北师大版八年级下册数学1.1等腰三角形第3课时 教案设计
2021年北师大版数学八年级下册1.1《等腰三角形》教案

2021年北师大版数学八年级下册1.1《等腰三角形》教案一. 教材分析等腰三角形是八年级下册《数学》的重要内容,主要让学生理解等腰三角形的性质,学会判定一个三角形是否为等腰三角形,并能够运用等腰三角形的性质解决实际问题。
本节课的内容为后续学习等边三角形和其他多边形奠定了基础。
二. 学情分析学生在学习本节课之前,已经掌握了三角形的基本概念和性质,能够识别各种三角形。
但等腰三角形的概念和性质较为抽象,学生需要通过实例和操作活动来加深理解。
此外,学生需要具备一定的逻辑思维能力和空间想象能力,以便能够灵活运用等腰三角形的性质。
三. 教学目标1.理解等腰三角形的概念,掌握等腰三角形的性质;2.学会判定一个三角形是否为等腰三角形;3.能够运用等腰三角形的性质解决实际问题;4.培养学生的逻辑思维能力和空间想象能力。
四. 教学重难点1.等腰三角形的性质;2.判定一个三角形是否为等腰三角形;3.运用等腰三角形的性质解决实际问题。
五. 教学方法1.采用问题驱动法,引导学生主动探究等腰三角形的性质;2.利用实物模型和几何画板软件,直观展示等腰三角形的性质;3.运用变式教学法,让学生在多种情境中巩固等腰三角形的性质;4.采用合作学习法,培养学生团队协作能力和沟通能力。
六. 教学准备1.准备等腰三角形的实物模型;2.准备几何画板软件,制作等腰三角形的动态展示;3.设计相关问题,引导学生探究等腰三角形的性质;4.准备黑板,用于板书。
七. 教学过程1.导入(5分钟)利用实物模型展示等腰三角形,引导学生观察等腰三角形的特征。
提问:你们能发现等腰三角形有哪些特殊的性质吗?2.呈现(10分钟)利用几何画板软件,动态展示等腰三角形的性质。
引导学生通过观察、操作,发现等腰三角形的两条腰相等,两个底角相等。
3.操练(10分钟)学生分组合作,利用准备好的实物模型,进行操作活动。
让学生通过实际操作,验证等腰三角形的性质。
4.巩固(10分钟)设计一系列问题,让学生回答。
北师大版八年级数学下册1.1.1等腰三角形教学设计

教师在评价学生时,要关注学生在解决问题过程中的思考和方法,鼓励学生勇于尝试,激发学习积极性。
四、教学内容与过程
(一)导入新课
1.教师出示一些生活中的等腰三角形实物,如等腰三角形的玩具、等腰三角形的图标等,引导学生观察这些图形的特点,激发学生的兴趣。
在课堂小结环节,教师引导学生回顾本节课所学内容,总结等腰三角形的性质和判定方法,加深印象。
6.布置课后作业,注重培养学生的实际应用能力。
设计一些实际问题,让学生在课后运用等腰三角形的性质解决问题,提高学生的数学应用意识。
7.开展小组合作活动,培养学生的团队协作能力和交流表达能力。
教学过程中,组织学生进行小组讨论、合作探究,让学生在互动交流中提高自己的表达能力和团队协作能力。
学生在学习过程中,对新知识充满好奇心,但学习动机和兴趣可能因个体差异而有所不同。部分学生可能对几何图形的理解和运用存在一定困难,需要教师在教学过程中关注个体差异,采用分层教学、个别辅导等方式,帮助学生克服学习难点。
此外,学生在合作交流方面已有一定的基础,但部分学生可能在实际操作中缺乏主动性和积极性。因此,在教学过程中,教师应注重引导学生积极参与课堂讨论,培养学生的合作意识和团队精神。
教学中,提出一些需要运用等腰三角形性质解决的问题,让学生通过自主探究、合作交流,逐步培养逻辑推理能力。
4.采用分层教学策略,针对不同层次的学生,设计不同难度的练习题,使每位学生都能得到有效的提高。
教师根据学生的认知水平和学习需求,设计基础题、提高题和拓展题,让每位学生都能在课堂上学有所得。
5.加强课堂小结,通过师生互动、生生互动,总结等腰三角形的性质和判定方法,巩固所学知识。
北师大版八年级数学下册《等腰三角形(第3课时)》精品教案

《等腰三角形》精品教案课题 1.1等腰三角形(3)单元第一章学科数学年级八年级学习目标知识与技能:理解并掌握等腰三角形的判定定理及反证法;能运用等腰三角形的判定定理及反证法进行证明;过程与方法:通过推理证明等腰三角形的判定定理、反证法,发展学生的推理能力,培养学生分析、归纳问题的能力;情感态度与价值观:引导学生观察,发现等腰三角形的判定方法,让学生从思考中获得成功体验,增强学习数学的兴趣.重点理解并掌握等腰三角形的判定定理和反证法.难点运用等腰三角形的判定定理进行证明和计算.教学过程教学环节教师活动学生活动设计意图新知导入同学们,在上一节课的学习中,我学探究了等腰三角形的性质,下面请同学们回答:问题1、等腰三角形都有哪些性质呢?答案:等边对等角;三线合一;轴对称图形问题2、请你把定理“等腰三角形的两个底角相等”的题设与结论反过来说一下.答案:如果一个三角形有两个角相等,那么这两个角所对的边也相等.追问:这个命题成立吗?学生根据老师的提问回答问题.通过回顾等腰三角形的性质,为等腰三角形的判定定理探究做好铺垫新知讲解下面,让我们一起完成下面的问题:例1:已知:如图,在△ABC中,∠B=∠C.求证:AB=AC.证明:作BC边上的高AD.学生在老师的引导下通过添加辅助线构全等的形式进行证明..(1)作BC边上的高AD证明后班内交流.用不同方法证明等腰三角形的判定定理,并体会各种证法中的内在联系.则∠ADB=∠ADC=90°,在△ABD和△ACD中,∵∠B=∠C,∠ADB=∠ADC,AD=AD,∴△ABD≌△ACD(AAS),∴AB=AC.追问1:你还有其他证明的方法吗?证明:作∠BAC的平分线AD.在△ABD和△ACD中,∵∠B=∠C,∠BAD=∠CAD,AD=AD,∴△ABD≌△ACD(AAS),∴AB=AC.想一想:作BC边上的中线行吗?答案:不行归纳:定理:有两个角相等的三角形是等腰三角形.这一定理可以简述为:等角对等边.几何语言:∵∠B=∠C(已知)∴AB=AC(等角对等边)(2)作∠BAC的平分线AD.证明后班内交流.学生认真思考为什么作BC边上的中线不行,并与同伴交流心得,然后听老师讲评,并学习判定定理的符号语言.学生在老师的引导下进掌握等腰三角形判定定理的几何语言表达形式.应用等腰例2:已知:如图,AB =DC ,BD =CA .求证:△AED 是等腰三角形.练习1:在△ABC 中,∠A 和∠B 的度数如下,能判定△ABC 是等腰三角形的是()A .∠A =50°,∠B =70°B .∠A =80°,∠B =60°C .∠A =30°,∠B =90°D .∠A =70°,∠B =40°答案:D想一想:小明认为,在一个三角形中,如果两个角不相等,那么这两个角所对的边也不相等.你认为小明这个结论成立吗?如果成立,你能证明它吗?指出:小明是这样想的:如图,在△ABC 中,已知∠B ≠∠C ,此时AB 与AC 要么相等,要么不相等.假设AB =AC 那么根据“等边对等角”定理可得∠C =∠B ,这与已知条件∠B ≠∠C 相矛盾,因此AB ≠AC .