积;(3)准备知识1.对称作图的方法:轴对称(或中心对称)图形的作法:先找出原图形的各顶点,作出它们关于对称轴的对称点,然后根据原图连接各对称点。
2.平移作图的方法:(1)确定平移的方向和平移的距离;(2)找出原图形的关键点;(3)按平移方向和平移距离,平移各个关键点,得到关键点的对应点;(4)按原图形依次连接各关键点的对应点,即的平移后的图形。
3.旋转作图的方法:(1)确定旋转中心及旋转方向、旋转角;(2)找出原图的关键点;(3)连接关键点与旋转中心,按旋转方向与旋转角旋转,得到个关键点的对应点;(4)按按原图形依次连接各关键点的对应点,即的旋转后的图形。
中考数学专题《在网格线中作图》

(1)在图1中,画出线段AB的垂直平分线MN;
(2)在图2中,线段CD∥AB,画出线段CD的中点O.
M
利用轴对称
的性质作图
A
A
N B
利用梯形 四点共线作图
C O D B
知识点
01 利用常用技巧作图 02 利用性质作位置关系 03 利用性质作数量关系 04 按要求构造图形
典例精讲
利用性质作位置关系
知识点二
【例2】(2016·T17)如图,六个完全相同的小长方形拼成一个大长方形,AB
是其中一个小长方形的对角线,请在大长方形中完成下列画图,要求:
1仅用无刻度直尺,2保留必要的画图痕迹.
(1)在图1中画一个45º角,使点A或点B是这个角的顶点,AB为这个角的一边.
(2)在图2中画出线段AB的垂直平分线.
典例精讲
通过计算面积作图
知识点三
【例3】(2014·T17)已知梯形ABCD,请使用无刻度直尺画一个与梯形ABCD
面积相等的图形.
(1)在图1中,画以CD为边的三角形;
(2)在图2中,画以AB为边的平行四边形.
A
D
A
D
F
EB
C
如图1
如图1,△CDE即为所求;
B
E
C
如图2
如图2,□ABEF即为所求.
完成下列作图.
(1)在图1中,作线段AB∥MN; (2)在图2中,作线段CD⊥MN.
A M
M
CC C
A
NB
N
图1 B
D D D 图2
当堂训练
利用性质作位置关系
知识点二
2.如图,在正三角形网格内,A、B、P、Q均为网格格点,仅用无刻度的直尺
2023年中考数学《网格作图》真题及答案解析

2023中考真题抢先练:数学网格作图1.(2023达州18题)如图,网格中每个小正方形的边长均为1,△ABC 的顶点均在小正方形的格点上.(1)将△ABC 向下平移3个单位长度得到△A 1B 1C 1,画出△A 1B 1C 1;(2)将△ABC 绕点C 顺时针旋转90度得到△A 2B 2C 2,画出△A 2B 2C 2;(3)在(2)的运动过程中请计算出△ABC 扫过的面积.第1题图【推荐区域:安徽陕西】【参考答案】解:(1)如解图,△A 1B 1C 1即为所求;(2)如解图,△A 2B 2C 2即为所求;第1题解图(3)由图可得,△ABC 为等腰直角三角形,∴51222=+==BC AB ,AC =101322=+,∴25552121=´´=×=D BC AB S ABC ,∴△A 1B 1C 1在旋转过程中扫过的面积为2ABCACA S S D +扇形290360p ´=+52=52π+52.反比例与一次函数性质综合题2.(2023自贡24题)如图,点A (2,4)在反比例函数xm y =1图象上,一次函数b kx y +=2的图象经过点A ,分别交x 轴,y 轴于点B ,C ,且△OAC 与△OBC 的面积比为2:1.(1)求反比例函数和一次函数的解析式;(2)请直接写出y 1≥y 2时,x 的取值范围.第2题图【推荐区域:安徽江西甘肃】【参考答案】解:(1)将A (2,4)代入x m y =1中得24m =,解得m =8,∴xy 81=,∵C (0,b ),∴12OAC S OC D =·2=b ,∵△OAC 与△OBC 的面积比为2:1,∴b OB OC S OBC 2121=´=D ,解得OB =1,∴B (-1,0)或(1,0),①将A (2,4),B (-1,0)代入b kx y +=2中,得îíì+-=+=,,b k b k 024解得ïîïíì==,,3434b k ∴34342+=x y ;②将A (2,4),B (1,0)代入b kx y +=2中,得îíì+=+=,,b k b k 024解得îíì-==,,44b k ∴442-=x y ;综上可知,一次函数的解析式为34342+=x y 或442-=x y ;(2)当34342+=x y 时,x ≤-3或0<x ≤2;当442-=x y 时,x ≤-1或0<x ≤2.解直角三角形的实际应用3.(2023达州19题)莲花湖湿地公园是当地人民喜爱的休闲景区之一,里面的秋千深受孩子们喜爱,如图所示,秋千链子的长度为3m ,当摆角∠BOC 恰为26°时,座板离地面的高度BM 为0.9m ,当摆动至最高位置时,摆角∠AOC 为50°,求座板距地面的最大高度为多少m?(结果精确到0.1m ;参考数据:sin 26°=0.44,cos 26°≈0.9,tan 26°≈0.49,sin 50°≈0.77,cos 50°≈0.64,tan 50°≈1.2)第3题图【推荐区域:安徽江西河南甘肃】【参考答案】解:如解图,过点B 作BD ⊥ON 于点D ,过点A 作AE ⊥ON 于点E ,作AF ⊥MN于点F,第3题解图∴四边形BDNM,AENF均为矩形,∴BM=DN=0.9,AF=EN,在Rt△OBD中,OD=OB·cos26°=3cos26°,∴ON=OD+DN=3cos26°+0.9,在Rt△OAE中,OE=OA·cos50°=3cos50°,∴EN=ON-OE=3cos26°+0.9-3cos50°,∴AF=3cos26°+0.9-3cos50°≈3×0.9+0.9-3×0.64=1.68≈1.7(m),答:座板距地面的最大高度为1.7m.4.