乘法分配律及其应用
乘法分配律及运用

乘法分配律及运用a×(b+c)=a×b+a×c这个定律意味着在乘法运算中,可以先对括号内的两个数进行加法运算,然后再将结果与第一个数相乘,结果将和先将第一个数与括号内的第一个数相乘再将结果与第一个数与括号内的第二个数相乘的结果相同。
例1:计算3×(4+5)和(3×4)+(3×5)根据乘法分配律,我们可以将第一个式子化简为:3×(4+5)=3×4+3×5通过计算,得到:3×(4+5)=12+15=27同样,可以将第二个式子化简为:(3×4)+(3×5)=12+15=27可以看到,结果是相同的。
这说明了乘法分配律的有效性。
例2:计算(x+2)×3和3x+6根据乘法分配律,我们可以将第一个式子化简为:(x+2)×3=3x+6这里的变量x可以表示任意实数,因此化简后的结果对于所有实数都有效。
例3:计算(2a+3b)×4和8a+12b根据乘法分配律,我们可以将第一个式子化简为:(2a+3b)×4=8a+12b同样,这里的变量a和b可以表示任意实数,因此化简后的结果对于所有实数都有效。
在多项式乘法中,我们经常需要将一个多项式与另一个多项式相乘。
乘法分配律可以很好地简化这个过程。
例如,我们可以将(2x+3)(4x+5)展开为:2x×4x+2x×5+3×4x+3×5=8x^2+10x+12x+15=8x^2+22x+15在方程求解中,乘法分配律可以帮助我们在解方程过程中合并项。
例如,如果我们需要解方程2x^2+3(x+4)=0,我们可以应用乘法分配律将方程化简为:2x^2+3x+12=0在图形的计算中,乘法分配律可以帮助我们计算图形的面积或者体积。
例如,当计算一个长方形的面积时,可以将其化简为两个边长的乘积。
同样,当计算一个长方体的体积时,可以将其化简为三条边长的乘积。
乘法分配律的拓展与应用

结论和总结
乘法分配律是数学中的一个重要概念,它不仅可以简化计算,还可以应用到很多实际问题中。希望本次演示对 您有所启发。
问题与讨论
如果您有任何关于乘法分配律的问题或想要与我们讨论更多相关的话题,请 随时留言或提问。
3
例子 3
接下来我们尝试 a = 10,b = 0,c = 8。使用乘法分配律,我们得到 10 * (0 + 8) = (10 * 0) + (10 * 8) = 80。
乘法分配律的应用
代数方程
乘法分配律在解决代数方程时非常有用,它可以帮 助我们简化复杂的表达式,使求解过程更加简单清 晰。
实际生活中的应用
乘法分配律在日常生活中的应用非常广泛,例如计 算购物账单、制造业中的成本计算等。
乘法分配律的拓展
分配律的链式应用
乘法分配律可以与其他数学原理结合使用,产生更 复杂的推论和公式。
推广到矩阵和向量
乘法分配律在线性代数中也有应用,它是处理矩阵 和向量乘法的基本法则。
示例问题及解决方案
问题 1
如果有 5 个苹果,每个苹果的价格是 2 元,购 买 3 个橙子,每个橙子的价格是 4 元,计算总 价。
Hale Waihona Puke 假设 a = 2,b = 3,c = 4。按照乘法分配律,我们有 2 * (3 + 4) = (2 * 3) + (2 * 4) = 14。
2
例子 2
现在我们让 a = 5,b = 2,c = 6。根据乘法分配律,我们可以计算出 5 * (2 + 6) = (5 * 2) + (5 * 6) = 40。
乘法分配律的拓展与应用
欢迎来到本次演示,我们将深入了解乘法分配律的定义、例子、应用、拓展, 以及解决真实问题的方法。
乘法分配律的应用(通用7篇)

乘法分配律的应用(通用7篇)乘法分配律的应用篇1教学目的:1.引导学生能运用乘法分配律进行一些简便运算。
2.培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。