你能理解他的推理过程吗?归纳:反证法:小明在证明时,先假设命题的结论不成立,然后推导出与定义、基本事实、已有定理或已知条件相矛盾的结果,从而证明命题的结论一定成立.这种证明方法称为反证法.行证明,然后班内交流,最后听老师的点评.学生独立完成后,班内交流.学生认真思考问题,并听老师讲解反证法的概念及步骤.三角形判定定理进行证明掌握反证法的概念及步骤.反证法的一般步骤:1.假设:先假设命题的结论不成立;即结论的反面成立;2.归谬:从这个假设出发,应用正确的推论方法,得出与定义,公理、已证定理或已知条件相矛盾的结果;3.结论:由矛盾的结果判定假设不正确,从而肯定命题的结论正确.例3:用反证法证明:一个三角形中不能有两个角是直角.已知:△ABC.求证:∠A、∠B、∠C中不能有两个角是直角.证明:假设∠A,∠B,∠C中有两个角是直角,不妨设∠A和∠B是直角,即∠A=90°,∠B=90°.于是∠A+∠B+∠C=90°+90°+∠C>180°.这与三角形内角和定理相矛盾,因此“∠A和∠B是直角”的假设不成立.所以,一个三角形中不能有两个角是直角.练习2.用反证法证明:在一个三角形中,至少有一个内角小于或等于60°证明:假设∠A,∠B,∠C是△ABC的三个内角,且都大于60°,则∠A>60°,∠B>60°,∠C>60°,∴∠A+∠B+∠C>180°;这与三角形的内角和是180定理矛盾∴假设不成立∴在一个三角形中,至少有一个内角小于或等于60°.学生在老师的引导下完成,然后班内交流,最后听老师的点评.学生独立完成练习,并小组交流,然后老师点评.提高学生对反证法的应用能力.课堂练习1.如图,在△ABC中,AB=AC,点D,E在BC边上,∠ABD=∠DAE=∠EAC=36°,则图中共有等腰三角形()A.4个B.5个C.6个D.2个答案:C2.用反证法证明命题“在直角三角形中,至少有一个锐角不大于45°”时,应先假设()A.有一个锐角小于45°B.每一个锐角都小于45°C.有一个锐角大于45°D.每一个锐角都大于45°学生自主完成课堂练习,做完之后班级内交流.借助练习,检测学生的知识掌握程度,同时便于学生巩固知识.答案:D拓展提高如图,长方形ABCD 中,AB >AD ,把长方形沿对角线AC 所在直线折叠,使点B 落在点E 处,AE 交CD 于点F ,连接DE .(1)求证:△ADE ≌△CED ;(2)求证:△DEF 是等腰三角形.证明:(1)∵四边形ABCD 是长方形,∴AD =BC ,AB =DC .∵△AEC 是由△ABC 折叠而成的,∴AD =BC =EC ,AB =DC =AE .在△ADE 和△CED 中,AD =CE ,DE =ED ,AE =CD ,∴△ADE ≌△CED (SSS).(2)∵△ADE ≌△CED ,∠AED =∠CDE ,∴FD =FE .△DEF 是等腰三角形.在师的引导下完成问题.提高学生对知识的应用能力中考链接下面让我们一起赏析一道中考题:(2017·内江)如图,AD 平分∠BAC ,AD ⊥BD ,垂足为点D ,DE //AC .求证:△BDE 是等腰三角形.证明:∵DE //AC ,∴∠1=∠3,∵AD 平分∠BAC ,∴∠1=∠2,∴∠2=∠3,∵AD ⊥BD ,在师的引导下完成中考题.体会所学知识在中考试题运用.∴∠2+∠B =90°,∠3+∠BDE =90°,∴∠B =∠BDE ,∴△BDE 是等腰三角形.课堂总结在课堂的最后,我们一起来回忆总结我们这节课所学的知识点:问题1、说一说等腰三角形的判定定理?答案:有两个角相等的三角形是等腰三角形.(等角对等边)问题2、说一说反证法的步骤?答案:(1)假设:先假设命题的结论不成立;即结论的反面成立;(2)归谬:从这个假设出发,应用正确的推论方法,得出与定义,公理、已证定理或已知条件相矛盾的结果;(3)结论:由矛盾的结果判定假设不正确,从而肯定命题的结论正确.跟着老师回忆知识,并记忆本节课的知识.帮助学生加强记忆知识.作业布置基础作业教材第10页习题1.3第2、3题能力作业教材第10页习题1.3第4题学生课下独立完成.检测课上学习效果.。
八年级《等腰三角形》数学教案4篇

八年级《等腰三角形》数学教案4篇教案,也称课时计划,教师经过备课,以课时为单位设计的具体教学方案,教案是上课的重要依据,通常包括:班级、学科、课题、上课时间、课的类型、教学方法、教学目的、教学内容、课的进程和时间分配等。
以下是我为大家整理的,感谢您的欣赏。
八年级《等腰三角形》数学教案1教学目标(一)教学知识点1.等腰三角形的概念.2.等腰三角形的性质.3.等腰三角形的概念及性质的应用.1.经历作(画)出等腰三角形的过程,•从轴对称的角度去体会等腰三角形的特点.2.探索并掌握等腰三角形的性质.(三)情感与价值观要求通过学生的操作和思考,使学生掌握等腰三角形的相关概念,并在探究等腰三角形性质的过程中培养学生认真思考的习惯.教学重点1.等腰三角形的概念及性质.2.等腰三角形性质的应用.教学难点等腰三角形三线合一的性质的理解及其应用.教学方法探究归纳法.教具准备师:多媒体课件、投影仪;生:硬纸、剪刀.教学过程Ⅰ.提出问题,创设情境[师]在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,•并且能够作出一个简单平面图形关于某一直线的轴对称图形,•还能够通过轴对称变换来设计一些美丽的图案.这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形.来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形?[生]有的三角形是轴对称图形,有的三角形不是.[师]那什么样的三角形是轴对称图形?[生]满足轴对称的条件的三角形就是轴对称图形,•也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形.[师]很好,我们这节课就来认识一种成轴对称图形的三角形──等腰三角形.Ⅱ.导入新课[师]同学们通过自己的思考来做一个等腰三角形.作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连结AB、BC、CA,则可得到一个等腰三角形.[生乙]在甲同学的做法中,A点可以取直线L上的任意一点.[师]对,按这种方法我们可以得到一系列的等腰三角形.现在同学们拿出自己准备的硬纸和剪刀,按自己设计的方法,也可以用课本P138探究中的方法,•剪出一个等腰三角形.……[师]按照我们的做法,可以得到等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角.[师]有了上述概念,同学们来想一想.(演示课件)1.等腰三角形是轴对称图形吗?请找出它的对称轴.2.等腰三角形的两底角有什么关系?3.