(2023重庆A卷24题)为了满足市民的需求,我市在一条小河AB两侧开辟了两条长跑锻炼线路,如图:①A—D—C—B;②A—E—B.经勘测,点B在点A的正东方,点C在点B的正北方10千米处,点D在点C的正西方14千米处,点D在点A的北偏东45°方向,点E在点A的正南方,点E在点B的南偏西60°方向.( 1.41≈1.73)(1)求AD的长度;(结果精确到1千米)(2)由于时间原因,小明决定选择一条较短线路进行锻炼,请计算说明他应该选择线路①还是线路②?第4题图【推荐区域:安徽江西河南甘肃】【参考答案】解:(1)如解图,过点D作DF⊥AB于点F.第4题解图由题意可知,AB∥CD,BC⊥AB,∴四边形BCDF是矩形,且BC=10,CD=14.∴DF=BC=10,在Rt△ADF中,∠DAF=45°,∴AD≈14(千米),答:AD的长度约为14千米;(2)由题意可知,EA⊥AB,∠ABE=90°-60°=30°,∵AF=DF=10,BF=CD=14,∴AB=AF+BF=10+14=24,∴在Rt△ABE中,AE AB BE=2AE线路①:AD+CD+BC≈38.1(千米),线路②:AE+BE41.52(千米),∵38.1<41.52,∴小明应选择线路①.二次函数的实际应用5.(2023南充23题)某工厂计划从A ,B 两种产品中选择一种生产并销售,每日产销x 件,已知A 产品成本价m 元/件(m 为常数,且4≤m ≤6),售价8元/件,每日最多产销500件,同时每日共支付专利费30元;B 产品成本价12元/件,售价20元/件,每日最多产销300件,同时每日支付专利费y 元,y (元)与每日产销x (件)满足关系式201.080x y +=.(1)若产销A ,B 两种产品的日利润分别为1w 元,2w 元,请分别写出1w ,2w 与x 的函数关系式,并写出x 的取值范围;(2)分别求出产销A ,B 两种产品的最大日利润;(A 产品的最大日利润用含m 的代数式表示)(3)为获得最大日利润,该工厂应该选择产销哪种产品?并说明理由.[利润=(售价一成本)×产销数量一专利费]【推荐区域:安徽河北云南江西】【参考答案】解:(1)根据题意,得30)8(1--=x m w ,0≤x ≤500.)01.080()1220(22x x w +--=80801.02-+-=x x ,0≤x ≤300;(2)∵8-m >0,∴1w 随x 的增大而增大,又0≤x ≤500,∴当x =500时,1w 的值最大,39705001+-=m w 最大.1520)400(01.080801.0222+--=-+-=x x x w .∵-0.01<0,对称轴为直线x =400,当0≤x ≤300时,2w 随x 的增大而增大,∴当x =300时,2w 最大=-0.01×(300-400)2+1 520=1 420(元).(3)①若最大1w =最大2w ,即-500m +3970=1420,解得m =5.1;②若最大1w >最大2w ,即-500m +3970>1 420,解得m <5.1;③若最大1w <最大2w ,即-500m +3 970<1420,解得m >5.1.又∵4≤m ≤6,∴综上可得,为获得最大日利润:当m =5.1时,选择A ,B 产品产销均可;当4≤m <5.1时,选择A 种产晶产销;当5.1<m ≤6时,选择B 种产品产销.二次函数性质综合题6.(2023遂宁25题)在平面直角坐标系中,O 为坐标原点,抛物线c bx x y ++=241经过点O (0,0),对称轴过点B (2,0),直线l 过点C (2,-2)且垂直于y 轴.过点B 的直线1l 交抛物线于点M ,N ,交直线l 于点Q ,其中点M ,Q 在抛物线对称轴的左侧.(1)求抛物线的解析式;(2)如图1,当BM :MQ =3:5时,求点N 的坐标;(3)如图2,当点Q 恰好在y 轴上时,P 为直线1l 下方的抛物线上一动点,连接PQ ,PO ,其中PO 交1l 于点E ,设△OQE 的面积为1S ,△PQE 的面积为2S ,求12S S 的最大值.第6题图【推荐区域:安徽陕西】【参考答案】解:(1)由题意得0b 2124c =ìïïí-=ï´ïî,,解得01c b =ìí=-î,,∴抛物线的解析式为y =214x -x ;(2)如解图,过点M ,Q 作MD ⊥x 轴,QH ⊥x 轴分别于点D ,H ,第6题解图∴DM ∥HQ ,∴△BDM ∽△BHQ ,∴BM BQ =DM HQ ,∴38=2DM ,∴DM =34,∴点M 的纵坐标为-34,代入y =34x 2-x 中,解得x M =1或x M =3,∵点M 在抛物线对称轴的左侧,∴x M =1,∴点M (1,-34),设直线BM 的解析式为y =kx +b 1,将点M (1,-34)和点B (2,0)代入,得113=402k b k b ì-+ïíï=+î,,解得13=432k b ìïïíï=-ïî,,∴直线BM 的解析式为y =2343-x ,联立2143342y x x y x ì=-ïïíï=-ïî,,解得134x y =ìïí=-ïî,或63x y =ìí=î,,∵点N 在对称轴的右侧,∴点N (6,3);(3)由题意可知,点Q 的坐标为(0,-2),设点P (m ,14m 2-m ),由题意得直线y OP =(14m -1)x ,直线l 1的解析式为y BQ =x -2,联立1(1)42y m x y x ì=-ïíï=-î,,∴点E 的横坐标为x E =88m -,∴S 1=21OQ ·x E =21×2×m -88=m-88,S 2=21OQ ·(P E x x -)=21×2(m -m-88)=m m m ---8882,∴22188888S m m m S m ---=-=1812-+-m m =1)4812+--m (,∵81-<0,∴当m =4时,12S S 有最大值,最大值为1,∴12S S 的最大值为1.。