3.使学生感受数学与现实生活的联系,能用所学知识解决简单的实际问题。
教学过程:一、复习准备出示:1.口算:73+27 138×100100-64 64×18×9×125(4+40)×252.在□里填上适当的数。
302=300+□(300+2)×43=300×□+2×□=+□(+3)×14=□+□×□二、新授我们已经学习了乘法分配律,今天继续研究怎样应用乘法分配律使计算简便。
出示102×( )学生任意填上一个两位数。
老师迅速说出它的得数,而不用笔算。
出示:计算102×43小组讨论完成。
学生可能出现:(1)(100+2)×43(2)102×(40+3)在对比的基础上,教师引导学生观察题目的特点,以及怎样应用乘法分配律,从而使学生明确:两个数相乘,把其中一个比较接近整十、整百、整千的数与一个数的和,再应用乘法分配律可以使计算简便。
小练:(1)在□里填上适当的数。
3001×84=□×84+□×8492×203=92×(200+□)=92×200+92×□(2)计算102×24出示:9×37+9×63学生在练习本上独立完成。
(1)9×37+9×63=333+567=900(2)9×37+9×63=9×(37+63)=9×100=900找出不同的方法,进行板演。
引导学生对比两种方法,重点理解、说明第二种方法。
小结:这类题目的结构形式的特点是算式的运算符号一般是×、+、×的形式,也就是两个积的和。
乘法分配律的图形解释和计算应用

口算乘法的时候,也能用这个公式。例如:ห้องสมุดไป่ตู้
一千多年前古代阿拉伯数学家花拉子模有一个非常精彩的解决方式。就是用 求面积的方法解释了这个公式。首先定义一个长方形,长等于(A+B),宽等于 (C+D)。长方形的面积就是长和宽相乘。就是乘法分配律的左边。仔细观察这 个长方形,是由四个小长方形组合而成,面积分别是 ac、ad、bc、bd
所以,(a+b)*(c+d)=ac+ad+bc+bd 问题解决的非常简单、直接和完美。数学问题图形化,常常是化繁为简的好例子。 这道题的思路充分证明了这一点。
乘法分配律的图形解释和计算应用
乘法分配律公式(a+b)*(c+d)=ac+ad+bc+bd 是一个非常基础的数学公式,但 是许多同学常常记错。错误的原因是他们不理解这个公式的基本原理。也不知道 这个公式其实有很多可以推广的概念。下文用图形方式,帮助大家理解和灵活运 用这个公式。 1:如何正确理解这个公式
应用乘法分配律进行简便计算

乘法分配律的公式
• 乘法分配律的公式为:a × (b + c) = a × b + a × c。
乘法分配律的应用范围
• 乘法分配律在简便计算中应用广泛,适用于多个括号内的数相 乘,也可以用于多个数相乘。它可以将复杂的计算过程简化, 提高计算效率。
02
乘法分配律在整数计算中 的应用
整数乘法分配律的证明
其次,对于任意整数n,假设当n=k时, 满足分配律。
整数乘法分配律的实例
例如
12×(30+5)=12×30+12×5=360+60=420。
又如
(25+10)×4=25×4+10×4=100+40=140。
整数乘法分配律的应用技巧
在进行简便计算时,可以利用乘法分配律来拆分某个数,再分别与其他数相乘, 从而简化计算过程。
实数乘法分配律的应用技巧
应用技巧1
在遇到需要计算多个数字相乘时,可以将这些数字分组,然后运用乘法分配律进行简便计算。例如: $(2+3) \times 4 = 2 \times 4 + 3 \times 4 = 8 + 12 = 20$。
应用技巧2