顶角的平分线所在的直线是等腰三角形的对称轴吗?4.底边上的中线所在的直线是等腰三角形的对称轴吗?•底边上的高所在的直线呢?[生甲]等腰三角形是轴对称图形.它的对称轴是顶角的平分线所在的直线.因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线.[师]同学们把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系.[生乙]我把自己做的等腰三角形折叠后,发现等腰三角形的两个底角相等.[生丙]我把等腰三角形折叠,使两腰重合,这样顶角平分线两旁的部分就可以重合,所以可以验证等腰三角形的对称轴是顶角的平分线所在的直线.[生丁]我把等腰三角形沿底边上的中线对折,可以看到它两旁的部分互相重合,说明底边上的中线所在的直线是等腰三角形的对称轴.[生戊]老师,我发现底边上的高所在的直线也是等腰三角形的对称轴.[师]你们说的是同一条直线吗?大家来动手折叠、观察.[生齐声]它们是同一条直线.[师]很好.现在同学们来归纳等腰三角形的性质.[生]我沿等腰三角形的顶角的平分线对折,发现它两旁的部分互相重合,由此可知这个等腰三角形的两个底角相等,•而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高.[师]很好,大家看屏幕.(演示课件)等腰三角形的性质:1.等腰三角形的两个底角相等(简写成“等边对等角”).2.等腰三角形的顶角平分线,底边上的中线、•底边上的高互相重合(通常称作“三线合一”).[师]由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质.同学们现在就动手来写出这些证明过程).(投影仪演示学生证明过程)[生甲]如右图,在ABC中,AB=AC,作底边BC的中线AD,因为所以BAD≌CAD(SSS).所以∠B=∠C.[生乙]如右图,在ABC中,AB=AC,作顶角∠BAC的角平分线AD,因为所以BAD≌CAD.所以BD=CD,∠BDA=∠CDA=∠BDC=90°.[师]很好,甲、乙两同学给出了等腰三角形两个性质的证明,过程也写得很条理、很规范.下面我们来看大屏幕.(演示课件)[例1]如图,在ABC中,AB=AC,点D在AC上,且BD=BC=AD,求:ABC各角的度数.[师]同学们先思考一下,我们再来分析这个题.[生]根据等边对等角的性质,我们可以得到∠A=∠ABD,∠ABC=∠C=∠BDC,•再由∠BDC=∠A+∠ABD,就可得到∠ABC=∠C=∠BDC=2∠A.再由三角形内角和为180°,•就可求出ABC的三个内角.[师]这位同学分析得很好,对我们以前学过的定理也很熟悉.如果我们在解的过程中把∠A设为x的话,那么∠ABC、∠C都可以用x来表示,这样过程就更简捷.(课件演示)[例]因为AB=AC,BD=BC=AD,所以∠ABC=∠C=∠BDC.∠A=∠ABD(等边对等角).设∠A=x,则∠BDC=∠A+∠ABD=2x,从而∠ABC=∠C=∠BDC=2x.于是在ABC中,有∠A+∠ABC+∠C=x+2x+2x=180°,解得x=36°.在ABC中,∠A=35°,∠ABC=∠C=72°.[师]下面我们通过练习来巩固这节课所学的知识.Ⅲ.随堂练习(一)课本P141练习1、2、3.练习1.如下图,在下列等腰三角形中,分别求出它们的底角的度数.答案:(1)72°(2)30°2.如右图,ABC是等腰直角三角形(AB=AC,∠BAC=90°),AD是底边BC上的高,标出∠B、∠C、∠BAD、∠DAC的度数,图中有哪些相等线段?答案:∠B=∠C=∠BAD=∠DAC=45°;AB=AC,BD=DC=AD.3.如右图,在ABC中,AB=AD=DC,∠BAD=26°,求∠B和∠C的度数.答:∠B=77°,∠C=38.5°.(二)阅读课本P138~P140,然后小结.Ⅳ.课时小结这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用.等腰三角形是轴对称图形,它的两个底角相等(等边对等角),等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高.我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们.Ⅴ.课后作业(一)课本P147─1、3、4、8题.(二)1.预习课本P141~P143.2.预习提纲:等腰三角形的判定.Ⅵ.活动与探究如右图,在ABC中,过C作∠BAC的平分线AD的垂线,垂足为D,DE∥AB交AC于E.求证:AE=CE.过程:通过分析、讨论,让学生进一步了解全等三角形的性质和判定,•等腰三角形的性质.结果:证明:延长CD交AB的延长线于P,如右图,在ADP 和ADC中ADP≌ADC.∠P=∠ACD.又DE∥AP,∠4=∠P.∠4=∠ACD.DE=EC.同理可证:AE=DE.AE=CE.板书设计§14.3.1.1等腰三角形(一)一、设计方案作出一个等腰三角形二、等腰三角形性质1.等边对等角2.三线合一三、例题分析四、随堂练习五、课时小结六、课后作业八年级《等腰三角形》数学教案2一、教材的地位和作用现实生活中,等腰三角形的应用比比皆是.所以,利用“轴对称”的知识,进一步研究等腰三角形的特殊性质,不仅是现实生活的需要,而且从思想方法和知识储备上,为今后研究“四边形”和“圆”的性质打下坚实的基础.性质“等腰三角形的两个底角相等”是几何论证过程中,证明“两个角相等”的重要方法之一.“等腰三角形底边上的三条重要线段重合”的性质是今后证明“两条线段相等”“两条直线互相垂直”“两个角相等”等结论的重要理论依据.教学重点:1. 让学生主动经历思考和探索的过程.2. 掌握等腰三角形性质及其应用.教学难点:等腰三角形性质的理解和探究过程.二、学情分析本年级的学生已经研究过一般三角形的性质,积累了一定的经验,动手能力强,善于与同伴交流,这就为本节课的学习做好了知识、能力、情感方面的准备.不同层次的学生因为基础不同,在学习中必然会出现相异构想,这也将是我在教学过程中着重关注的一点.三、目标分析知识与技能1.了解等腰三角形的有关概念和掌握等腰三角形的性质2. 了解等边三角形的概念并探索其性质3. 运用等腰三角形的性质解决问题过程与方法1.通过观察等腰三角形的对称性,发展学生的形象思维.2.探索等腰三角形的性质时,经历了观察、动手实践、猜想、验证等数学过程,积累数学活动经验,发展了学生的归纳推理,类比迁移的能力. 在与他人交流的过程中,能运用数学语言合乎逻辑的进行讨论和质疑,提高了数学语言表达能力.情感态度价值观:1.通过情境创设,使学生感受到等腰三角形就在自己的身边,从而使学生认识到学习等腰三角形的必要性.2.通过等腰三角形的性质的归纳,使学生认识到科学结论的发现,是一个不断完善的过程,培养学生坚强的意志品质.3.