中考数学题型训练网格作图

中考题型训练——网格作图1.(07.云南)(6分)如图,在所给网格图(每小格均为边长是1的正方形)中完成下列各题:(1)作出格点△ABC关于直线DE对称的△A1B1C1; (2)作出△A1B1C1绕点B1顺时针方向旋转90°后的△A2B1C2;(3)求△A2B1C2的周长;(第1题) (第2题)2.(06.云南)(7分)在如图的方格纸中,每个小正方形的边长都是1,△ABC与△A1B1C1构成的图形是中心对称图形. (1)画出此中心对称图形的对称中心O; (2)画出将△A1B1C1沿直线DE方向向上平移5格得到的△A2B2C2;(3)要使△A2B 2C2与△CC1C2重合,则△A2B2C2绕点C2顺时针方向旋转,至少要旋转多少度?(不要求证明)3.(05.云南)(7分)如图,梯形ABMN是直角梯形.(1)请在图中拼上一个直角梯形,使它与梯形ABMN构成一个等腰梯形;(3)将补上的直角梯形以点M为旋转中心,逆时针方向旋转180°,再向上平移一格,画出这个直角梯形(不要求写作法)(第3题) (第4题) 4.(07.安徽)△ABC和点S在平面直角坐标系中的位置如图所示:(1)将△ABC向右平移4个单位得到△A1B1C1,则点A1 、B1的坐标分别为和 .(2)将△ABC绕点S按顺时针方向旋转90°,画出旋转后的图形.5.(07.江苏)如图,网格中每一个小正方形的边长为1个单位长度.(1)请在所给的网格内画出以线段AB,BC为边的菱形ABCD;(2)填空:菱形ABCD的面积等于.(第5题)(第6题)6.(07.福州)如图的方格纸中,每个小正方形的边长都为1个单位的正方形,在建立平面直角坐标系后, △ABC的顶点均在格点上,点C的坐标为(4,-1).(1)把△ABC向上平移5个单位后得到对应的△A1B1C1,画出△A1B1C1,并写出点C1的坐标;(2)以原点O为对称中心,再画出与△A1B1C1关于原点O对称的△A2B2C2,并写出点C2的坐标.7.(07.哈尔滨)△ABC在平面直角坐标系中的位置如图所示.(1)作出与△ABC关于y轴对称的△A1B1C;(2)将△ABC向下平移3个单位长度,画出平移后的△A2B2C2.(第7题) (第8题)8.(07.辽宁)如图, 在平面直角坐标系中,图错误!与图错误!关于点P成中心对称.(1)画出对称中心P,并写出点P的坐标;(2)将图形\o\ac(○,2)向下平移4个单位,画出平移后的图形错误!,并判断图形错误!与图形错误!的位置关系.(直接写出结果)9.(07.安徽)如图,在直角坐标系中△ABC的A、B、C三点坐标为A(7,1)、B(8,2)、C(9,0).(1)请在图中画出△ABC的一个以点P(12,0)为位似中心,相似比为3的位似图形(要求与△ABC同在P点一侧);(2)求线段BC的对应线段B′C′所在直线的表达式.(第9题) (第10题)10.(07.长沙)如图是某设计师在方格纸中设计图案的一部分,请你帮他完成余下的工作: (1)作出关于直线AB的轴对称图形;(2)将你画出的部分连同原图形绕点O逆时针旋转90°;(3)发挥你的想象,给得到的图案适当涂上阴影,让图案变得更加美丽.11.(07.海南)在如图的方格纸中,△ABC的顶点坐标分别为A(-2,5)、B(-4,1)和C(-1,3).(1)作出△ABC关于x轴对称的△A1B1C1,并写出点A、B、C的对称点A1、B1、C1的坐标;(2)作出△ABC关于原点O对称的△A2B2C2,并写出点A、B、C的对称点A2、B2、C2的坐标;(3)试判断:△A1B1C1与△A2B2C2是否关于y轴对称(只需写出判断结果)(第11题) (第12题)12.(07.青海)如图所示,图错误!和图错误!中的每个小正方形的边长都为1个单位长度.(1)将图错误!中的格点△ABC(顶点都在网格线交点的三角形叫格点三角形)向在平移2个单位长度得到△A1B1C1,请你在图中画出△A1B1C1;(2)在图错误!中画一个与格点△ABC相似的格点△A2B2C2,且△A2B2C2与△ABC的相似比为2:1.13.(07.广西)如图,在正方形网格中,△ABC的三个顶点A、B、C均在格点上,将△ABC向右平移5格,得到△A1B1C1,再将△A1B1C1绕点B1按顺时针方向旋转90°,得到△A2B2C2.(1)请在网格中画出△A1B1C1和△A2B2C2(不要求写画法)(2)画出△A1B1C1和△A2B2C2后,填空:∠C1B1C2= 度,∠A2=度.(第13题)14.(06.成都)如图,在平面直角坐标系中,点B的坐标为(-1,-1).(1)把△ABC向左平移8格后得到△A1B1C1,画出△A1B1C1并写出点B1的坐标; (2)把△ABC绕点C按顺时针方向旋转90°后得到△A2B2C,画出△A2B2C并写出点B2的坐标;(3)把△ABC以点A为位似中心放大,使放大前后对应边长的比为1:2,画出△AB3C3.(第14题)15.(06.广东)如图,图中的小正方形是边长为1的正方形,△ABC与是关于O为位似中心的位似图形,它们的顶点都在小正方形的顶点上.(1)画出位似中心点O;(2)求出△ABC与的位似比;(3)以点O为位似中心,再画一个△A1B1C1,使它与△ABC的位似比为1.5;。