在遇到需要计算多个数字相乘并且每个数字都是两位数时,可以将这些数字的十位和个位数分别组合 ,然后运用乘法分配律进行简便计算。例如:$(23+45) \times 67 = (20+3) \times (70-3) = 20 \times 70 + 3 \times 70 - 3 \times 20 - 3 \times 3 = 1400 + 210 - 60 - 9 = 1641$。
特别是在处理带有括号的算式时,可以先将括号拆开,再利用分配律分别计算括 号内各部分与另一个数的乘积,最后将结果相加。
乘法分配律在解决问题中的应用

小结与延伸阅读
通过演示,我们深入了解了乘法分配律在解决问题中的应用以及它在数学中的重要性。如需进一步了解,请参 阅以下推荐的阅读材料。
1 代数表达式
通过使用乘法分配律,我 们可以简化复杂的代数表 达式,使其更易于理解和 求解。
2 方程求解
乘法分配律在解决方程时 发挥重要作用,可以帮助 我们将方程转化为更简单 的形式,从而更容易找到 解。
3 化简过程
使用乘法分配律将复杂的 代数式转化为更简洁的形 式,有助于我们更好地理 解数学问题的本质。
乘法分配律在解决问题中的应 用
欢迎来到本次演示,今天我们将深入探讨乘法分配律在解决问题中的重要性 和实际应用。
应用前提和重要性
在数学中,乘法分配律是一条基本的运算规则,它允许我们将一个乘法表达式拆分为更简单的部分,使问题的 解决变得更加简单和灵活。
乘法分配律的定义及公式
乘法分配律是指,对于任意三个数a、b和c,(a + b) × c = a × c + b × c。这个公式是解决多项式运算中的基石。
乘法分配律与多项式因式分解
因式分解
乘法分配律是因式分解的关键 步骤,它可以帮助我们将多项 式分解成更简单的因式。
解析性能
通过深入理解乘法分配律的运 用,我们可以更高效地解析和 处理多项式函数。
多项式操作
掌握乘法分配律之后,我们可 以更自如地对多项式进行操作, 如相乘、求导等。
乘法分配律在数学竞赛中的运用
乘法分配律的实例解析
1
数学运算
使用乘法分配律来展开、简化和计算复杂的数学表达式,例如:(2 + 3) × 4。
带你了解乘法分配律的实际应用场景和计算技巧

带你了解乘法分配律的实际应用场景和计算技巧乘法分配律是数学中的重要概念之一,它在实际应用场景中发挥着重要作用。
本文将带领你了解乘法分配律在实际生活中的应用场景,并介绍一些计算技巧,让你更好地掌握这个概念。
一、乘法分配律的定义和概念乘法分配律是数学中的一个基本原理,它说明了两个乘法因子与一个乘法因子的和(或差)相乘,等于分别乘以这两个因子再相加(或相减)的结果。
具体表述为:对于任意实数a、b、c来说,有乘法分配律成立:a × (b + c) = a × b + a × c乘法分配律的概念非常简单明了,但在实际应用中却能发挥巨大的作用。
接下来,我们将介绍几个乘法分配律的应用场景,帮助你更好地理解和运用它。
二、乘法分配律的实际应用场景1. 购物打折在商场购物时,常常会遇到打折的情况。
假设某商场打折商品的原价为a元,打折力度为b,同时还有c元的满减优惠。
我们可以利用乘法分配律来计算最终需要支付的金额。
应用乘法分配律可得:最终支付金额 = a × (1 - b) - c通过这个公式,我们可以快速计算出最终需要支付的金额,避免繁杂的手工计算过程。
2. 分配资源或任务在团队或组织中,常常需要按比例分配资源或任务。
假设某个项目的资源总量为a,需要分配给b个人共同完成。
根据每个人的工作能力,可以将每个人分配到不同数量的资源。
此时,乘法分配律可以帮助我们计算每个人所分配到的资源数量。
应用乘法分配律可得:每个人分配到的资源数量 = a × (1/b)通过这个公式,我们可以公平地按照每个人的能力和需求进行资源或任务的分配。
3. 计算商品价格在购物中,我们通常会遇到多种商品组合销售的情况。