通过小组合作,发展学生互帮互助的精神,体验合作学习中的乐趣和成就感.四、教法分析根据学生已有的认知,采取了激疑引趣——猜想探究——应用体验——建构延伸的教学模式,并利用多媒体辅助教学.教学过程教学过程设计意图同学们,我们在七年级已研究了一般三角形的性质,今天我们一起来探究特殊的三角形:等腰三角形.等腰三角形的定义有两条边相等的三角形叫做等腰三角形.等腰三角形中,相等的两边都叫做腰,另一边叫做底边,两腰的夹角叫做顶角.腰和底边的夹角叫做底角.提出问题:生活中有哪些现象让你联想到等腰三角形?首先让学生明确:本学段的几何图形都是按一般的到特殊的顺序研究的.通过学生描述等腰三角形在生活中的应用,让学生感受到数学就在我们身边,以及研究等腰三角形的必要性.剪纸游戏你能利用手中的这个矩形纸片剪出一个等腰三角形吗? 注意安全呦!学情分析:大部分学生会有自己的想法,根据轴对称图形的性质,利用对折纸片,再“剪一刀”就是就得到了两条“腰”;可能还有的同学会利用正方形的折法,获得特殊的等腰直角三角形;可能还有同学先画图,再依线条剪得.在这个过程中,注重落实三维目标.让学生在获取新知的过程中更好的认识自我,建立自信.我不失时机的对学生给予鼓励和表扬,使活动更加深入,课堂充满愉悦和温馨.知其然,更重要的是知其所以然.因此,我力求让学生关注剪法的理性思考.我设计了问题:你是如何想到的? 为的是剖析学生的思维过程:“折叠”就是为了得到“对称轴”,“剪一刀”就是就得到了两条“腰”,由“重合”保证了“等腰”.这样就建立了“操作”与“证明”的中间桥梁.从实际操作中得到证明的方法,也为发现“三线合一”做了铺垫.提出问题:等腰三角形还有什么性质?请提出你的猜想,验证你的猜想?并填写在学案上.合作小组活动规则:1、有主记录员记录小组的结论;2、定出小组的主发言人(其它同学可作补充);3、小组探究出的结论是什么?4、说明你们小组所获得结论的理由.等腰三角形的性质:性质一:等腰三角形的两个底角相等(简称“等边对等角”).性质二:等腰三角形顶角的平分线、底边上的中线、底边上的高重合(简称“三线合一”).学情分析:这个环节是本节课的重点,也是教学难点.尽管在教学过程中,因为学生的相异构想,数学猜想的初始叙述不准确,甚至不正确,但我不会立即去纠正他们,而是让同学们不断地质疑﹑辨析、研讨和归纳,逐渐完善结论.让他们真正经历数学知识的形成过程,真正的体现以人为本的教学理念,努力创设和谐的教育教学的生态环境.通过设置恰当的动手实践活动,引导学生经历观察、动手实践、猜想、验证等数学探究活动,这种探究的学习过程,恰恰是研究几何图形性质的一般规律和方法.(1)在此环节中,我的教学要充分把握好“四让”:能让学生观察的,尽量让学生观察;能让学生思考的,尽量让学生思考;能让学生表达的,尽量让学生表达;能让学生作结论的,尽量让学生作结论.这种教学方式,把学习的过程真正还给学生,不怕学生说不好,不怕学生出问题,其实学生说不好的地方、学生出问题的地方都正是我们应该教的地方,是教学的切入点、着眼点、增长点.(2)教师在这个过程中,充分听取和参与学生的小组讨论,对有困难的学生,及时指导.巩固知识1.等腰三角形顶角为70°,它的另外两个内角的度数分别为________;2.等腰三角形一个角为70°,它的另外两个内角的度数分别为_____;3.等腰三角形一个角为100°,它的另外两个内角的度数分别为_____.内化知识1.如图1,在△ABC中,AB=AC,AD⊥BC,∠BAC=120°你能求出∠BAD的度数吗?知识迁移等边三角形有什么特殊的性质?简单地叙述理由.等边三角形的性质定理:等边三角形的各角都相等,并且每一个角都等于60°.拓展延伸如图2,在△ABC中,AB=AC,点D,E在BC上,AD=AE,你能说明BD=EC?由于学生之间存在知识基础、经验和能力的差异,我为学生提供了层次分明的反馈练习.将练习从易到难,从简到繁,以适应不同阶段、不同层次的学生的需要.让学生拾阶而上,逐步掌握知识,使学困生达到简单运用水平,中等生达到综合运用水平,优等生达到创建水平.畅谈收获总结活动情况,重在肯定与鼓励.引导学生从本课学习中所得到的新知识,运用的数学思想方法,新旧知识的联系等方面进行反思,提高学生自主建构知识网络、分析解决问题的能力.帮助学生梳理知识,回顾探究过程中所用到的从特殊到一般的数学方法,启发学生更深层次的思考,为学生的下一步学习做好铺垫.反思过程不仅是学生学习过程的继续,更重要的是一种提高和发展自己的过程.基础性作业:P65 习题1、2、3、4八年级《等腰三角形》数学教案3教学目标:【知识与技能】1、理解并掌握等腰三角形的性质。
北师大2024八年级数学下册 1.1 第1课时 等腰三角形的性质 教案

1.1 等腰三角形主要师生活动一、创设情境,导入新知图中有你熟悉的图形吗?它们有什么共同特点?师生活动:教师播放课件,学生独立思考回答问题.问题 1 在八上的“平行线的证明”这一章中,我们学了哪8 条基本事实?1.两点确定一条直线.2. 两点之间线段最短.3. 同一平面内,过一点有且只有一条直线与已知直线垂直.4. 同位角相等,两直线平行.5. 过直线外一点有且只有一条直线与这条直线平行.6. 两边及其夹角分别相等的两个三角形全等.7. 两角及其夹边分别相等的两个三角形全等.8. 三边分别相等的两个三角形全等.二、探究新知二、小组合作,探究概念和性质知识点一:全等三角形的判定和性质定理两角分别相等且其中一组等角的对边相等的两个三角形全等(AAS).问题2:你能用基本事实及已经学过的定理证明上面的推论吗?师生活动: 教学时应鼓励学生独立完成. 教师要提醒学生首先依据命题画出几何图形,再结合几何图形用数学符号语言写出“已知”“求证”,最后写出证明过程.已知:如图,∠A =∠D,∠B =∠E,BC = EF.求证:△ABC≌△DEF.证明:∵∠A +∠B +∠C = 180°,∠D +∠E +∠F = 180°(三角形的内角和等于180°),∴∠C = 180°-(∠A +∠B),∠F = 180°-(∠D +∠E).∵∠A =∠D,∠B =∠E (已知),∴∠C =∠F (等量代换).∵BC = EF (已知),∴△ABC≌△DEF (ASA).根据全等三角形的定义,我们可以得到:全等三角形的对应边相等,对应角相等.设计意图:学生在七年级下册已经探索并认识了判定三角形全等的“角角边”定理,这里意在让学生根据基本事实证明这一定理.设计意图:七年级下册给出的“全等三角形”的定义是“能够完全重合的两个三角形叫做全等三角形”,“全等三角形的对应边相等、对应角相等”则是由全等三角形的定义推出来的,本章很多证明都会用到它,因此,这里特别提出这一结论,以便后续证明使用.知识点二:等腰三角形的性质及其推论问题3:你还记得我们探索过的等腰三角形的性质吗?定理:等腰三角形的两个底角相等.推论:等腰三角形顶角的平分线,底边上的中线,底边上的高互相重合(三线合一).