2024年中考数学复习重难点题型训练—网格作图(含答案解析)

2024年中考数学复习重难点题型训练—网格作图(含答案解析)类型一平移1.如图,在9×7的小正方形网格中,△ABC的顶点A,B,C在网格的格点上.将△ABC 向左平移3个单位,再向上平移3个单位得到△A′B′C′.再将△ABC按一定规律依次旋转:第1次,将△ABC绕点B顺时针旋转90°得到△A1BC1;第2次,将△A1BC1绕点A1顺时针旋转90°得到△A1B1C2;第3次,将△A1B1C2绕点C2顺时针旋转90°得到△A2B2C2;第4次,将△A2B2C2绕点B2顺时针旋转90°得到△A3B2C3,依次旋转下去.(1)在网格中画出△A′B′C′和△A2B2C2;(2)请直接写出至少在第几次旋转后所得的三角形刚好为△A′B′C′.【答案】解:(1)△A′B′C′和△A2B2C2的图象如图所示.(2)通过画图可知,△ABC至少在第8次旋转后得到△A′B′C′.2.已知梯形ABCD,请使用无刻度直尺画图.(1)在图①中画一个与梯形ABCD面积相等,且以CD为边的三角形;(2)在图②中画一个与梯形ABCD面积相等,且以AB为边的平行四边形.【解析】(1)如解图①所示,△CDE即为所求.(2)如解图②所示,▱ABFG即为所求.3.如图,在边上为1个单位长度的小正方形网格中:(1)画出△ABC向上平移6个单位长度,再向右平移5个单位长度后的△A1B1C1;(2)以点B为位似中心,将△ABC放大为原来的2倍,得到△A2B2C2,请在网格中画出△A2B2C2;(3)求△CC1C2的面积.【答案】(1)如图所示:;(2)如图所示:;(3)如图所示:△CC1C2的面积=12×3×6=9.【考点定位】:作图-位似变换;作图-平移变换.属基础题.【试题解析】解:(1)根据平移的性质画出图形即可;(2)根据位似的性质画出图形即可;(3)根据三角形的面积公式求出即可.;△CC1C2的面积=12×3×6=9.【命题意图】本题主要考查位似变换与平移变换,得出变换后的对应点的位置是解题的关键.【方法、技巧、规律】网格问题就是在网格中研究格点问题,这类问题现在在中考中比较常见,成为中考中的热点问题,具有很强的操作性,考查的类型问题有:点与有序数对的一一对应问题、平移问题、旋转问题、轴对称问题、勾股定理问题、分类思想的运用等. 4.△ABC在平面直角坐标系中的位置如图所示,其中每个小正方形的边长为1个单位长度.将△ABC向左平移3个单位长度,再向下平移2个单位长度得到△A1B1C1.(1)写出△ABC的顶点坐标;(2)请在图中画出△A1B1C1.【答案】(1)A(1,0),B(0,-1),C(2,-2);(2)参见解析.【解析】(1)由观察得知:A(1,0),B(0,-1),C(2,-2);(2)将A,B,C三点坐标横坐标分别减3,纵坐标分别减2得A1(-2,-2),B1(-3,-3),C1(-1,-4).三点连线即可.如下图:5.作图题:(1)把△ABC向右平移5个方格;CBA(2)绕点B的对应点顺时针方向旋转90°CBA【答案】见解析【解析】(1)如图所示:(2)如图所示:6.如图,在平面直角坐标系中,△ABC的三个顶点坐标为A(-3,4),B(-4,2),C(-2,1),且△A1B1C1与△ABC关于原点O成中心对称.(1)画出△A 1B 1C 1,并写出A 1的坐标;(2)P (a ,b )是△ABC 的AC 边上一点,△ABC 经平移后点P 的对称点P′(a+3,b+1),请画出平移后的△A 2B 2C 2.【答案】(1)作图见解析,A 1的坐标是(3,-4);(2)作图见解析.【解析】(1)如图所示:A 1的坐标是(3,-4);(2)△A 2B 2C 2是所求的三角形.类型二旋转7.(2021·湖北黄石·中考真题)如图,ABC 的三个顶点都在方格纸的格点上,其中A 点的坐标是()1,0-,现将ABC 绕A 点按逆时针方向旋转90︒,则旋转后点C 的坐标是()A .()2,3-B .()2,3-C .()2,2-D .()3,2-【答案】B【分析】在网格中绘制出CA 旋转后的图形,得到点C 旋转后对应点.【解析】如图,绘制出CA 绕点A 逆时针旋转90°的图形,由图可得:点C 对应点C '的坐标为(-2,3).故选B .【点睛】本题考查旋转,需要注意题干中要求顺时针旋转还是逆时针旋转.8.如图,已知O 是坐标原点,B 、C 两点的坐标分别为(3,-1),(2,1),将△BOC 绕点O 逆时针旋转90度,得到△B 1OC 1,画出△B 1OC 1,并写出B 、C 两点的对应点B 1、C 1的坐标,【解析】解:如图,△B1OC1为所作,点B1,C1的坐标分别为(1,3),(-1,2).9.在平面直角坐标系中,点A的坐标是(0,3),点B在x轴上,将△AOB绕点A逆时针旋转90°得到△AEF,点O、B的对应点分别是点E、F.(1)若点B的坐标是(﹣4,0),请在图中画出△AEF,并写出点E、F的坐标.