假设有a种商品,每种商品的售价分别为b1、b2、b3...bn元,我们可以利用乘法分配律计算出购买一定数量的每种商品的总价。
应用乘法分配律可得:总价 = a × (b1 + b2 + b3...+ bn)通过这个公式,我们可以快速计算出购买商品组合的总价,为我们的消费决策提供参考。
乘法的分配律应用题

乘法的分配律应用题乘法的分配律是数学中的基本概念之一,它在解决实际问题时具有非常重要的应用价值。
本文将通过具体的应用示例,向读者展示乘法的分配律在日常生活和学习中的实际运用。
一、购物打折小明看中了一家商场的一款电子产品,原价为500元,商场正在举办促销活动,所有商品打7折。
小明很高兴地拿起计算器准备计算最终的折扣后价格。
由于打折涉及到乘法的分配律,小明通过运用分配律很快得出了结果,计算过程如下:折扣后价格 = 原价 ×折扣= 500 × 0.7= 350元小明通过将原价与折扣进行乘法运算,得到了最终的折扣后价格,为350元。
这个例子充分展示了乘法分配律在购物打折中的应用。
二、数学运算乘法的分配律在数学运算中也起到了至关重要的作用。
例如,我们需要计算3 × (4 + 5),即将3分别乘以括号内的4和5,此时我们可以运用乘法分配律进行计算:3 × (4 + 5) = (3 × 4) + (3 × 5)= 12 + 15= 27通过乘法的分配律,我们可以将乘法运算转化为加法运算,简化了计算过程,得出了最终的结果27。
这个例子充分说明了乘法分配律在数学运算中的实际应用。
三、扩展运算乘法的分配律也可用于进行乘法的扩展运算,帮助我们更高效地求解问题。
例如,我们需要计算12 × 35,由于两个数都比较大,直接相乘会比较繁琐。
但通过运用分配律,我们可以将乘法进行扩展,并采用更简单的方式进行计算:12 × 35 = (10 + 2) × (30 + 5)= (10 × 30) + (10 × 5) + (2 × 30) + (2 × 5)= 300 + 50 + 60 + 10= 420通过运用乘法的分配律,我们可以将原本复杂的乘法计算拆分为多个简单的乘法和加法计算,大大简化了整个过程,并得到了最终的结果420。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
乘法分配律及其应用
教学内容
六年制第八册数学第64~65页内容,完成练习十四第1~7 题。
教学目标
1、通过解决实际问题激发学生学习兴趣,并在解决问题的过程中,体会发现的快乐,从而找出规律。
2、学生多方面考虑问题,并渗透“实践探究——规律猜想——实践验证”的思想。
3、使学生理解并掌握乘法分配律,并深刻体会乘法分配律在乘法计算和实际问题中的重要作用。
教学重难点
理解并掌握乘法分配律。
教学过程
一、引入:激发兴趣,渗透数学思想。
同学们,上节课我们学会了什么?(乘法交换律和结合律)好!今天,希望同学们能探究发现乘法的又一个新知识。
课件出示:
1、找规律:(渗透数学思想)
看!什么颜色?●○○●○○●○○下一个放什么颜色?你怎么知道的?
看!什么形状?○□▽○○□▽○下一个什么形状?为什么?
2、比赛:出示两组题,男、女生各算一组,比赛哪组同学既对又快?
第一组(女生做)第二组(男生做)
(18+12)×6 18×6+12×6
20×(15+9)20×15+20×9
(可能女生快,有几个男生也快,男生心存疑问,为什么女生快,原因:女生的题目计算起来简便)
师:引导学生比较上面的式子,指名分别回答计算结果。
(对应两题结果)
师:这两组前后对应的两题虽然算法不一样,但结果却相同,可以怎样连接呢。
生:中间可用“=”相连。
师:(抓住机会启发学生大胆猜测)从上面的等式你们有没有发现什么规律?