问题4:你能利用基本事实或已知的定理证明这些结论吗议一议:在七下学习轴对称时,我们利用折叠的方法说明了等腰三角形是轴对称图形,且两个底角相等,如下图,实际上,折痕将等腰三角形分成了两个全等的三角形. 由此,你得到了解题什么的启发?已知:如图,在△ABC中,AB = AC.求证:∠B = ∠C.方法一:作底边上的中线证明:如图,取BC的中点D,连接AD.∵AB = AC,BD = CD,AD = AD∴△ABD≌△ACD (SSS).∴∠B =∠C(全等三角形的对应角相等).师:还有其他的证法吗?方法二:作顶角的平分线证明:作顶角的平分线AD,则∠BAD =∠CAD.∵AB = AC,∠BAD = ∠CAD,AD = AD,∴△BAD≌△CAD (SAS).∴∠B =∠C (全等三角形的对应角相等).师生活动:教学时教师要注意引导学生根据条件正确、规范地写出“已知”“求证”,有意识地培养学生对文字语言、符号语言和图形语言的转换能设计意图:这里让学生回忆以前的折纸过程,目的是引导学生发现证明的思路,学生一般可以由折纸确定辅助线的位置,但对于作辅助线的规范叙述仍需教师帮助.设计意图:教学中,应鼓励学生寻求其他证明方法,实际上,除作底边中线外,还可以通过作顶角平分线的方法证明结论,此时证明的依据是基本事实SAS. 这两种证明方法都是受折纸的启发(轴对称),通过作辅助线将图形分成两部分,再证明这两部分全等,教师可以引导学生分析这两种证明方法的共性,加深对等腰三角形性质的认识.教学时,可能会有学生通过作底边上的高并利用勾股定理来证明这一定理,对此,教师一方面要保护学生的学习积极性,另一方面也要引导学生认识力,关注证明过程及其表达的合理性.想一想:由△BAD≌△CAD,图中线段AD还具有怎样的性质?为什么?由此你能得到什么论?由△BAD≌△CAD,可得BD = CD,∠ADB =∠ADC,∠BAD =∠CAD.又∵∠ADB +∠ADC = 180°,∴∠ADB =∠ADC = 90°,即AD⊥BC.故AD是等腰△ABC底边BC上的中线、顶角∠BAC的平分线、底边BC上的高.师生活动: 让学生回顾前面的证明过程,思考线段AD具有的性质和特征,从而得到结论.定理:等腰三角形的两个底角相等(等边对等角).几何语言:如图,在△ABC中,∵AB = AC (已知),∴∠B =∠C (等边对等角).推论:等腰三角形顶角的平分线、底边上的中线及底边上的高互相重合(三线合一).练一练1. 已知,如图,△ABC≌△ADE,∠BED = 20°,则∠AED的度数为( )A.60°B.90°C. 80°D. 20°到:我们虽然在以前探索并认识了勾股定理,但尚未用基本事实证明过,所以从逻辑上来说,勾股定理不能作为这里证明的依据.设计意图:这一结论通常简述为“三线合一”, 即如果某线段是一个等腰三角形的“三线”(顶角的平分线、底边上的中线、底边上的高) 之一,那么它必定也是这个等腰三角形的另“两线”.设计意图:综合运用全等三角形和等腰三角形的相关知识解决问题,加深学生印象,考察学生对于知识的掌握情况.三、当堂练习,巩固所学师生活动:让学生尝试解答,并互相交流、总结,归纳解题步骤,教师结合学生的具体活动,加以指导.典例精析例1 已知点D、E在△ABC的边BC上,AB=AC.(1) 如图①,若AD=AE,求证:BD=CE;(2) 如图②,若BD=CE,F为DE的中点,求证:AF⊥BC.证明:(1) 如图①,过A作AG⊥BC于G.∵AB=AC,AD=AE,∴BG=CG,DG=EG.∴BG-DG=CG-EG,即BD=CE.(2)∵BD=CE,F为DE的中点,∴BD+DF=CE+EF,∴BF=CF.∵AB=AC,∴AF⊥BC.三、当堂练习,巩固所学1. 如图,已知AB=AE,∠BAD=∠CAE,要使∠ABC∠∠AED,还需添加一个条件,这个条件可以是________________________.2. (1) 等腰三角形一个底角为75°,它的另外两个角为__________;(2) 等腰三角形一个角为36°,它的另外两个角为设计意图:在定理证明的基础上进行难度更高的推论证明,巩固学生知识的运用,并培养学生发散思维,提高学生解题技巧.设计意图:考查对全等三角形判定的掌握.设计意图:结论:在等腰三教师与学生一起回顾本节课所学的主要内容,梳理并完善知识思维导图.定理两角分别相等且其中一组等角的对边相等的两个三角形全等(AAS).全等三角形的对应边相等,对应角相等.。
北师大版八年级数学下册1.1等腰三角形教学设计

b.如何判定一个三角形是等腰三角形?请举例说明。
c.运用等腰三角形的性质,解决以下问题:(1)已知等腰三角形的底和腰,求顶角;(2)已知等腰三角形的底角,求顶角。
3.学生活动:学生在小组内积极讨论,分享自己的想法和解决问题的方法。
作业要求:
1.学生按时完成作业,书写规范,保持卷面整洁。
2.家长督促孩子认真完成作业,关注孩子学习情况,及时与教师沟通。
3.教师认真批改作业,及时反馈,针对学生存在的问题进行个性化辅导。
4.培养学生运用分类讨论、归纳总结等方法解决问题的能力。
(三)情感态度与价值观
1.培养学生对数学学习的兴趣,激发学生学习几何图形的热情,增强学生对等腰三角形相关知识的探索欲望。
2.培养学生严谨、细致的学习态度,使学生认识到几何图形在学习中的重要性,提高学生对数学美的鉴赏能力。
3.培养学生勇于挑战、克服困难的精神,让学生在解决问题的过程中,体验成功带来的喜悦,增强自信心。
b.在等腰三角形中,已知一边长和底角,求另一边长。
c.在等腰三角形中,已知一边长和顶角,求另一边长。
3.拓展创新题:
a.在等腰三角形中,若底边上的中线等于腰长,求顶角的度数。
b.证明:在等腰三角形中,底角的角平分线、中线、高相互重合。
c.若等腰三角形的底角为α,顶角为β,求证:α + 2β = 180°。
a.通过实例分析,引导学生掌握等腰三角形的判定方法,如两边相等的三角形是等腰三角形等。
b.设计相关练习题,让学生在实际操作中巩固判定方法,提高解决问题的能力。
5.应用拓展:
a.结合实际问题,设计一些与等腰三角形相关的角度和线段问题,引导学生运用所学知识解决问题。
北师大版八年级数学(下)教案:1.1.3等腰三角形