(2)当点F落在x轴的上方时,试写出一个符合条件的点B的坐标.【答案】(1)E(3,3),F(3,﹣1);(2)答案不唯一,如:(﹣2,0).【解析】(1)∵△AOB绕点A逆时针旋转90°后得到△AEF,∴AO⊥AE,AB⊥AF,BO⊥EF,AO=AE,AB=AF,BO=EF,∴△AEF在图中表示为:∵AO⊥AE,AO=AE,∴点E的坐标是(3,3),∵EF=OB=4,∴点F的坐标是(3,﹣1);(2)∵点F落在x轴的上方,∴EF<AO,又∵EF=OB,∴OB<AO,AO=3,∴OB<3,∴一个符合条件的点B的坐标是:答案不唯一,如:(﹣2,0).10.方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC 的顶点均在格点上,点C的坐标为(-3,-1).(1)试作出△ABC以C为旋转中心,沿逆时针方向旋转90°后的图形△A1B1C;(2)以原点O为对称中心,再画出与△ABC关于原点O对称的△A2B2C2,并写出点C2的坐标.【解析】解:根据旋转中心为点C,旋转方向为逆时针,旋转角度为90°,所作图形如下:.(2)所作图形如下:结合图形可得点C2坐标为(3,1).11.如图,在平面直角坐标系中,有一Rt△ABC,且点A(-1,3),B(-3,-1),C(-3,3),已知△A1AC1是由△ABC旋转得到的.(1)旋转中心的坐标是________,旋转角的度数是________.(2)以(1)中的旋转中心为中心,分别画出△A1AC1顺时针旋转90°,180°的三角形.(3)设Rt△ABC的两直角边BC=a,AC=b,斜边AB=c,利用变换前后所形成的图案证明勾股定理.【解析】(1)O(0,0),90°.(2)如解图.(3)由旋转可知,四边形CC 1C 2C 3和四边形AA 1A 2B 都是正方形.∵S 正方形CC 1C 2C 3=S 正方形AA 1A 2B +4S △ABC ,∴(a +b)2=c 2+4×12ab ,即a 2+2ab +b 2=c 2+2ab ,∴a 2+b 2=c 2.12.在如图所示的直角坐标系中,解答下列问题:(1)分别写出A 、B 两点的坐标;(2)将△ABC 绕点A 顺时针旋转90°,画出旋转后的△AB 1C 1.【解析】解:(1)由点A 、B 在坐标系中的位置可知:A (2,0),B (-1,-4);(2)如图所示:13.如图,已知△ABC的三个顶点的坐标分别为A(3,3),B(-1,0),C(4,0).(1)经过平移,可使△ABC的顶点A与坐标原点O重合,请直接写出此时点C的对应点C1坐标;(不必画出平移后的三角形)(2)将△ABC绕点B逆时针旋转90°,得到△A′BC′,画出△A′BC′并写出A′点的坐标;(3)以点A为位似中心放大△ABC,得到△AB2C2,使放大前后的面积之比为1∶4,请你在网格内画出△AB2C2.【答案】解:(1)∵经过平移,可使△ABC的顶点A与坐标原点O重合,∴A点向下平移3个单位再向左平移3个单位,故C1坐标为(1,-3).(2)如图所示,△A′BC′即为所求,A′点的坐标为(-4,4).(3)如图所示,△AB2C2即为所示.14.如图,已知坐标平面内的三个点A(3,5),B(3,1),O(0,0),把△ABO向下平移3个单位,再向右平移2个单位后得到△DEF.(1)直接写出A,B,O三个对应点D、E、F的坐标;(2)画出将△AOB绕O点逆时针方向旋转90∘后得到的△A'OB';(3)求△DEF的面积.【解析】解:(1)点D、E、F的坐标分别为(5,2)、(5,-2)、(2,-3).(2)如图,△A'OB'即为所求作.(3)△DEF的面积=12×4×3=6.15.在4×4的方格纸中,△ABC的三个顶点都在格点上.(1)在图1中画出与△ABC成轴对称且与△ABC有公共边的格点三角形(画出一个即可);(2)将图2中的△ABC绕着点C按顺时针方向旋转90°,画出经旋转后的三角形.【解析】解:(1)如图所示;(2)如图所示.16.如图所示的正方形网格中,△ABC的顶点均在格点上,请在所给直角坐标系中按要求画图和解答下列问题:(1)以A点为旋转中心,将△ABC绕点A顺时针旋转90°得△AB1C1,画出△AB1C1.(2)作出△ABC关于坐标原点O成中心对称的△A2B2C2.(3)判断△A2B2C2是否可由△AB1C1绕某点M旋转得到;若是,请画出旋转中心M,并直接写出旋转中心M的坐标.【解析】解:(1)如图所示,△AB1C1即为所求.(2)如图所示,△A2B2C2即为所求.(3)如图所示,△A2B2C2可由△AB1C1绕点M,顺时针旋转90°得到,其中点M坐标为(0,-1).17.如图,在平面直角坐标系中,点A,B,C的坐标分别为(-1,3),(-4,1),(-2,1),△A1B1C1与△ABC关于原点O成中心对称,△A2B2C2是由△ABC绕着原点O顺时针旋转90°后得到的.(1)画出△A1B1C1,并写出点A的对称点A1的坐标;(2)画出△A2B2C2,并写出点A的对称点A2的坐标;(3)求出点B到达点B2的路径长度.【解析】解:(1)如图,△A1B1C1为所作,A1(1,-3);(2)如图,△A2B2C2为所作,A2(3,1);(3)∵OB=42+12=17,∴B到达点B2的路径长度.18.下面是小明关于“对称与旋转的关系”的探究过程,请你补充完整.(1)三角形在平面直角坐标系中的位置如图1所示,简称G ,G 关于y 轴的对称图形为1G ,关于x 轴的对称图形为2G .