二、同伴合作,自主探究。
1、自主探究规律:
师:(惊奇地)你们真的发现了这些等式中隐含着的规律,请与你的同桌交流一下,好吗?
生:举手要回答。
师:从大家的神态和脸部表情中,老师知道你觉得自己发现了什么规律。
同学们,你们发现了什么,我能猜到。
不过,你们所看到的也许只是一种偶然现象,是一种猜想而已。
你们能再举些例子对自己的猜想进行验证吗?
生1:(5+3)×4=5×3+5×4
生2:(5+1)×3=5×3+1×3
生3:(1+7)×5=1×5+7×5
……
大家写了这么多的等式,如果再缎带你一些时间,你还能写吗?
生:能。
(还有很多)
师:从同学们举的例子中,可以确定你们的发现可能是正确的。
谁有不同看法吗?(鼓励大胆提出不同看法)
2、质疑:
生:如果万一这是碰巧呢?
师:会有这种“万一”吗?你能举出一反例吗?
生:不能有反例。
师:请你们仔细看一看,它们有什么共同地方?4人小组讨论。
三、交流总结
1、总结规律:
小组汇报交流情况:
第一组:两个数的和同一个数相乘,等于两个加数分别同这个数相乘,再把两个积相加,
第二组:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。
……
师:请翻书打开P64页,看一看专家是怎样总结乘法分配律的?谁来读一读。
2、小结:
师:全班同学通过自己的努力,用许多例子证明了乘法分配律。
这是多么可贵的发现,老师祝贺你们!
3、用字母表示乘法分配律:
师:如果用字母a、b、c表示三个数,你们能用字母表示乘法分配律吗?
(结合学生回答,板书)
(a+b)×c=a×c+b×c
还可以写成:c×(a+b)= c×a×+ c ×b
师:对于乘法分配律,用字母来表示,感觉怎样——(稍等)简洁、明了。
这就是数学的美。
四、应用拓展
师:想一想,我们发现的规律有什么用处呢?(揭题:乘法分配律及应用)
1、请运用乘法运算定律,回答下面各题:
(1)(32+25)×4=□×4+□×4
(2)(64+12)×3=□×3+□×3
(3)25×(4+9)=□×□+□×□
2、判断正面的等式,应用乘法分配律用对的打“√”,应用错的打“×”。
(1)12×9+3×9=(12+3)×9 ()
(2)(7+8+9)×10=7×10+8×10+9×10 ()
(3)(25+50)×200=25+50×200 ()
(4)101×63=100×63+63 ()
(5)98×15=100×15+2×15 ()
3、便方法计算。
(指名板书)
(1)102×43 (2)9×37+9×63
集体评价板演题后,思考:
(1)题(1)为什么要把第一个数102看成(100+2)呢?(便于简算)
(2)这是应用了什么运算定律?(乘法分配律)
(3)题(2)为什么要把9乘以(37+63)的和,应用了什么运算定律?
4、看书:质疑问难
请课本P64-65页,看看有没有不懂的地方?我们没有学乘法分配律之前,有没有应用过乘法分配律?[引导学生答:28×3=(20+8)×3]
师:同学们真聪明,能把乘法分配律应用到计算中使计算简便。
下面各题你能用简便方法计算吗?
(1)(40+4)×25 (2)25×47+75×47 (3)32×(100+5)(4)21×19+21
5、应用题练习。
(用两种方法解答,只列式不计算。
)
(1)学校买来篮球和排球各200个,篮球每个25元,排球每个18元,一共用去多少元?
(2)一台电脑5500元,一台打印机800元,现在各买三台,一共要用去多少元?
6、观察比较:
23×(20-2)○23×20-23×2
32×(50-3)○32×50-32×3
你能得出什么结论?(乘法分配律还可以推广到关于两个数的差同一个数相乘的计算上)你能举出类似的例子来吗?
五、全文总结
这节课你有哪些收获?还有什么问题?
六、布置作业
练习十四的第5题和第7题其中的3道。