课题:1.1 等腰三角形(3)课型:新授课年级:八年级教学目标:1.能够用综合法证明等腰三角形的判定定理,进一步熟悉证明的基本步骤和书写格式,体会证明的必要性.2.初步了解反证法的含义,并能利用反证法证明简单的命题.3.体验数学活动中的探索与创造,感受数学的严谨性.教学重点与难点:重点:等腰三角形的判定定理的证明.难点:反证法的含义,利用反证法证明简单的命题.教师准备:多媒体课件.教学过程:一、创设情境,导入新课活动内容:回答下列问题.问题1:请同学们回顾一下,前面我们学习了等腰三角形的哪些性质?(学生口答)(1)等腰三角形两底角相等,就是“等边对等角” .(2)“三线合一” .(3)等腰三角形两腰上的高相等,两腰上的中线相等,两底角的平分线相等.问题2:等腰三角形两底角相等,这个命题的题设和结论是什么?问题3:如果把它的条件和结论反过来,还成立吗?也就是一个三角形有两个角相等,那么这两个角所对的边也相等吗?【教师板书课题:1.1等腰三角形(3)】处理方式:学生口答问题1,在此基础上,师特意提出“等腰三角形两底角相等”定理的条件和结论反过来还成立吗?学生对此问题各抒己见,师引导,并引入出新课.设计意图:设计成问题串不但是检测学生对上节课内容掌握的情况,而且也为引出等腰三角形的判定定理埋下伏笔;同时调动了学生学习的兴趣,激发学生学习的热情.二、自主探究,交流展示活动内容1:请同学们探究“有两个角相等的三角形是等腰三角形”吗? 你能完成它证明吗?并与同伴交流.(多媒体出示)(学生在练习本上画图,写出已知、求证;小组之间探究讨论多种证明方法.)已知:如图,在△ABC 中,∠B =∠C , 求证:AB=AC . 方法预设: 方法一:证明:过点A 作BC 的垂线,垂足为D . ∵AD ⊥BC ,∴∠BDA =∠CDA = 90°. 在△ABD 和△ACD 中,∵∠B =∠C , ∠BDA =∠CDA , AD=AD , ∴ △ABD ≌△ACD (AAS ).∴ AB=AC (全等三角形的对应边相等). 方法二:证明:作∠BAC 的角平分线,交BC 与D . ∵AD 平分∠BAC , ∴∠BAD =∠CAD . 在△ABD 和△ACD 中,∵∠B =∠C , ∠BAD =∠CAD , AD=AD , ∴ △ABD ≌△ACD (AAS ) .∴AB=AC (全等三角形的对应边相等).(师引导学生类比“等边对等角”的证明方法正确的添加辅助线,规范的写出推理过程,鼓励学生一题多解.)师指出:作△ABC 边BC 的中线,虽然把△ABC 分成了两个三角形,这两个三角形对应两边及其一边的对角分别相等,这是“SSA ”,是不能证明两个三角形全等的.因此,这种添加辅助线的方法是不可行的. (多媒体展示)ABCAB CD等腰三角形的判定定理:定理:有两个角相等的三角形是等腰三角形. 简述为:等角对等边. 在△ABC 中∵∠B =∠C (已知), ∴AB=AC (等角对等边).处理方式:学生先在练习本上画图,写出已知、求证,在此基础上,学生自主探究,合作交流,小组之间探究讨论多种证明方法.在学生有困难情况下,师引导类比“等边对等角”的证明方法正确的添加辅助线,并让学生亲自书写的解题过程,给予展示,从而得到定理:有两个角相等的三角形是等腰三角形.设计意图:让学生学会类比“等边对等角”的证明方法正确的添加辅助线,明白可以作BC 边上的高线,也可以作∠A 的角平分线,但不适合作BC 边的中线,同时培养了学生一题多解能力.通过学生板书证明过程,培养了学生规范的解题过程及推理能力.活动内容2:在一个三角形中,如果两个角不相等,那么这两个角所对的边也不相等.你认为这个结论成立吗?如果成立,你能证明它吗?(多媒体出示)(学生积极动脑思考,小组交流讨论)师引导:用综合法证明本结论是行不通的,因此,我们要探究一种新方法来完成它的证明,下面来看小明同学的想法:(多媒体展示)如图,在△ABC 中,已知∠B ≠∠C ,此时AB 与AC 要么相 等,要么不相等. 假设AB=AC ,那么根据“等边对等角”定理可得∠C =∠B ,但已知条件是∠B ≠∠C .“∠C =∠B ”与已知条件“∠B ≠∠C ”相矛盾,因此 AB ≠AC . 你能理解他的推理过程吗?师出示: “反证法”的定义:先假设命题的结论不成立,然后推导出与定义,公理、已证定理或已知条件相矛盾的结果,从而证明命题的结论一定成立.这种证明方法称为反证法.处理方式:在学生没有证明思路和方法的情况下,师展示小明同学证明方法,并给出反证法的定义,然后让学生打开课本阅读并理解反证法,明确反证法的步骤.设计意图:让学生明确当用综合法证明命题行不通时,需要探究一种新方法来完成它的ABCACB证明,结合课本小明的想法初步感受反证法,体会反证法在证明中的作用.三、例题解析,应用新知(多媒体出示)例1 已知:如图AB =DC ,BD=CA . 求证:△AED 是等腰三角形.(教师引导、点拨)证明:在△ABD 和△DCA 中, ∵AB=DC, BD=CA ,AD=DA , ∴ △ABD ≌△DCA (SSS) .∴∠ ADB=∠DAC (全等三角形的对应角相等). ∴AE=DE (等角对等边) . ∴ △AED 是等腰三角形.处理方式:先给学生独立思考,再讨论交流,教师适当引导,在此基础上小组合作完成证明过程.完成后,教师对学生的证明过程进行展示、评价.针对出现的问题,师及时指出,并多媒体出示规范的过程.这样通过小组共同探讨、交流、教师引导解决了本节课的重难点. 设计意图:通过本例题,让学生初步应用“等角对等边” 证明一个三角形是等腰三角形,体会证明的思路与书写的过程,同时也培养了学生推理的严密性.例2 用反证法证明:一个三角形中不能有两个角是直角. 已知:△ABC .求证:∠A 、∠B 、∠C 中不能有两个角是直角. (教师引导,学生讨论交流)证明:假设∠A 、∠B 、∠C 中有两个角是直角,不妨设∠A =∠B =90°,则 ∠A +∠B +∠C=90°+90°+∠C >180°.这与三角形内角和定理矛盾, 所以∠A =∠B =90°不成立.所以一个三角形中不能有两个角是直角.(多媒体出示,同时给学生半分钟时间反思体会证明过程.) 师生共同总结:用反证法证明的一般步骤:归纳小结:1.假设命题的结论不成立;2.从这个假设出发,应用正确的推理方法,得出与定义,公理、已证定理或已知条件相矛盾的结果;3. 由矛盾的结果判断假设不正确,从而肯定命题的结论正确.ADEBC处理方式:反证法是学生刚学的一种新的证明方法,加上这种方法不容易理解,因此对学生来说难度较大,所以教师引导,师生共同完成证明过程.完成后,教师对学生的证明过程进行展示、评价.针对出现的问题,师及时指出,并多媒体出示规范的过程.设计意图:通过本例题,让学生初步感受反证法的证明的思路与书写的过程,体会反证法证明与作用.四、 变式训练,巩固提高(多媒体出示) 1.如图,∠A =36°,∠DBC =36°,∠C =72°,图中一共有几个等腰三角形?找出其中的一个等腰三角形给予证明.解:图中一共有三个等腰三角形.证明:∵∠DBC =36°,∠C =72°, ∴∠BDC =72°(三角形内角和定理).∴∠BDC =∠C .∴BD=BC (等角对等边). ∴△DBC 是等腰三角形.同理可证:△ABC 与△ABD 也是等腰三角形.2.已知:如图,∠CAE 是△ABC 的外角, AD ∥BC 且∠EAD =∠CAD . 求证:AB=AC . 证明:∵AD ∥BC ,∴∠EAD =∠B (两直线平行,同位角相等), ∠CAD =∠C (两直线平行,内错角相等). 又∵∠EAD =∠CAD , ∴∠B=∠C .