则将图形1G 绕____点顺时针旋转____度,可以得到图形2G .(2)在图2中分别画出....G 关于y 轴和直线1y x =+的对称图形1G ,2G .将图形1G 绕____点(用坐标表示)顺时针旋转______度,可以得到图形2G .(3)综上,如图3,直线1:22l y x =-+和2:l y x =所夹锐角为α,如果图形G 关于直线1l 的对称图形为1G ,关于直线2l 的对称图形为2G ,那么将图形1G 绕____点(用坐标表示)顺时针旋转_____度(用α表示),可以得到图形2G .【答案】(1)O ,180;(2)图见解析,()0,1,90;(3)22,33⎛⎫ ⎪⎝⎭,2α【分析】(1)根据图形可以直接得到答案;(2)根据题意画出图形,观察图形,利用图形旋转的性质得到结论;(3)从(1)(2)问的结论中得到解题的规律,求出两个函数的交点坐标,即可得出答案.【解析】解:(1)由图象可得,图形1G 与图形2G 关于原点成中心对称,则将图形1G 绕O 点顺时针旋转180度,可以得到图形2G ;故答案为:O ,180;(2)1G ,2G 如图;由图形可得,将图形1G 绕()0,1点(用坐标表示)顺时针旋转90度,可以得到图形2G ,故答案为:()0,1,90;(3)∵当G 关于y 轴的对称图形为1G ,关于x 轴的对称图形为2G 时,1G 与2G 关于原点(0,0)对称,即图形1G 绕O 点顺时针旋转180度,可以得到图形2G ;当G 关于y 轴和直线1y x =+的对称图形1G ,2G 时,图形1G 绕()0,1点(用坐标表示)顺时针旋转90度,可以得到图形2G ,点(0,1)为直线1y x =+与y 轴的交点,90度角为直线1y x =+与y 轴夹角的两倍;又∵直线1:22l y x =-+和2:l y x =的交点为22,33⎛⎫ ⎪⎝⎭,夹角为α,∴当直线1:22l y x =-+和2:l y x =所夹锐角为α,图形G 关于直线1l 的对称图形为1G ,关于直线2l 的对称图形为2G ,那么将图形1G 绕22,33⎛⎫ ⎪⎝⎭点(用坐标表示)顺时针旋转2α度(用α表示),可以得到图形2G .故答案为:22,33⎛⎫ ⎪⎝⎭,2α.【点睛】本题主要考查了图形的对称性与旋转的性质,关键在于根据题意正确的画出图形,得出规律.类型三对称19.如图,在边长为1个单位长度的小正方形格中,给出了△ABC(顶点是格线的交点).(1)请画出△ABC关于直线l对称的△A1B1C1;(2)将线段AC向左平移3个单位,再向下平移5个单位,画出平移得到的线段A2C2,并以它为一边作一个格点△A2B2C2,使A2B2=C2B2.【答案】(1)如图:△A1B1C1即为所求.(2)如图:△A2B2C2即为所求.20.在如图所示的方格纸中,每个小正方形的边长都是1,△ABC和△A1B1C1成中心对称.(1)请在图中画出对称中心O;(2)在图中画出将△A1B1C1沿直线DE平移5格得到的△A2B2C2;(3)要使△A2B2C2与△CC1C2重合,需将△A2B2C2绕点C2顺时针旋转,则至少要旋转________度.【答案】(1)如图:点O即为所求.(2)如图:△A2B2C2即为所求.(3)9021.如图,在正方形网格中,△ABC 各顶点都在格点上,点A 、C 的坐标分别为(-5,1)、(-1,4),结合所给的平面直角坐标系,解答下列问题:(1)画出△ABC 关于y 轴对称的△A 1B 1C 1;(2)画出△ABC 关于原点O 对称的△A 2B 2C 2;(3)点C 1的坐标是________;点C 2的坐标是________;过C ,C 1,C 2三点的圆的圆弧的长是________(保留π).【答案】(1)如图:△A 1B 1C 1即为所求.(2)如图:△A 2B 2C 2即为所求.(3)(1,4)(1,-4)17π22.(2022年陕西中考)如图,ABC ∆的顶点坐标分别为(2,3)A -,(3,0)B -,(1,1)C --.将ABC ∆平移后得到△A B C ''',且点A 的对应点是(2,3)A ',点B 、C 的对应点分别是B '、C '.(1)点A 、A '之间的距离是;(2)请在图中画出△A B C '''.【解答】解:(1)(2,3)--=。
第32课时 几何(网格、尺规)作图 课件 2025年中考数学一轮总复习

∴BF=④ ,∴BF=BA.
解:(1)如答案图所
示,BF即为所求作.(答案图)
∠BFC=∠D
CD
90°
6
考点三 尺规作图的综合运用例4 在学习了平行四边形的相关知识
后,小虹进行了拓展性研究.她发现,如
果作平行四边形一条对角线的垂直平分
线,那么这条垂直平分线在该四边形内
部的线段被这条对角线平分.其解决问题
的思路为通过证明对应线段所在两个三
角形全等即可得出结论.请根据她的思路完成以下作图和填空:
用直尺和圆规作平行四边形ABCD的对
求作.
(3)求△ABC的面积.
[答案] 解:(3)
S△ABC=4×3-
×1×3- ×4×1-
×2×3=5.5.
例2 (2024·安徽)如图,在由边长为1
个单位长度的小正方形组成的网格中建
立平面直角坐标系xOy,格点(网格线
的交点)A,B,C,D的坐标分别为
(7,8),(2,8),(10,4),
(5,4).
(1)以点D为旋转中心,将△ABC旋转
180°得到△A1B1C1,画出△A1B1C1;
[答案] 解:
(1)如图,
△A1B1C1即为所
求作.
(2)直接写出以B,C1,B1,C为顶点
的四边形的面积;
[答案] 解:(2)易知DB=DB1,DC=
DC1,∴四边形BC1B1C是平行四边形,∴ =2 =2× ×10×4
基本作图
图示
作法
经过一点作已知直线的垂线
过直线外一点作已知直线的垂线
①任意取一点K,使点K和点C在AB的两侧;②以点C为圆心,CK长为半径作弧,交AB于点D,E;③分别以点D,E为圆心,大于 DE的长为半径作弧,两弧相交于点F;④作直线CF,直线CF就是所求作的垂线
2022年中考数学人教版一轮复习课件:八、解答题专练——网格作图

解:(1)如图①中,△ABC 即为所求(答案不唯一).
解:(2)如图②中,四边形 ABDE 即为所求.
5.(2021·长春)图①、图②、图③均是 4×4 的正方形网格,每个 小正方形的边长均为 1,每个小正方形的顶点称为格点,点 A, B,C 均为格点,只用无刻度的直尺,分别在给定的网格中找 一格点 M,按下列要求作图:
(1)在图①中,连结 MA,MB,使 MA=MB; (2)在图②中,连结 MA,MB,MC,使 MA=MB=MC; (3)在图③中,连结 MA,MC,使∠AMC=2∠ABC.
解:(1)(2)(3)如图.
6.(2021·绥化)如图,在网格中,每个小正方形的边长均为 1 个 单位长度,把小正方形的顶点叫做格点,O 为平面直角坐标系 的原点,矩形 OABC 的 4 个顶点均在格点上,连接对角线 OB.
八、解答题专练——网格作图
1.(2021·深圳)如图,在正方形网格中,每个小正方形的边长为 1 个单位. (1)过直线 m 作四边形 ABCD 的对称图形; (2)求四边形 ABCD 的面积.
解:(1)如图所示,四边形积=S△ABD+S△BCD
解:(1)如图①,四边形 ABCD 即为所求(答案不唯一).
解:(2)如图②,四边形 AEBF 即为所求.
3.(2021·丽水)如图,在 5×5 的方格纸中,线段 AB 的端点均在格 点上,请按要求画图.
(1)如图①,画出一条线段 AC,使 AC=AB,C 在格点上; (2)如图②,画出一条线段 EF,使 EF,AB 互相平分,E,F 均在格点上; (3)如图③,以 A,B 为顶点画出一个四边形,使其是中心对 称图形,且顶点均在格点上.
初中数学网格作图

13.(11·清远)△ABC 在方格纸中的位置如图5所示,方格纸中的每个小正方形的边长为1个单位.(1)△A 1B 1C 1与△ABC 关于纵轴 (y 轴) 对称,请你在图5中画出△A 1B 1C 1; (2)将△ABC 向下平移8个单位后得到△A 2B 2C 2,请你在图5中画出△A 2B 2C 2.14.如图,在平面直角坐标系中,△ABC 的三个顶点的坐标分别为(3,5),(4,3)A B --, C (1,1)-.(1)作出△ABC 向右平移5个单位的△111A B C ;(2)作出△ABC 关于x 轴对称的△222A B C ,并写出点2C 的坐标.15如图,每个小方格都是边长为1个单位长度的小正方形.(1)将△ABC向右平移3个单位长度,画出平移后的△A1B1C1.(2)将△ABC绕点O旋转180°,画出旋转后的△A2B2C2.(3)画出一条直线将△AC1A2的面积分成相等的两部分.16.(本题满分7分)在平面直角坐标系中,△ABC的顶点坐标是A(-7,1),B(1,1),C(1,7).线段DE的端点坐标是D(7,-1),E(-1,-7).(1)试说明如何平移线段AC,使其与线段ED重合;(2)将△ABC绕坐标原点O逆时针旋转,使AC的对应边为DE,请直接写出点B的对应点F的坐标;(3)画出(2)中的△DEF,并和△ABC同时绕坐标原点O逆时针旋转90°,画出旋转后的图形.17、(本题满分10分)如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(0,1),B(-1,1),C(-1,3)。
(1)画出△ABC关于x轴对称的△A1B1C1,并写出点C1的坐标;(2)画出△ABC绕原点O顺时针方向旋转90°后得到的△AB2C2,并写出点C2的坐标;,2(3)将△A2B2C2平移得到△A3B3C3,使点A2的对应点是A3,点B2的对应点是B3,点C2的对应点是C3(4,-1),在坐标系中画出△A3B3C3,并写出点A3,B3的坐标。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
13.(11·清远)△ABC 在方格纸中的位置如图5所示,方格纸中的每个小正方形的
边
长
为
1
个
单
位
.
(1)△A 1B 1C 1与△ABC 关于纵轴 (y 轴) 对称,请你在图5中画出△A 1B 1C 1; (2)将△ABC 向下平移8个单位后得到△A 2B 2C 2,请你在图5中画出△A 2B 2C 2.
14.如图,在平面直角坐标系中,△ABC 的三个顶点的坐标分别为(3,5),(4,3)A B --, C (1,1)-.
(1)作出△ABC 向右平移5个单位的△111A B C ;
(2)作出△ABC 关于x 轴对称的△222A B C ,并写出点2C 的坐标. 15如图,每个小方格都是边长为1个单位长度的小正方形. (1)将△ABC 向右平移3个单位长度,画出平移后的△A 1B 1C 1. (2)将△ABC 绕点O 旋转180°,画出旋转后的△A 2B 2C 2. (3)画出一条直线将△AC 1A 2的面积分成相等的两部分.
16.(本题满分7分)在平面直角坐标系中,△ABC 的顶点坐标是A (-7,1),B (1,1),C (1,7).线段DE 的端点坐标是D (7,-1),E (-1,-7).