∴AB=AC (等角对等边).3.已知五个正数的和等于1,用反证法证明:这五个数中至少有一个大于或等于15.证明:假设五个正数每一个都小于15,则五个正数的和小于1.这与五个正数的和等于1矛盾,所以五个正数每一个都小于15不成立.所以这五个数中至少有一个大于或等于15.处理方式:教师引导、点拨后,三名学生板演,其余学生在练习本上完成.完成后,同A BCDABCE D学之间相互进行解题过程评价,教师及时点评、适时表扬.设计意图:前两道题的练习,是对学生应用“等角对等边”定理训练,同时加强对综合法证明过程的理解;第三题是让学生感受反证法的证明的思路与书写的过程.在学生书写或口答的过程中,加强学生书写和语言的规范性.五、 归纳小结,反思提升通过这节课的学习,你有哪些收获?有何感想?学会了哪些方法?先想一想,再分享给大家.学生畅谈自己的收获!设计意图:课堂总结是知识沉淀的过程,使学生对本节课所学进行梳理,养成反思与总结的习惯,培养自我反馈,自主发展的意识.六、当堂检测,反馈矫正试一试,你能成功!(多媒体出示)1.如果一个三角形的一个外角是130°,且它恰好等于一个不相邻的内角的2倍,那么这个三角形是( )A 、钝角三角形B 、直角三角形C 、等腰三角形D 、等边三角形2.如图,在△ABC 中,∠B =∠C =40°,D ,E 是BC 上两点,且∠ADE =∠AED =80°,则图中共有等腰三角形( )A 、6个B 、5个C 、4个D 、3个 3.如上右图,已知△ABC 中,CD 平分∠ACB 交AB 于D ,又DE ∥BC ,交AC 于E ,若DE =4 cm ,AE =5 cm ,则AC 等于( )A 、5 cmB 、4 cmC 、9 cmD 、1 cm 4.如图,BD 平分∠CBA ,CD 平分∠ACB ,且MN ∥BC ,设AB =12,AC =18,求△AMN 的周长.处理方式:留给学生5~6分钟的时间独立做题,教师巡视,学生做完后,教师出示答案,并统计学生答题情况,指导学生校对;学生根据答案及时进行纠错.设计意图:用不同的形式巩固所学知识,不同的梯度来检验学生掌握的程度,并最大限度地调动全体学生学习数学的积极性,使每个学生都能有所收益、有所提高.七、布置作业,延展课堂必做题:课本 第10页 习题1.3 第2、4题.ADMNCB BDCAEEBADC选做题:课本第10页习题1.3 第3题.设计意图:分层设置作业,使不同学生都能够在不同程度上更进一步.必做题巩固了本节课所学,选做题满足个别数学爱好者的需求.板书设计:§1.1等腰三角形(3)1.定理:有两个角相等的三角形是等腰三角形(等角对等边). 2.反证法:3.例题解析:例1例2投影区学生活动区。
八年级数学下册 1.1 等腰三角形教案3 (新版)北师大版

①含30°角的直角三角形性质定理的探索与证明.
②引导学生全面、周到地思考问题.
教学程序
集体备课内容
个案补充
第一环节:导入新课、明确目标
回顾前面等腰三角形的性质和判定定理的基础上,直接提出问题:等边三角形作为一种特殊的等腰三角形,具有哪些性质呢?又如何判别一个三角形是等腰三角形呢?从而引入新课。
直接提出问题:我们还学习过直角三角形,今天我们研究一个特殊的直角三角形:含30°角的直角三角形。拿出三角板,做一做:
用含30°角的两个三角尺,你能拼成一个怎样的三角形?能拼出一个等边三角形吗?
在你所拼得的等边三角形中,有哪些线段存在相等关系,有哪些线段存在倍数关系,你能得到什么结论?说说你的理由.
注意事项与效果:学生一般可以得出下面两种图形:其中第1个图形是等边三角形,对于该图学生也可以得出BD= AB,从而得出:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.
等腰三角形
教学目标
知识与技能
1.知识目标
理解等边三角形的判别条件及其 证明,理解含有30º 角的直角三角形性质及其证明,并能利用这两个定理解决一些简单的问题。
2.能力目标
①经历运用几何符号和图形描述命题的条件和结论的过程,建立初步的符号感,发展抽象思维.
②经历实际操作,探索含有30º角的直角三角形性质及其推理证明过程,发展合情推理能力和初步的演绎推理的能力;
③在具体问题的证明过程中,有意识地渗透分类讨论、逆向思维的思想,提高学生的能力。
3.情感与价值观要求
①积极参与数学学习活动,对数学有好奇心和求知欲.
②在数学活动中获得成功的体验,锻炼克服困难的意志,建 立自信心.
过程与方法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课时课题:第一章第一节等腰三角形第3课时
教学目标:
1.能够用综合法证明等腰三角形的判定定理,进一步熟悉证明的基本步骤和书写格式,体会证明的必要性.
2.初步了解反证法的含义,并能利用反证法证明简单的命题.
3.体验数学活动中的探索与创造,感受数学的严谨性.
教学重点与难点:
重点:等腰三角形的判定定理的证明.
难点:反证法的含义,利用反证法证明简单的命题.
教法与学法指导:
本节应用“启迪诱导—自主探究”教学模式.教师在教学过程中起到引导释疑的作用:引导学生观察、思考、分析、讨论、形成结论,并让学生在应用中体会所得知识,学会应用所学知识解决问题的方法.本节课关注了问题的变式与拓广,引领学生经历了提出问题、解决问题的过程,因而较好地提高了学生的研究能力、自主学习能力.
课前准备:多媒体课件
教学过程:
第一环节回顾旧知复习导入
师:请同学们回顾一下,前面我们学习了等腰三角形的哪些性质。
生1:等腰三角形两底角相等,就是“等边对等角”。
生2:“三线合一”。
生3:等腰三角形两腰上的高相等,两腰上的中线相等,两底角的平分线相等。
师:非常好!同学们概括的很全面。
那么对于等腰三角形的性质定理:等腰三角形两底角相等,这个命题的题设和结论是什么? 生:题设:等腰三角形。
结论:两底角相等。
师:我们把性质定理的条件和结论反过来还成立么?如果一个三角形有两个角相等,那么这两个角所对的边也相等? 生:完全成立,可以证明出来。
设计意图:设计成问题串是为引出等腰三角形的判定定理埋下伏笔。
学生独立思考是对上节课内容有效地检测手段。
第二环节 合作探究 展示交流
师:以前我们通过改变问题条件,得出了很多类似的结论,这是研究问题的一种常用方法,除此之外,我们还可以“反过来”思考问题,这也是获得数学结论的一条途径.比如“等边对等角”,反过来成立吗?也就是:有两个角相等的三角形是等腰三角形吗?下面我们来一起证明一下这个结论。
请同学们画出图形,写出已知、求证。
学生活动:在练习本上画图,写出已知、求证,完成证明命题的前两步。
找一个同学黑板板书。
生:已知:如图,在△ABC 中,∠B=∠C ,
求证:AB=AC ,
师:同学们完成的很好,下面怎样来完成证明过程哪?(停顿一下,给学生思考时间。
)同学们回想一下,我们是怎样证明“等边对等角的”?