(1)试说明如何平移线段AC ,使其与线段ED 重合;
图
(2)将△ABC 绕坐标原点O 逆时针旋转,使AC 的对应边为DE ,请直接写出点B 的对应点F 的坐标;
(3)画出(2)中的△DEF ,并和△ABC 同时绕坐标原点O 逆时针旋转90°,画出旋转后的图形.
17、(本题满分10分)
如图,在平面直角坐标系中,△ ABC 的三个顶点的坐标分别为A (0,1),B (-1,1),
C (-1,3)。
(1)画出△ABC 关于x 轴对称的△A 1B 1C 1,并写出点C 1的坐标;
(2)画出△ABC 绕原点O 顺时针方向旋转90°后得到的△A 2B 2C 2,并写出点C 2的坐
标;,
(3)将△A 2B 2C 2平移得到△ A 3B 3C 3,使点A 2的对应点是A 3,点B 2的对应点是B 3
,点C 2的对应点是C 3(4,-1),在坐标系中画出△ A 3B 3C 3,并写出点A 3,B 3的坐
标。
18如图,在边长为1的小正方形组成的网格中,△ABC 的三个顶点均在格点上,请按要求完成下列各题:
(1)画线段AD ∥BC 且使AD =BC ,连接CD ;
(2)线段AC 的长为 ,CD 的长为 ,AD 的长为 ; (3)△ACD 为 三角形,四边形ABCD 的面积为 ; (4)若E 为BC 中点,则tan ∠CAE 的值是 .
19.如图.图中的小方格都是边长为1的正方形.△ADC 的顶点坐标为A (0,2-)、B (3.1-)、C(2,1). (1)请在图中画出△ABC 关于y 轴对称的图形△
A
B
C E 第21题图
第19题图 O
A B C
D x y
AB ’C ’;
(2)写出点B ’和C ’的坐标。
20(本小题8
分)如图,下列网格中,每个小方格的边长都是1.
(1)分别作出四边形ABCD 关于x 轴、y 轴、原点的对称图形; (2)求
出四边形ABCD 的面积. 21、在平面直角坐标系中,△ABC 的位置如图所示,请解答下列问题:
(1)将△ABC 向下平移3个单位长度,得到△A 1B 1C 1,
画出平移后的△A 1B 1C 1;
(2)将△ABC 绕点O 顺时针方向旋转180°,得到△A 2B 2C 2,画出旋转后的△A 2B 2C 2,并写出A 2点的坐标.
22(本小题8分)如图,下列网格中,每个小方格的边长都是1.
⑴分别作出四边形ABCD 关于x 轴、y 轴、原点的对称图形; ⑵求出四边形ABCD 的面积.
23.如图,点O A B 、、的坐标分别为
(00)(30)(32)-,、,、,,将OAB △绕点O 按逆时针
方向旋转90°得到OA B ''△.
(1)画出旋转后的OA B ''△,并求点B '的坐标;
(2)求在旋转过程中,点A 所经过的路径
»AA '的长度.(结果保留π)
24.如图6,正方形网格中,△ABC 为格点三角形(顶点都是格点),将△ABC 绕点A 按逆时针方向旋转90°得到11AB C △.
(1)在正方形网格中,作出11AB C △;(不要求写作法)
(2)设网格小正方形的边长为1cm ,用阴影表示出旋转过程中线段BC 所扫过的图形,然后求出它的面积.(结果保留π)
25.(本题满分7分)
如图,已知ABC △的三个顶点的坐标分别为(23)A -,、
(60)B -,、(10)C -,.
(1)请直接写出点A 关于y 轴对称的点的坐标;
(2)将ABC △绕坐标原点O 逆时针旋转90°.画出图
形,直接写出点B 的对应点的坐标;
(3)请直接写出:以A B C 、、为顶点的平行四边形的第四个顶点D 的坐标.
ABC 先向右平移四个单位得到△A 1B 1C 1,再
D A 1B 2C 2,请依次作出△A 1B 1C 1和△A 1B 2C 2。
O ′A ′B ′.
P 对应点的B
C
A 图7
28(8分)△ABC 在方格中的位置如图所示。
(1)请在方格纸上建立平面直角坐标系,使得A 、B 两点的坐标分别为A(2,一1)、B(1,一4)。
并求出C 点的坐标;
(2)作出△ABC 关于横轴对称的△111A B C ,再作出△ABC 以坐标原点为旋转中心、旋转180°后的△222A B C ,并写出1C 、2C 两点的坐标.
29.如图,点O A B 、、的坐标分别为(00)(30)(32)-,、,、,,将OAB △绕点O 按逆时针方向旋转90°得到OA B ''△.
(1)画出旋转后的OA B ''△,并求点B '的坐标;
(2)求在旋转过程中,点A 所经过的路径»AA '的长度.(结果保留π)
30如图,在平面直角坐标系中,
(1,1)-. (1)若将
ABC △向右平移3后的111A B C △;
(2)画出111A B C △绕原点旋转180°(3)A B C '''△与ABC △是中心对称图形,请写出对称中心的坐标:___________;
(4)顺次连结12C C C C '、、、,所得到的图形是轴对称图形吗?
31如图,已知ABC △. (1)请直接写出点A 关于y (2)将ABC △绕坐标原点O 逆时针旋转的坐标;
(3)请直接写出:以A B C 、、
B
第22题
32.(本小题6分)如图9所示,每个小方格都是边
长为1的正方形,以O 点为坐标原点建 立平面直角坐标系.
(1)画出四边形OABC 关于y 轴对称的四边形
OA 1B 1C 1,并写出点B 1的坐标是 .
(2)画出四边形绕点顺时针方向旋转
90°后得到的四边形OA 2B 2C 2,并求出点C 旋转到点C 2经过的路径的长度.
O x
y A
C B。