生1:作辅助线构造两个全等的三角形,使AB 与AC 成为对应边就可以了。
生2:由前面定理的证明的方法,通过作BC 的中线,或作∠A 的平分线,或作BC 上的高,都可以把△ABC 分成两个全等的三角形。
C
B
A
师:很好!同学们可在练习本上尝试一下是否如此,我现在把大家分成三大组,写出三种证明过程来。
学生活动:分三组,用三种方法写过程。
生(举手):老师,不对,我们没法做。
我们组发现,如果作BC的中线,虽然把△ABC分成了两个三角形,但无法用公理和已证明的定理证明它们全等.因为我们得到的条件是两个三角形对应两边及其一边的对角分别相等,这是“SSA”,是不能够判断两个三角形全等的。
他们的两种方法是可行的。
(全班恍然大悟)
师:哈哈!那你们组随便用另外两种方法吧。
生1:方法一:证明:作AD⊥BC于D
在△ABD和△ACD中
∵∠B=∠C, ∠BDA=∠CDA, AD=AD
∴△ABD≌△ACD (SSS)
∴ AB=AC (全等三角形的对应边相等)
生2:方法二:作△ABC顶角∠A的角平分线AD交BC与D.
在△ABD和△ACD中
∵∠B=∠C, ∠BAD=∠CAD, AD=AD
∴△ABD≌△ACD (AAS)
∴∠B=∠C (全等三角形的对应边相等)教师活动:多媒体展示
C B
A
师:下面我们利用这个定理解决一道例题(多媒体展示教材例2)。
例2已知:如图AB=DC,BD=CA. 求证:△AED是等腰三角形
学生活动:观察图形,仔细动脑思考,小组讨论。
学生代表来黑板书写证明过程。
证明:在△ABD和△DCA中
∵AB=DC, BD=CA,AD=DA
∴△ABD≌△DCA (SSS)
∴∠ ADB=∠DAC
∴AE=DE(等角对等边)
∴△AED是等腰三角形
设计意图:引导学生类比“等边对等角”的证明方法正确的添加辅助线,通过学生亲自书写
的解题过程引导学生思考证明“等角对等边”既可以做底边上的高线也可以作顶角的角平分线,但不适合作底边上的中线.通过学生板书规范的推理过程,鼓励学生一题多解。
第三环节适时提问导出反证法
师:我们类比归纳获得一个数学结论,“反过来”思考问题也获得了一个数学结论.如果否定命题的条件,是否也可获得一个数学结论吗?我们一起来“想一想”:(多媒体展示)
学生活动:积极动脑思考,小组交流讨论。
生:我认为这个结论是成立的.因为我画了几个三角形,观察并测量发现,如果两个角不相等,它们所对的边也不相等.但要像证明“等角对等边”那样却很难证明,因为它的条件和结论都是否定的。
不知该怎么办?。
师: 的确如此.像这种从正面人手很难证明的结论,我们有没有别的证明思路和方法呢?我们来看小颖同学的想法:(继续多媒体展示)
学生活动:反复看课件,理解这位同学的方法,表情充满疑惑。
师:上面的方法中小颖同学先假设命题的结论不成立,然后由此推导出了与已知相矛盾的结论,从而证明命题的结论一定成立.这也是证明命题的一种方法,我们把它叫做反证法。
教师活动:课件展示“反证法”
学生活动:打开课本第九页阅读并理解反证法,明确反证法的步骤。
师:同学们可能对反证法还是比较疑惑,我再给大家举个例子:一个三角形中能不能有两个直角?
生:不能,要是有两个直角,三个内角的和就超过180度了。
绝对不能。
师:那么怎样用反证法写出证明过程哪?(多媒体展示教材例3)
设计意图:让学生明确当用综合法证明命题行不通时,我们要有探究一种新方法的欲望,结合课本小明的想法初步感受反证法,体会反证法在证明中出人意料的作用.)
第四环节训练反馈、应用提升
教材第九页随堂练习第一题,第二题
设计意图:通过对这两道题的练习,分别训练学生对综合法证明过程的理解,“等角对等边”定理以及反证法的应用。
在学生书写或口答的过程中,加强学生书写和语言的规范性。
第五环节归纳总结拓展提高
师:通过这节课的学习你学到了什么知识?了解了什么证明方法?(多媒体展示)
(1)本节课学习了哪些内容?
(2)等腰三角形的判定方法有哪几种?
(3)结合本节课的学习,谈谈等腰三角形性质和判定的区别和联系.
(4)举例谈谈用反证法说理的基本思路。
学生活动:回顾本堂课内容,积极回答。
达标测试
1、如果一个三角形的一个外角是130°,且它恰好等于一个不相邻的内角的2倍,那么这个三角形是()
A.钝角三角形
B.直角三角形
C.等腰三角形
D.等边三角形
2、如下左图,在△ABC中,∠B=∠C=40°,D,E是BC上两点,且∠ADE=∠AED=80°,则图中共有等腰三角形()
A.6个
B.5个
C.4个
D.3个
3、如上右图,已知△ABC中,CD平分∠ACB交AB于D,又DE∥BC,交AC于E,若DE=4 cm,AE=5 cm,则AC等于()
A.5 cm
B.4 cm
C.9 cm
D.1 cm
4.如图,BD 平分∠CBA ,CD 平分∠ACB ,且MN ∥BC ,设AB=12,AC=18,求△AMN 的周长. .
板书设计
教学反思:
本节课利用前一课时所证明的等腰三角形的性质定理,进一步研究等腰三角形的判定定理.在从“等边对等角”过渡到研究“等角对等边”的过程中发展了学生的逆向思维能力,并且学生在证明这一命题时也采用了类比的研究方法;在反证法的学习过程中,学生通过辩论的方式发现了反证法具有意想不到的说理效果,课堂气氛十分活跃.
本节课充分体现了学生的主体地位,多让学生自己去观察、思考、发现、表达,培养学生获取信息、提出问题、分析问题、解决问题、自我反思的能力.
本节课的不足之处是时间控制不好,没有及时完成反证法的教学内容.本节课关注了问题的变式与拓广,实际上引领学生经历了提出问题、解决问题的过程,因而较好地提高了学生的研究能力、自主学习能力,但也应注意根据学生的情况进行适度的调整,因为学生先前这样的经验较少,因而对一些班级学生而言,完成全部这些教学任务,可能时间偏紧,为此,
N
M
C
B
D
教学中可以适当减少一些内容,将部分内容延伸到课外。